READ ME FIRST: Show all essential work very neatly. Use correct notation when presenting your computations and arguments. Write using complete sentences. Be careful. Remember this: "=" denotes "equals", ">" denotes "implies", and "⇔" denotes "is equivalent to". Since the answer really consists of all the magic transformations, do not "box" your final results. Communicate. Show me all the magic on the page.

Silly 10 Point Bonus: The magnitude of error in using Simpson's Rule to approximate the definite integral of f(x) on an interval [a,b] with n subintervals may be estimated using

$$\left| \int_{a}^{b} f(x) dx - S_{n} \right| = \left| ES_{n} \right| \leq \frac{K_{4} (b-a)^{5}}{180n^{4}},$$

provided the fourth derivative of f, $f^{(4)}(x)$, is continuous on [a,b], and $|f^{(4)}(x)| \leq K_4$ for each x in [a,b]. If Simpson's rule is used to approximate the definite integral giving the exact value of ln(2), reveal how to determine how big must n be to ensure you have 2 decimal place accuracy. [Say where your work is for there isn't room here. Remember n must be even.]

The integral that we must approximate is

$$\ln(2) = \int_{1}^{2} \frac{1}{x} \, dx.$$

Here, the integrand is $f(x) = x^{-1}$, and thus,

$$f'(x) = -x^{-2}$$
, $f''(x) = 2x^{-3}$, $f^{(3)}(x) = -6x^{-4}$, and $f^{(4)}(x) = 24x^{-5}$.

To use the error estimate really effectively, it helps to obtain the maximum of

$$|f^{(4)}(x)| = |24x^{-5}| = \frac{24}{x^5}$$

with x ε [1,2]. This, of course, is easy since $|f^{(4)}(x)|$ above is decreasing on the interval [1,2]. Consequently, for x ε [1,2], we have $|f^{(4)}(x)| \leq |f^{(4)}(1)| = 24$.

This means that to obtain the desired accuracy, by using the error bound provided up the page, it suffices to find an even positive integer n so that

$$(*) \qquad \frac{24}{180n^4} < \frac{1}{2}10^{-2}$$

is true.

It is easy to see that inequality (*) above is equivalent to

$$\left(\frac{80}{3}\right)^{\frac{1}{4}} < n.$$

Consequently, since $80/3 < 81 = 3^4$ and 4th roots preserve order, the smallest even number that makes (*) true is n = 4.//

Are you suffering from epsilon ennui yet??