Read Me First: Show all essential work very neatly. Use correct notation when presenting your computations. Write using complete sentences. Remember this: "=" denotes "equals" , "⇒" denotes "implies" , and "⇔" denotes "is equivalent to". Vector objects must be denoted by using arrows. Do not "box" your final results. Show me all the magic on the page.

Silly 10 Point Bonus: Suppose that $(x_0, y_0) \neq (0, 0)$. Without using any of the usual tools of Calculus, like the derivative, obtain the absolute extrema of the function

 $f(\theta) = x_0 \cos(\theta) + y_0 \sin(\theta)$

and locate the precise $\theta\,'\,s$ in the interval [0,2\pi) where the extrema occur. [Indicate where your work is.]

Parts of this are easy if you realize that

 $f(\theta) = x_0 \cos(\theta) + y_0 \sin(\theta)$

= $\langle x_0, y_0 \rangle \cdot \langle \cos(\theta), \sin(\theta) \rangle$

$$= \langle x_0, y_0 \rangle \cos(\phi)$$

where φ is the angle between the nonzero vector < x_0 , y_0 > and the unit vector $\mathbf{u} = < \cos(\theta)$, $\sin(\theta) >$. In fact, the extreme values may be read off of the equation above. The maximum value that f attains is

$$|\langle x_0, y_0 \rangle| = ((x_0)^{2} + (y_0)^{2})^{1/2}$$

and the minimum value is

$$-|\langle x_0, y_0 \rangle| = -((x_0)^2 + (y_0)^2)^{1/2}.$$

The real problem here is in locating where the extrema occur in terms of θ in the interval $[0, 2\pi)$.

Plainly, the maximum occurs when $\varphi = 0$ and \mathbf{u} has the same direction as < x_0 , $y_0 >$. Thus, we need only find the solution in the interval $[0, 2\pi)$ to the system

$$\cos(\theta) = \frac{x_0}{((x_0)^2 + (y_0)^2)^{1/2}}$$

and

$$\sin(\theta) = \frac{Y_0}{((x_0)^2 + (y_0)^2)^{1/2}}.$$

This is easy once you think about converting the point $({\bf x}_{\scriptscriptstyle 0}, {\bf y}_{\scriptscriptstyle 0})$ to polar coordinates. A solution:

$$\theta_{0} = \begin{cases} \pi/2 & , & \text{if } x_{0} = 0 \text{ and } y_{0} > 0 \text{ ;} \\ 3\pi/2 & , & \text{if } x_{0} = 0 \text{ and } y_{0} < 0 \text{ ;} \\ 3\pi/2 & , & \text{if } x_{0} = 0 \text{ and } y_{0} < 0 \text{ ;} \\ \arctan(y_{0}/x_{0}) & , & \text{if } x_{0} > 0 \text{ and } y_{0} \ge 0 \text{ ;} \\ \arctan(y_{0}/x_{0}) + \pi & , & \text{if } x_{0} < 0 \text{ and } y_{0} \in \mathbb{R} \text{ ;} \\ \arctan(y_{0}/x_{0}) + 2\pi & , & \text{if } x_{0} > 0 \text{ and } y_{0} < 0 \text{ .} \end{cases}$$

The minimum, of course, occurs when $\varphi = \pi$ and **u** has the opposite direction from < x_0 , $y_0 >$. Let's denote the value of

 θ in the interval $[0, 2\pi)$ yielding the minimum by θ_1 . Then θ_1 may be given in terms of the values for θ_0 as follows:

$$\theta_{1} = \begin{cases} \theta_{0} + \pi , & \text{if } y_{0} > 0 & \text{;} \\ \theta_{0} - \pi , & \text{if } y_{0} < 0 & \text{;} \\ \theta_{0} + \pi , & \text{if } y_{0} = 0 \text{ and } x_{0} > 0; \\ \theta_{0} - \pi , & \text{if } y_{0} = 0 \text{ and } x_{0} < 0 \text{.} \end{cases}$$

Observe that the stickiness is caused by the demand that we keep both in the interval $[0.2\pi)$ so that one cannot simply add π or subtract π without regard for where (x_0, y_0) is. What is going on is this, of course: The point (x_0, y_0) provides the angle for the maximum value. Thus, if (x_0, y_0) is above the x-axis, add π to θ_0 to get the angle for the minimum. If (x_0, y_0) is below the x-axis, subtract π from θ_0 to get the angle for the minimum. If (x_0, y_0) lies on the positive x-axis, add π to θ_0 to get the angle for the minimum. If (x_0, y_0) lies on the positive x-axis, add π to θ_0 to get the angle for the minimum. And finally, if (x_0, y_0) is on the negative x-axis, subtract π from θ_0 to get the angle for the minimum. Rats!

Here is one last thing for you to puzzle over. Observe that ϕ is the angle between the fixed, nonzero vector < x_0 , y_0 > and u, and θ may be viewed as the measure of the angle formed by the unit vector < $\cos(\theta)$, $\sin(\theta)$ > and the unit vector i. Except when < x_0 , y_0 > is a positive multiple of < 1 , 0 >, ϕ and θ are different. Are ϕ and θ above related? How?? Answering this points to an alternative solution of the original problem, of course.

Note: This nonsense is inspired by the usual analysis relating the gradient vector to the directional derivative. Were you paying attention??

$$\begin{aligned} \mathsf{D}_{\mathbf{u}} \mathsf{f}(x_{0}, y_{0}) &= \nabla \mathsf{f}(x_{0}, y_{0}) \cdot \boldsymbol{u} \\ &= \langle \mathsf{f}_{x}(x_{0}, y_{0}), \mathsf{f}_{y}(x_{0}, y_{0}) \rangle \cdot \langle u_{1}, u_{2} \rangle \\ &= \mathsf{f}_{x}(x_{0}, y_{0}) u_{1} + \mathsf{f}_{y}(x_{0}, y_{0}) u_{2} \\ &= |\nabla \mathsf{f}(x_{0}, y_{0})| \cos(\varphi), \end{aligned}$$

where ϕ is the angle between the nonzero gradient and the unit vector $\boldsymbol{u}.$ Look at the pattern.