TEST4/MAP2302

Read Me First: Show all essential work very neatly. Use correct notation when presenting your computations and arguments. Write using complete sentences. Remember this: "=" denotes "equals", "⇒" denotes "implies", and "⇔" denotes "is equivalent to". Do not "box" your answers. Communicate. Clearly show me the all the magic on the page. Test #:

1. (40 pts.) Without evaluating any integrals and using only the table provided, properties of the Laplace transform, and appropriate function identities, obtain the Laplace transform of each of the functions that follows:

(a) h(t) =
$$\begin{cases} -5 & , \ 0 & < t < 10 \\ 22 & , \ 10 & < t < 45 \\ -3 & , \ 45 & < t \end{cases}$$

g(h(t))(s) =

(b)
$$f(t) = \begin{cases} 8t & , 0 < t < 4 \\ 16 & , 4 < t \end{cases}$$

 $\mathscr{L}{f(t)}(s) =$

(c) (f*g)(t), when $f(t) = 2 \cdot e^{8t} \sin(3t)$ and $g(t) = 2t^4$ $g\{(f*g)(t)\}(s) =$

(d)
$$q(t) = t^2 \cdot e^t \cdot sin(t)$$

Hint: Perform a deft prestidigitation with your magic writing wand correctly and one derivative is all that's needed.

g(t) =

1.

2. (10 pts.) (a) The Laplace transform of the following periodic function may be written in terms of a definite integral. Simply express the transform in terms of the appropriate definite integral, but do not attempt to evaluate that definite integral.

 $f(t) = \begin{cases} t^2 & , \text{ for } 0 \le t < 2\\ (t - 4)^2 & , \text{ for } 2 \le t < 4,\\ \\ and f(t) = f(t + 4) \text{ for } t \ge 0. \end{cases}$

 $\mathscr{L}{f(t)}(s) =$

(b) The following sum of definite integrals can be realized as the Laplace transform of a certain function g(t) defined for $t \ge 0$. Provide the precise definition of that function g.

$$\int_{0}^{2} t^{2} e^{-st} dt + \int_{2}^{4} (t-4)^{2} e^{-st} dt = \Re\{g(t)\}(s), \text{ where}$$

g(t) =

Warning: Do not attempt to evaluate the Laplace transform of g.

TEST4/MAP2302

3. (15 pts.) Suppose that the Laplace transform of the solution to a certain initial value problem involving a linear differential equation with constant coefficients is given by

 $\Re\{y(t)\}(s) = \frac{10e^{-\pi s}}{s^2 + 9} + \frac{8s + 49}{(s + 6)^2 + 9}$

What's the solution, y(t) , to the IVP??

y(t) =

4. (15 pts.) Using only the Laplace transform machine, very carefully solve the following very dinky first order initial value problem: y' = f(t), where $f(t) = \begin{cases} 4 & \text{, for } 0 \le t < 2 \\ 2t & \text{, for } 2 \le t \end{cases}$ and y(0) = -1. 5. (10 pts.) Using only the definition of the convolution in terms of a definite integral, not some shenanigans involving the Laplace transform, compute (f*g)(t) when f(t) = t and $g(t) = e^t$. Begin at the equal sign below.

(f*g)(t) =

6. (10 pts.) Very neatly transform the given initial value problem into a linear system in $\mathfrak{A}{x}$ and $\mathfrak{A}{y}$ and stop. Do not attempt to solve for $\mathfrak{A}{x}$ or $\mathfrak{A}{y}$.

I.V.P.: $2x'(t) + y(t) = 12 \cdot \delta(t - 8)$

 $x(t) - 3y'(t) = 8 e^{8t}$, x(0) = -4, y(0) = 1

10 Point	Bonus:	What's the exact value of the following definite
integral:		$\int_{0}^{\infty} \sin(t) e^{-t} dt \text{Where's your work??}$
Hints:	(a)	Yes, this may be viewed in terms of the Laplace transform.
	(b) (c) (d)	Yes, those are absolute value bars. Yes, $ \sin(t) $ is π -periodic.
	(u)	tanstaafl applies. Do you grok the unit stepping dance, the heavy side of thimble rigging??