Read Me First: Show all essential work neatly. Use correct notation when presenting your computations. Write using complete sentences. In particular, be very careful when using "=", **equals**, and " \Rightarrow ", **implies**. Do not "box" your answers. Communicate.

- 1. (5 pts.) If θ = 135°, what is the radian measure of θ as an exact multiple of π ?? $\theta = 3\pi/4$
- 2. (5 pts.) If $\theta = 11\pi/6$ in radian measure, what is the value of θ in degrees?? θ = 330°
- 3. (5 pts.) If s = 8 meters is the length of an arc of a circle of radius r = 6 meters subtended by a central angle θ , what is the exact value of θ in degrees?? θ = $(240/\pi)^{\circ}$
- 4. (5 pts.) If $\theta = 61^{\circ}35'20''$, convert θ to a decimal in degrees rounded to two decimal places. θ = 61.59°
- 5. (5 pts.) If θ = 28.511°, convert θ to D°M'S" form with the answer rounded to the nearest second. $\theta = 28°30'40''$
- 6. (5 pts.) An object is traveling around a circle with a radius of 20 meters. Suppose that in 20 seconds a central angle of 2/3 radian is swept out. What is the angular speed $\boldsymbol{\omega}$ of the object, and what is the linear speed V of the object? Here give the exact value of the item followed by its decimal approximation. $\omega = (1/30) \text{ radians/sec.} \approx .0333 \text{ radians/sec.}$ v = (2/3) meters/sec. \approx .666 meters/sec.
- 7. (5 pts.) If θ is an acute angle, and $\cos(\theta) = 2/3$, obtain the exact values for the remaining four trigonometric functions. $\tan(\theta) = 5^{1/2}/2;$ $\cot(\theta) = 2/5^{1/2};$ $\sec(\theta) = 3/2;$ $\csc(\theta) = 3/5^{1/2};$ $\sin(\theta) = 5^{1/2}/3$
- 8. (5 pts.) If the point (-5, 4) is on the terminal side of an angle θ , obtain the exact value of each of the six trigonometric functions of θ . $\sin(\theta) = 4/(41)^{1/2}$; $\cos(\theta) = -5/(41)^{1/2}$; $\tan(\theta) = -4/5$; $\cot(\theta) = -5/4$; $\sec(\theta) = -(41)^{1/2}/5$; $csc(\theta) = (41)^{1/2}/4$
- What is the reference angle θ_r for an angle 9. (5 pts.) $\theta = -195^{\circ}? \quad \theta_r = 15^{\circ}$

10. (5 pts.) Suppose $\cos\theta = -(1/5)$ and $\tan\theta > 0$. What is the exact value of each of the remaining trigonometric functions? $\sec(\theta) = -5$; $\tan(\theta) = (24)^{1/2}$; $\sin(\theta) = -(24)^{1/2}/5$; $\csc(\theta) = -5/(24)^{1/2}$; $\cot(\theta) = 1/(24)^{1/2}$;

11. (18 pts.) Fill in the following table with the information requested concerning domain, range, and period.

Function Name	Domain (in radians)	Range	Period (in radians)
cot(θ)	B, below.	R	π
sec(θ)	A, below.	(-∞,-1]∪[1,∞)	2π
tan(θ)	A, below.	R	π
$sin(\theta)$	R	[-1,1]	2π
$\cos(\theta)$	R	[-1,1]	2π
csc(0)	B, below.	(-∞,-1]∪[1,∞)	2π

```
A = { x \in \mathbb{R} : x \neq (2k + 1)(\pi/2), k any integer }
B = { x \in \mathbb{R} : x \neq k\pi, k any integer }
```

^{12. (2} pts.) Use a calculator to obtain the approximate value of each of the following expressions. Round your answer to two decimal places. $\sin 10 \approx -.54 \sin 10^{\circ} \approx .17$

^{13.,14.,15.:} Partial graphs may be found in the text. They generally don't show two periods that are symmetric with respect to the origin.