
Anton, 9th Edition

Problem 45 of Section 9.7

First, if you are an instructor, don't assign this problem. 
Conceptually it is easy, but the details are horrendous.

You will find above the answer provided in the Instructor's 
Solution Manual of the 9th edition.  That might be viewed as an 
improvement over the solution in the 8th Edition Instructor's 
Solution Manual of what is effectively the same  problem, Problem 41 
of Section 10.7.  Its solution is below:

Both are obviously flawed, for plainly

R 4x  ≤
M
4!

∣x∣4

with the given M  appearing at the bottom of both answers should be 



∣R 4 x  ∣ ≤
M
5 !

∣x∣5
.

This means that the obviously flawed conditions on x  that follow the 
“if” also are likely not on the mark.

Let's recall what the problem actually asks us to do.  

Problem.  Use the Remainder Estimation Theorem to find an interval 
containing x = 0  over which 

f x =
1

1  x2

can be approximated by p x  = 1 − x2
 x 4  to three decimal-place 

accuracy throughout the interval. You are then asked to check by 
using a graphing utility to graph ∣ f x  − p x ∣  over the interval you 
obtained.

A Sketch of the Key Ideas of the Solution: 

In principle, solving the problem requires that we identify the 
given polynomial p x   as an appropriate Maclaurin polynomial of the 
function f  x  , that is as p n0

x   for some nonnegative integer n0 . 

Then by choosing a suitable initial interval I0 , symmetric with 
respect to zero, we should obtain an upper bound M  on the function 

∣ f  n0  1
x ∣  when x ∈ I0 .  The Remainder Estimation Theorem then 

gives us an upper bound on the magnitude of the true error when 
x ∈ I0 , namely

∣ f x  − p x ∣ = ∣R n0
x ∣ ≤ M

n0  1!
∣ x ∣n0 1

since p x  = p n0
x .  To then obtain the desired accuracy, it 

suffices to have
M

n0  1!
∣ x ∣n0  1


1
2

10−3
.

This last inequality is an interval in disguise since it is 
equivalent to

∣ x ∣  [ n0  1!

2M
10−3 ]

1
n0  1

.

To finish up, then, we need only take the intersection of the 
interval defined by this inequality and the interval I0  which allowed 
us to find the number M  needed in applying the Remainder Estimation 
Theorem.  This will provide us with an interval where we can prove 
that the polynomial p x   provides the desired approximation.



The Demon in the Details:

Unlike the other three problems in this set, where it is easy 
and routine to obtain derivatives of arbitrary order for the given 
function f  x   for the problem, the function 

f x  =
1

1  x 2

presents a special challenge.  The higher order derivatives are 
rational functions that become messier and messier to handle as the 
order of differentiation goes up.  In fact, one might characterize 
the situation as one where the problem is one of differential 
drudgery.

To alleviate that drudgery somewhat, we shall make things 
complex, so as, ultimately to simplify them.  Evidently, 

f x  =
1

 x  i  x − i  ,

where i 2
= −1 .  By performing a partial fraction decomposition using 

complex number coefficients, we may then write

f x  =
1
2 i [ 1

 x − i 
−

1
 x  i  ] .

And why would we want to do something as outlandish as this?? 
It turns out that when 

g x  =
1

x − a ,

by taking three or four derivatives, one can quickly guess that

g k 
x = −1k k! x − a− k 1 

for each integer k ≥ 0 .  This formula remains valid when x and a are 
complex-valued, provided x ≠ a .

Thus, by using the structure of f  x  , properties of the 
derivative, and routine algebra, we may write

f k x =
−1k k!

2 i [  x  i  k1
−  x − i  k1

 x2  1  k1 ]
for each integer k ≥ 0  with the obvious restriction for complex 
values of x .  

Using the Binomial Theorem and easily done algebra allows us to 
reveal what  x  i k 1

−  x − i k 1 is as a polynomial with complex 



coefficients.  In fact, 

 x  i k 1 −  x − i k 1 = ∑
j= 0

k1

 k1
j x k 1− j  i  j [ 1 − −1 j ]

for each integer k ≥ 0 .  We may re-write the right hand side since

1 − −1 j
= { 0 , if j is even

2 , if j is odd .

We can see from this that the only nonzero terms are those where j  is 
odd and no larger than k 1 .  Since the number of odd positive 
integers no larger than k 1  is given using the greatest integer 
function by 

O k1 = 〚 k  2
2 〛 , 

we may write

 x  i  k  1
−  x − i  k 1

= ∑
j= 1

O  k1 

2  k1
2j−1 x k 1 −2j−1

 i 2j−1
.

Doing a little more algebra provides us with

 x  i  k  1
−  x − i  k 1

=  2i  ∑
j= 1

O  k1 

−1 j1 k1
2j−1 x k 2− 2j

.

Finally we may put together the pieces to obtain 

 f k 
x =

−1k k!
 x2

 1 
k 1 [ ∑

j=1

O  k1 

−1 j1  k1
2j−1 x k 2−2j ]

where O k1 is the number of odd positive integers no larger than 
k 1  for k ≥ 0 .  

It is convenient now to explicitly write out the first six 
derivatives of

f x  =
1

1  x2 ,

so that we can deal with the details of Maclaurin polynomials and an 
upper bound on the remainder term.  Thus, either using the formula 
above or two and a half pages of computations using logarithmic 
differentiation, you can obtain the following:



f 1 
x  =

−12x
 x2

 1 
2 ;

f 2 
x  =

−12 2!
 x2

 1 
3 [ 3 x2

− 1 ] ;

f 3 
x  =

−13 3!
 x2

 1 
4 [ 4x3

− 4 x ] ;

f 4 
x =

−14 4!
 x2

 1 
5 [ 5 x4

− 10x2
 1 ] ;

f 5 
x  =

−15 5!
 x2

 1 
6 [ 6 x5

− 20x3
 6x ] ;

and

f 6 x  =
−16 6!

 x2
 1 

7 [ 7 x6 − 35x4  21x2 − 1 ] .

Consequently, we have  f 1 
0 = f 3 

0 = f 5 
0 = 0 , f 2 

0 = − 2! , 
and f 4 

0 = 4! .  Thus, we may view the polynomial

p x  = 1 − x2
 x 4  

as either the 4th or the 5th Maclaurin polynomial of f  .   

We should hope that the higher order polynomial will give a 
better error bound since 

[ 1
2

10−3 ]
1
5

 [ 1
2

10−3 ]
1
6 .

Of course the fifth or sixth derivative of the function also plays a 
part in determining the final interval, as does the initial interval 
on which we study the appropriate derivative.  For definiteness, now, 
we shall take n0 = 5 and use nearly the same interval as the 

Instructor's  Solution Manual, the set I0  of real numbers x  with 
∣ x ∣ ≤ 1/2 .  



It really is not feasible to easily obtain the absolute extrema 
of the sixth derivative, or even of its polynomial factor 

7x6
− 35x4

 21x2
− 1  with x  restricted to the closed interval

 I0 .  What we shall do instead is use the triangle inequality to 
obtain a crude upper bound.  Plainly, 

∣ 7x6
− 35x4

 21x2
− 1 ∣ ≤ 7∣ x ∣6

 35∣ x ∣4
 21∣ x ∣2

 1
and

7∣ x∣6
 35∣ x ∣4

 21∣ x ∣2
 1 ≤

7
64


35
16


21
4

 1  10

when ∣ x ∣  1/2 .  Thus, if ∣ x ∣  1/2 ,  ∣ f 6 
x  ∣ ≤ 10 6! . 

Consequently we may take M = 106! .

You may wish to refer back to the sketch of the key ideas that 
appeared earlier.  To obtain the desired accuracy, it now suffices to 
have 

∣ x ∣  [ 6!
2106!

10−3 ]
1
6

= [ 1
2

10−4 ]
1
6 .

Observe that a calculator provides  

[
1
2

10−4 ]
1
6 ≈ 0.1919383 .

Finally, it is worth noting that if one choses to disregard the 
requirement that the Remainder Estimation Theorem be used, it is easy 
to obtain an interval where the polynomial p x  = 1 − x2

 x 4  
approximates 

f x  =
1

1  x 2

to three decimal places.  The lucky circumstance is that the 
polynomial is a geometric sum.  Thus, as long as x  is a real number, 
we have

∣ f x  − p x ∣ = ∣ 1
1  x 2

−  1 − −x2

3

1  x2  ∣ =
∣ x ∣6

1  x2
≤ ∣ x ∣6

.

To obtain the desired accuracy, it suffices to have

∣ x ∣  [ 1/2 10−3
]

1 /6 .   Again resorting to a calculator, we can see 
that [ 1/2 10−3

]
1 /6

≈ 0.28172691 .  That's better?? //  eM toidI


