1. (15 pts.) Construct the truth tables for each of the following compound propositions in the space provided:

- (a) $p \leftrightarrow q$ (b) $\neg p$ (c) $p \lor q$: See pages 3 through 7.
- 2. (10 pts.) Write the contrapositive and converse of the statement, "If the bacon will fly, then the air is greasy," and label unambiguously. Which is equivalent to the original statement?

Contrapositive: If the air is not greasy, then the bacon won't fly.

Converse: If the air is greasy, then the bacon will fly.

Only the contrapositive is equivalent to the original statement.

- 3. (15 pts.) Let F(x,y) be the statement "x can fool y". The universe of discourse is all people. Use quantifiers to express each of the following statements:
- (a) Frodo can fool everyone. $(\forall x) F(Frodo, x)$
- (b) Gandalf can fool no one. $\neg(\exists x)F(Gandalf,x)$ or equivalently $(\forall x)\neg F(Gandalf,x)$
- (c) Someone can fool everyone. $(\exists x)(\forall y)F(x,y)$
- 4. (10 pts.) Determine the truth value of each of the following statements if the universe of discourse of each variable is the set of real numbers, \mathbb{R} .
- (a) $(\exists x)(\forall y)(x \cdot y = 0)$ True (b) $(\forall x)(\exists y)(x \cdot y = 0)$ True
- 5. (15 pts.) Suppose A = $\{\emptyset, 3, 4\}$ and B = $\{\emptyset, \{\emptyset\}\}$. Then

 $A \cap B = \{\emptyset\}$

 $A \times B = \{ (\emptyset,\emptyset), (3,\emptyset), (4,\emptyset), (\emptyset,\{\emptyset\}), (3,\{\emptyset\}), (4,\{\emptyset\}) \}$

 $|P(A)| = 2^{|A|} = 2^3 = 8$

- 6. (10 pts.) What can you say about sets A and B if B = A \cap B? Prove your assertion. If B = A \cap B, then B \subseteq A. Proof: xEB = A \cap B implies xEA and xEB which implies xEA. // It turns out that the converse is also true.
- 7. (15 pts.) Suppose that $f: \mathbb{R} \to \mathbb{Z}$ is the function defined by the formula $f(x) = \lfloor x \rfloor$, and suppose that $A = \{x \in \mathbb{R} \mid -1 < x \le \pi\}$ and $B = \{x \in \mathbb{R} \mid -2 < x \le 3\}$. Using appropriate notation, give each of the following. $A B = (3,\pi]$ $f(A) = \{-1,0,1,2,3\}$

$$f^{-1}(\{1,2\}) = f^{-1}(\{1\}) \cup f^{-1}(\{2\}) = [1,2) \cup [2,3) = [1,3)$$

8. (10 pts.) Suppose g:A \rightarrow B and f:B \rightarrow C are functions. Prove that if both f and g are surjective, then fog:A \rightarrow C is surjective. Proof: [1.6,19b]