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1. (40 pts.) Without evaluating any integrals and using only
the table provided, properties of the Laplace transform, and
appropriate function identities, obtain the Laplace transform of
each of the functions that follows:

 -5 , 0 < t < 5
(a) h(t) =  25 , 5 < t < 15 = -5 + 30u5(t) - 23u15(t)

 2 , 15 < t .

{h(t)}(s) = -5 {u0(t)}(s) + 30 {u5(t)}(s) - 23 {u15(t)}(s)

= -(1/s)(5 - 30e-5s + 23e-15s)

or equivalent.

(b) g(t) = π t e2t cos(t)

{g(t)}(s) = π {e2t(t cos(t))}(s)

= π {t cos(t)}(s - 2)

= π( (s - 2)2 - 12 )/[ ( (s - 2)2 + 12 )2 ]

= π((s - 2)2 - 1)/[((s - 2)2 + 1)2]

This can also be handled by following the line of transformation
that begins {g(t)}(s) = π {t(e2t cos(t))}(s) and uses
differentiation, but it’s much messier.

(c) (f*g)(t) , when f(t) = 2 sin(3t) and g(t) = 2 e-5t t4

{(f*g)(t)}(s) = {f(t)}(s) {g(t)}(s)

= 2 {sin(3t)}(s) 2 {e-5t t4}(s)

= 2 3(s2 + 9)-1 2 4!(s + 5)-5

= 288(s2 + 9)-1(s + 5)-5 or equivalent.
_________________________________________________________________

10 Point Bonus: If what’s f(t),{f(t)}(s) 1/s
1 e s

for s > 0,

assuming the Laplace beast coexists with the series shaman?

thanks to{f(t)}(s) 1
s

∞

k 0
(( 1)e s)k ∞

k 0

( 1)ke ks

s
for s > 0,

the geometric series genie. [Yes, the series converges for
s > 0.] Observe that one may then realize that

, where, in fact, the sum isf(t) ∞

k 0
( 1)kuk(t) for t ≥ 0

finite for each t ≥ 0. Examining f(t) over a couple of intervals
will reveal that f is 2 - periodic with f(t) = 1 for 0 < t < 1
and f(t) = 0 for 1 < t < 2, and on and on. Really??
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1.

 16 , 0 < t < 2
(d) f(t) =  = 16 + (8t - 16) u2(t)

 8t , 2 < t

{f(t)}(s) = {16}(s) + {(8t - 16) u2(t)}(s)

= 16s-1 + {g(t-2) u2(t)}(s), where g(t-2) = 8t - 16

= 16s-1 + e-2s {g(t)}(s), with g(t) = 8(t+2) - 16

= 16s-1 + e-2s {8t}(s)

= 16s-1 + 8e-2ss-2

_________________________________________________________________
2. (10 pts.) (a) The Laplace transform of the following 2-
periodic function may be written in terms of a definite integral.
Simply express the transform in terms of the appropriate definite
integral, but do not attempt to evaluate that definite integral.

 t , for 0 ≤ t < 1
f(t) = 

 2 - t , for 1 ≤ t < 2,

and f(t) = f(t + 2) for t ≥ 0.

{f(t)}(s) ⌡
⌠ 2

0
f(t)e stdt

1 e 2s

(b) The following sum of definite integrals can be realized as
the Laplace transform of a certain function g(t) defined for
t ≥ 0. Provide the precise definition of that function g.

where⌡
⌠ 1

0
te stdt ⌡

⌠ 2

1
(2 t)e stdt {g(t)}(s),

 t , for 0 ≤ t < 1


g(t) =  2 - t , for 1 ≤ t < 2,

 0 , for 2 ≤ t.

Warning: Do not attempt to evaluate the Laplace transform of g.

NOTE: Of course you could also have answered that

 f(t) , for 0 ≤ t < 2
g(t) = 

 0 , for 2 ≤ t, where f(t) is defined above.
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3. (15 pts.) Suppose that the Laplace transform of the solution
to a certain initial value problem involving a linear
differential equation with constant coefficients is given by

se-πs 10 s
{y(t)}(s) = + .

s2 + 25 (s - 2)2 + 36

What’s the solution, y(t) , to the IVP??

se-πs s
y(t) = -1{ }(t) + 10 -1{ }(t)

s2 + 25 (s - 2)2 + 36

= uπ(t)cos(5(t-π)) + 10e2tcos(6t) + (10/3)e2tsin(6t)

after just a little of the usual prestidigitation --- factoring
unity correctly and invoking the avatar of zero who
transmogrifies ugly toads to princely table forms --- routine
magic now. You may write y(t) in piecewise-defined form if you
are feeling rowdy.

_________________________________________________________________
4. (15 pts.) Using only the Laplace transform machine, very
carefully solve the following very dinky first order initial
value problem:

 6 , for 0 ≤ t < 3
y ′ = f(t) , where f(t) = 

 2t , for 3 ≤ t
and y(0) = -3.

Observe that f(t) = 6 + 2(t - 3)u3(t). Thus, applying our
friendly Laplace transform to both sides of the differential
equation, using the initial condition, and solving for the
Laplace transform of y yields

{y(t)}(s) = [6/(s2)] + [2e-3s/(s3)] - [3/s] .

Thus, after not bowing at all to the partial fraction proprietor,
you may write

y(t) = 6t + u3(t)(t-3)
2 - 3

Finally, after you march up and down the unit steps a few times,
you have

 6t - 3 , for 0 ≤ t < 3
y(t) = 

 t2 + 6 , for 3 ≤ t

more or less. There are, of course, a couple of inequalities
that we have fudged. [Look at Test 1, Problem 1(f)...!!??]
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5. (10 pts.) Very neatly transform the given initial value
problem into a linear system in {x} and {y} and stop. Do not
attempt to solve for {x} or {y}.

I.V.P.: 2x ′ (t) + y(t) = 12t2

y ′ (t) - 3x(t) = 8 e-4tδ(t - 5), x(0) = 1 , y(0) = -2

After performing the transformation two-step and tidying things
up a mite, you might waltz right up to

2s {x} + {y} = [24/s3] + 2

-3 {x} + s {y} = 8e-5(s + 4) - 2
_________________________________________________________________
6. (10 pts.) Consider the following initial value problem:

y ′ (t) - 3y(t) = h(t) and y(0) = 0,

 10sin(t), for 0 < t < 2π
where h(t) = 

 0 , for t > 2π.
Suppose that

 e3t - cos(t) - 3sin(t) , for 0 ≤ t < 2π
y(t) = 

 e3t , for t ≥ 2π.

(a) Show that y satisfies the ODE when 0 < t < 2π.

If 0 < t < 2π, then
y ′ (t) - 3y(t) = [3e3t+sin(t)-3cos(t)] - 3[e3t-cos(t)-3sin(t)]

= sin(t) + 9sin(t) = 10sin(t).

(b) Show that y satisfies the ODE when t > 2π.

If t > 2π, then y ′ (t) - 3y(t) = [3e3t] - 3[e3t] = 0.

(c) Show that y satisfies the initial condition.

y(0) = e3(0)-cos(0)-3sin(0) = 1 - 1 - 0 = 0. [Dead Equine?]

(d) Why wouldn’t you want to call y the solution to the IVP?

Since and , y(t) islimt → 2π y(t) e6π 1 limt → 2π y(t) e6π

discontinuous at t = 2π. Consequently, y(t) above is not
differentiable at t = 2π, a very desirable property for the
solution to the IVP to have. [Note: Continuity is necessary for
differentiability, not sufficient. You really should check for
differentiability, but if the varmint is not continuous, ... . ]
_________________________________________________________________

10 Point Bonus: If what’s f(t),{f(t)}(s) 1/s
1 e s

for s > 0,

assuming the Laplace beast coexists with the series shaman?
[Look on Page 1 of 4??]


