Anton, 9 Edition
Problem 45 of Section 9.7

First, if you are an instructor, don't assign this problem.
Conceptually it is easy, but the details are horrendous.
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You will find above the answer provided in the Instructor's
Solution Manual of the 9*" edition. That might be viewed as an
improvement over the solution in the 8™ Edition Instructor's
Solution Manual of what is effectively the same problem, Problem 41
of Section 10.7. Its solution is below:
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Both are obviously flawed, for plainly
M
R,(x) < 17|X“

with the given M appearing at the bottom of both answers should be



M
[Ra)] = 25 IxP
This means that the obviously flawed conditions on x that follow the

“if” also are likely not on the mark.
Let's recall what the problemactually asks us to do.

Problem Use the Remai nder Estinmation Theoremto find an interval
containing x = 0 over which

can be approximated by p(x) =1 — x* + x* to three deci mal -pl ace
accuracy throughout the interval. You are then asked to check by
using a graphing utility to graph |f(x) — p(x)| over the interval you
obt ai ned.

A Sketch of the Key |deas of the Sol ution:

In principle, solving the problemrequires that we identify the
gi ven polynom al p(x) as an appropriate Maclaurin polynom al of the
function f(x), that is as p,(x) for sone nonnegative integer ng.
Then by choosing a suitable initial interval I,, symetric with
respect to zero, we should obtain an upper bound M on the function
| f'™"Y(x) | when x € I,. The Remainder Estimation Theorem then
gi ves us an upper bound on the nmagnitude of the true error when
x € I, nanely

M ne+ 1
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since p(x) = p,(x). To then obtain the desired accuracy, it
suffices to have
M no + 1 1.,
— o =10
moep X o= gt

This last inequality is an interval in disguise since it is

equi valent to
(ng+ 1), 5 Fart
——10 .

To finish up, then, we need only take the intersection of the

interval defined by this inequality and the interval I, which allowed
us to find the nunber M needed in applying the Remai nder Estinmation
Theorem This will provide us with an interval where we can prove
that the polynom al p(x) provides the desired approximation.



The Denon in the Details:

Unlike the other three problens in this set, where it is easy
and routine to obtain derivatives of arbitrary order for the given
function f(x) for the problem the function

1
X:—
f(x) P
presents a special challenge. The higher order derivatives are
rati onal functions that becone nessier and nessier to handl e as the
order of differentiation goes up. |In fact, one mght characterize
the situation as one where the problemis one of differentia
dr udgery.

To alleviate that drudgery sonmewhat, we shall make things
conplex, so as, ultimately to sinplify them Evidently,

_ 1
X = i Hx =1y
where i? =—-1. By performing a partial fraction deconposition using
conpl ex nunber coefficients, we may then wite
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And why would we want to do sonething as outlandi sh as this??
It turns out that when

by taking three or four derivatives, one can quickly guess that
9" = (1)K (x — a) Y

for each integer k = 0. This fornula remains valid whenxandaare
conpl ex-val ued, provided x # a.

Thus, by using the structure of f(x), properties of the
derivative, and routine algebra, we my wite

(k) _ (—1F k| (x+i)t — (x=1)F*t
fr = 21 (X2 4 1)k+1

for each integer k = 0 with the obvious restriction for conpl ex
val ues of x.

Usi ng the Binom al Theorem and easily done algebra allows us to
reveal what (x+i)*"' — (x—i)*"is as a polynonm al with conplex



coefficients. In fact,
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for each integer k = 0. W may re-wite the right hand side since

0O , if j is even

_ (—1)! =
1 (=1) 2 , if jis odd.

W can see fromthis that the only nonzero terns are those where Jjis
odd and no larger than k+1. Since the nunber of odd positive
integers no larger than k+1 is given using the greatest integer
function by
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we may wite
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Doing a little nore al gebra provides us with
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Finally we may put together the pieces to obtain
Ky — (—1)" k! ol jaf k+1 | k22
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where O (k+1

)is the nunber of odd positive integers no |arger than
k+1 for k = 0,

It is convenient now to explicitly wite out the first six
derivatives of

so that we can deal with the details of Mclaurin polynom als and an
upper bound on the remainder term Thus, either using the fornul a
above or two and a hal f pages of conputations using logarithmc

di fferentiation, you can obtain the foll ow ng:
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f %) = ?i;%%ézﬁ—[7x6—-35x4+-21x2—-1].
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Consequently, we have f ") =f ®(0) =7Ff ®©0) =0, f@(0) =-21,

and f “(0) = 4!. Thus, we may view the pol ynoni al
p(x) =1 — x* + x*
as either the 4th or the 5t" Macl aurin pol ynom al of f

We shoul d hope that the higher order polynomal will give a
better error bound since
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O course the fifth or sixth derivative of the function also plays a
part in determining the final interval, as does the initial interval
on which we study the appropriate derivative. For definiteness, now,
we shall take n, = 5and use nearly the sane interval as the
Instructor's Solution Manual, the set I, of real numbers x wth

| x| < 1/2.



It really is not feasible to easily obtain the absolute extrema
of the sixth derivative, or even of its polynom al factor
7x% — 35x* + 21x2 — 1 wWith x restricted to the closed interva
I,. What we shall do instead is use the triangle inequality to
obtain a crude upper bound. Plainly,

| 7x% — 35x* + 21x*> — 1] < 7|x|® + 35|x|* + 21|x|* + 1

and
7Ix|® + 35|x|* + 21 x> +1 < L+ 32 2L 4 o
| x|” + 35[x|" + 21|x]|" + < &l + 16 + 2 + < 10
when |x| < 1/2. Thus, if |x| < 1/2, |f ®x)| < (10)6!.

Consequently we may take M = (10)6!.

You may wi sh to refer back to the sketch of the key ideas that
appeared earlier. To obtain the desired accuracy, it now suffices to
have

0! -3 _é . l -4 l6
X1 2010761 -V l =210 l
bserve that a cal cul ator provides
L
[ L10%% ~ 0.1919383.
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Finally, it is worth noting that if one choses to disregard the
requi renent that the Remai nder Estinmation Theorem be used, it is easy
to obtain an interval where the polynomal p(x)=1- x* + x*
appr oxi nat es

to three decimal places. The lucky circunstance is that the
pol ynom al is a geonmetric sum Thus, as long as x is a real nunber,
we have
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1 + x° 1 + x°

[ f(x) = px)| =

To obtain the desired accuracy, it suffices to have
|x| < [(1/2)10°]"®. Again resorting to a calculator, we can see
that [(1/2)107°]"® ~ 0.28172691. That's better?? // eMtoidl



