1. (15 pts.) Construct the truth tables for each of the following compound propositions in the space provided:

- (a) $p \wedge q$ (b) $p \rightarrow q$ (c) $\neg p$: See pages 3 through 7.
- 2. (10 pts.) Write the contrapositive and converse of the statement, "If pigs have wings, then the bacon will fly," and label unambiguously. Which is equivalent to the original statement?

Contrapositive: If the bacon won't fly, then pigs don't have wings.

Converse: If the bacon will fly, then pigs have wings.

Only the contrapositive is equivalent to the original statement.

- 3. (15 pts.) Let F(x,y) be the statement "x can fool y". The universe of discourse is all people. Use quantifiers to express each of the following statements:
- (a) Everyone can fool Frodo. $(\forall x) F(x, Frodo)$
- (b) No one can fool Gandalf. $\neg(\exists x)F(x,Gandalf)$ or equivalently $(\forall x)\neg F(x,Gandalf)$
- (c) Everyone can fool someone. $(\forall x)(\exists y)F(x,y)$
- 4. (10 pts.) Determine the truth value of each of the following statements if the universe of discourse of each variable is the set of real numbers, \mathbb{R} .
- (a) $(\exists x)(\forall y)(x + y = 0)$ False (b) $(\forall x)(\exists y)(x + y = 0)$ True
- 5. (15 pts.) Suppose A = $\{\emptyset, \{\emptyset\}\}\$ and B = $\{\emptyset, 3, 4\}$. Then

 $A \cup B = \{\emptyset, \{\emptyset\}, 3, 4\}$

 $A \times B = \{ (\emptyset,\emptyset), (\emptyset,3), (\emptyset,4), (\{\emptyset\},\emptyset), (\{\emptyset\},3), (\{\emptyset\},4) \}$

 $|P(A)| = 2^{|A|} = 2^2 = 4$

- 6. (10 pts.) What can you say about sets A and B if B = A \cup B? Prove your assertion. If B = A \cup B, then A \subseteq B. Proof: x \in A implies x \in A or x \in B which implies x \in A \cup B = B. // It turns out that the converse is also true.
- 7. (15 pts.) Suppose that $f: \mathbb{R} \to Z$ is the function defined by the formula $f(x) = \lceil x \rceil$, and suppose that $A = \{x \in \mathbb{R} \mid -2 < x \le 3\}$ and $B = \{x \in \mathbb{R} \mid -1 < x \le \pi\}$. Using appropriate notation, give each of the following. A B = (-2, -1] $f(A) = \{-1, 0, 1, 2, 3\}$

 $f^{-1}(\{2,3\}) = f^{-1}(\{2\}) \cup f^{-1}(\{3\}) = (1,2] \cup (2,3] = (1,3]$

8. (10 pts.) Suppose g:A \rightarrow B and f:B \rightarrow C are functions. Prove that if both f and g are injective, then fog:A \rightarrow C is injective. Proof: [1.6,19a]