NAME:

TEST4/MAP2302

Read Me First: Show all essential work very neatly. Use correct notation when presenting your computations and arguments. Write using complete sentences. Remember this: "=" denotes "equals", "⇒" denotes "implies", and "⇔" denotes "is equivalent to". Do not "box" your answers. Communicate. Clearly show me the all the magic on the page. Test #:

1. (40 pts.) Without evaluating any integrals and using only the table provided, properties of the Laplace transform, and appropriate function identities, obtain the Laplace transform of each of the functions that follows:

				-5	,	0	<	t	<	5
(a)	h(t)	= <	í	25	,	5	<	t	<	15
			l	2	,	15	<	t		

 $\mathfrak{g}(h(t))(s) =$

(b) $g(t) = \pi \cdot t \cdot e^{2t} \cdot \cos(t)$

g(t) =

(c) (f*g)(t), when $f(t) = 2 \cdot \sin(3t)$ and $g(t) = 2 \cdot e^{-5t} \cdot t^4$

g((f*g)(t)) =

⊥.				~				~
(d)	f(t) = <	10	'	0	<	τ	<	2
		8t	,	2	<	t		
⊈{f(t)}(s) =							

2. (10 pts.) (a) The Laplace transform of the following 2periodic function may be written in terms of a definite integral. Simply express the transform in terms of the appropriate definite integral, but do not attempt to evaluate that definite integral.

 $f(t) = \begin{cases} t & , \text{ for } 0 \le t < 1 \\ 2 - t & , \text{ for } 1 \le t < 2, \\ & \text{ and } f(t) = f(t + 2) \text{ for } t \ge 0. \end{cases}$

 $\mathscr{L}{f(t)}(s) =$

(b) The following sum of definite integrals can be realized as the Laplace transform of a certain function g(t) defined for $t \ge 0$. Provide the precise definition of that function g.

$$\int_{0}^{1} t e^{-st} dt + \int_{1}^{2} (2-t) e^{-st} dt = \Re\{g(t)\}(s), \text{ where}$$

g(t) =

Warning: Do not attempt to evaluate the Laplace transform of g.

3. (15 pts.) Suppose that the Laplace transform of the solution to a certain initial value problem involving a linear differential equation with constant coefficients is given by

 $\mathfrak{G}{y(t)}(s) = \frac{se^{-\pi s}}{s^2 + 25} + \frac{10 \cdot s}{(s - 2)^2 + 36}$

What's the solution, y(t) , to the IVP??

y(t) =

4. (15 pts.) Using only the Laplace transform machine, very carefully solve the following very dinky first order initial value problem:

y' = f(t), where $f(t) = \begin{cases} 6 & \text{, for } 0 \le t < 3 \\ 2t & \text{, for } 3 \le t \end{cases}$ and y(0) = -3. 5. (10 pts.) Very neatly transform the given initial value problem into a linear system in $\mathfrak{A}{x}$ and $\mathfrak{A}{y}$ and stop. Do not attempt to solve for $\mathfrak{A}{x}$ or $\mathfrak{A}{y}$.

I.V.P.:
$$2x'(t) + y(t) = 12t^2$$

 $y'(t) - 3x(t) = 8 \cdot e^{-4t} \delta(t - 5), \qquad x(0) = 1, y(0) = -2$

6. (10 pts.) Consider the following initial value problem: y'(t) - 3y(t) = h(t) and y(0) = 0,where $h(t) = \begin{cases} 10\sin(t), \text{ for } 0 < t < 2\pi \\ 0 & , \text{ for } t > 2\pi. \end{cases}$ Suppose that $y(t) = \begin{cases} e^{3t} - \cos(t) - 3\sin(t) & , \text{ for } 0 \le t < 2\pi \\ e^{3t} & , \text{ for } t \ge 2\pi. \end{cases}$ (a) Show that y satisfies the ODE when $0 < t < 2\pi$.

(b) Show that y satisfies the ODE when t > 2π .

(c) Show that y satisfies the initial condition.

(d) Why wouldn't you want to call y the solution to the IVP?

10 Point Bonus: If $\mathscr{Q}{f(t)}(s) = \frac{1/s}{1 + e^{-s}}$ for s > 0, what's f(t), assuming the Laplace beast coexists with the series shaman?