TEST-02/MAC1114 Page 1 of 3

Read Me First: Show all essential work neatly. Use correct notation when presenting your computations. Write using complete sentences. In particular, be very careful when using "=", equals, and "⇒", implies. Do not "box" your answers. Communicate.

1. (6 pts.) Find the amplitude, period, and phase shift of the following function: $y = -2\sin(2\pi x + (\pi/2))$ $= -2\sin(2\pi(x - (-1/4)))$

Amplitude = 2; Period = $2\pi/2\pi$ = 1; Phase Shift = -1/4 or 1/4to the left.

2. (6 pts.) Write the equation of a sine function that has all the given characteristics:

Amplitude = 2π Period = 1/3Phase Shift: -(1/6)

 $y = 2\pi \sin(6\pi(x - (-1/6))) = 2\pi \sin(6\pi x + \pi)$

3. (10 pts.) Carefully sketch y = $3\sin(2x - \pi)$ through one period. You will need the amplitude, period, and phase shift to do this properly. Label very carefully. NOTE: This graph is provided in a separate document.

4. (18 pts.) Fill in the following table with the information requested concerning domain, range, and period.

Function Name	Domain (in radians)	Range	Period (in radians)
$sin(\theta)$	R	[-1,1]	2π
$\cos(\theta)$	R	[-1,1]	2π
$tan(\theta)$	A, below	R	π
cot(θ)	B, below	R	π
sec(θ)	A, below	(-∞,-1]∪[1,∞)	2π
csc(θ)	B, below	(-∞,-1]∪[1,∞)	2π

 $A = \{ x \in \mathbb{R} : x \neq (2k + 1)(\pi/2), k \text{ any integer} \}$

 $B = \{ x \in \mathbb{R} : x \neq k\pi, k \text{ any integer} \}$

5. (5 pts.) Establish the following identity. Show all steps very, very carefully.

$$\frac{1 - \sin(\alpha)}{\cos(\alpha)} = \frac{\cos(\alpha)}{1 + \sin(\alpha)}$$
Proof:

$$\frac{1 - \sin(\alpha)}{\cos(\alpha)} = \frac{[1 - \sin(\alpha)] \cdot [1 + \sin(\alpha)]}{\cos(\alpha)[1 + \sin(\alpha)]}$$

$$= \frac{1 - \sin^{2}(\alpha)}{\cos(\alpha)[1 + \sin(\alpha)]}$$

$$= \frac{\cos^{2}(\alpha)}{\cos(\alpha)[1 + \sin(\alpha)]}$$

$$= \frac{\cos(\alpha)}{1 + \sin(\alpha)}$$

6. (5 pts.) Obtain the exact value of $cos(\pi/8)$. Show clearly and neatly all the uses of appropriate identities.

 $\cos(\pi/8) = ([1 + \cos(2(\pi/8))]/2)^{1/2} = ([1 + \cos((\pi/4))]/2)^{1/2}$ $= ([1 + (2^{1/2}/2)]/2)^{1/2} = [(2 + 2^{1/2})^{1/2}]/2$

7. (5 pts.) If $\csc(\theta) = 4$ and $\cos(\theta) < 0$, what is the exact value of $\sin(2\theta)$?? Show clearly and neatly all your uses of appropriate identities. $\sin(\theta) = 1/\csc(\theta) = 1/4$ and $\cos(\theta) = -(1 - \sin^2(\theta))^{1/2} = -15^{1/2}/4$ since $\cos(\theta) < 0$. So

 $\sin(2\theta) = 2\sin(\theta)\cos(\theta) = 2 \cdot (1/4) \cdot (-15^{1/2}/4) = -15^{1/2}/8$

8. (5 pts.) Express the following product as a sum containing only sines or cosines.

 $\sin(5\theta)\cos(3\theta) = (1/2)[\sin(8\theta) + \sin(2\theta)]$

9. (10 pts.) Find the exact value of each of the following expressions if $\tan(\alpha) = -5/12$ with $\pi/2 < \alpha < \pi$ and $\sin(\beta) = -1/2$ with $\pi < \beta < 3\pi/2$. Show all your uses of appropriate identities. $\sin(\alpha) = 5/13$ and $\cos(\alpha) = -12/13$ since $\pi/2 < \alpha < \pi$. $\cos(\beta) = -3^{1/2}/2$ since $\pi < \beta < 3\pi/2$. $\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) = -(5 \cdot 3^{1/2} + 12)/26$ $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) = (12 \cdot 3^{1/2} + 5)/26$

	pts.) follow	Time wing:	to	pay	the	e pi	per.	•••	Give	the	exact	valu	es
(a)	sin	(0)	=	0									
(b)	sin	(π /6)	=	1,	/2								
(c)	sin	(π /4)	=	2 ¹	./2/2	2							
(d)	sin	(π /3)	=	31	./2/2	2							
(e)	sin	(π /2)	=	1									
(f)	COS	(0)	=	1		[You could use the Complementar Angle Theorem to get the cosine folks. LOOK !] /2							
(g)	COS	(π /6)	=	31	./2/2								
(h)	COS	(π /4)	=	2 ¹	./2/2	2							
(i)	COS	(π /3)	=	1,	/2								
(j)	cos	(π /2)	=	0									

11. (10 pts.) In order to get a neat identity for $\cos(\alpha) + \cos(\beta)$, one begins with the identity

(*)
$$\cos(x + y) + \cos(x - y) = 2 \cdot \cos(x) \cos(y)$$

and sets x + y = α and x - y = β in the left side of the identity. To make the substitution uniform, it is necessary to replace the "x" and "y" on the right side of (*) with what they are in terms of " α " and " β " in the system of linear equations

```
x + y = \alpha
x - y = \beta.
```

Solve for x and y in this system.

x =
$$(\alpha + \beta)/2$$
 and y = $(\alpha - \beta)/2$ quickly, easily.