NAME:

TEST-02/MAC1114 Page 1 of 4

Show all essential work neatly. Use correct Read Me First: notation when presenting your computations. Write using complete sentences. In particular, be very careful when using "=", equals, and " \Rightarrow ", implies. Do not "box" your answers. Communicate.

1. (6 pts.) Find the amplitude, period, and phase shift of the following function: $y = -2 \cdot \sin(2\pi x + (\pi/2))$

Amplitude =

Period =

Phase Shift =

2. (6 pts.) Write the equation of a sine function that has all the given characteristics:

Amplitude = 2π Period = 1/3 Phase Shift: -(1/6)

3. (10 pts.) Carefully sketch y = $3\sin(2x - \pi)$ through one period. You will need the amplitude, period, and phase shift to do this properly. Label very carefully.

х

TEST-02/MAC1114 Page 2 of 4

4. (18 pts.) Fill in the following table with the information requested concerning domain, range, and period.

Function Name	Domain (in radians)	Range	Period (in radians)
$sin(\theta)$			
$\cos(\theta)$			
$tan(\theta)$			
$cot(\theta)$			
sec(θ)			
$csc(\theta)$			

5. (5 pts.) Establish the following identity. Show all steps very, very carefully.

$$\frac{1 - \sin(\alpha)}{\cos(\alpha)} = \frac{\cos(\alpha)}{1 + \sin(\alpha)}$$

6. (5 pts.) Obtain the exact value of $\cos(\pi/8)$. Show clearly and neatly all the uses of appropriate identities.

 $\cos(\pi/8) =$

7. (5 pts.) If $\csc(\theta) = 4$ and $\cos(\theta) < 0$, what is the exact value of $\sin(2\theta)$?? Show clearly and neatly all your uses of appropriate identities.

 $sin(2\theta) =$

8. (5 pts.) Express the following product as a sum containing only sines or cosines.

 $sin(5\theta)cos(3\theta) =$

9. (10 pts.) Find the exact value of each of the following expressions if $\tan(\alpha) = -5/12$ with $\pi/2 < \alpha < \pi$ and $\sin(\beta) = -1/2$ with $\pi < \beta < 3\pi/2$. Show all your uses of appropriate identities.

 $sin(\alpha - \beta) =$

 $\cos(\alpha + \beta) =$

10. (20 pts.) Time to pay the piper.... Give the exact values for the following:

- (a) sin(0) =
- (b) $\sin(\pi/6) =$
- (c) $\sin(\pi/4) =$
- (d) $\sin(\pi/3) =$
- (e) $\sin(\pi/2) =$
- $(f) \cos(0) =$
- (g) $\cos(\pi/6) =$
- (h) $\cos(\pi/4) =$
- (i) $\cos(\pi/3) =$
- (j) $\cos(\pi/2) =$

11. (10 pts.) In order to get a neat identity for $\cos(\alpha) + \cos(\beta)$, one begins with the identity

(*) $\cos(x + y) + \cos(x - y) = 2 \cdot \cos(x) \cos(y)$

and sets $x + y = \alpha$ and $x - y = \beta$ in the left side of the identity. To make the substitution uniform, it is necessary to replace the "x" and "y" on the right side of (*) with what they are in terms of " α " and " β " in the system of linear equations

 $x + y = \alpha$ $x - y = \beta.$

Solve for x and y in this system.