MAC 2311

  • 1. (0.1), p. 12, # 7,8,31,33 (Functions)
  • 2. (0.2), p. 25, # 31-34, 36, 37, 38 (New functions from old ones)
  • 3. (0.3), p. 35, # (Families of functions)


  • 4. (0.4), p. 49, # 11-15, 18, 19, 34, 35, 41, 54-56. (Inverse functions; inverse trigonometric functions) 
  • 5. (0.5), p. 61, #5, 12, 15, 18-21, 26-28 (Exponential and logarithmic functions)
    Quiz 1:Wednesday, September 05. Sections: 1.1-1.6. 3 problems, 50 minutes maximum time.
  • Problem session: Friday, 08/31.
  • 6. (1.1), p. 77 (Limit, An intuitive approach)
  • 7. (1.2), p. 87, #11-22 (Computing limits)
  • Free tutoring is available in GL 120. This is a Department of Mathematics service.
  • 8. (1.3), p. 97, #15-30, 31, 32, 57-61 (Limits at infinity, end behavior of a function)
  • 9. (1.4), p. 106, #13-19 (Limits, discussed more rigorously)
  • 10. (1.5), p. 118, #13-16, 29, 30, 47-49 (Continuity)
  • 11. (1.6), p. 125, 25-35, 67, 68 (Continuity of trigonometric, exponential and inverse functions)
  • 12. (2.1), p. 140, #15-18 (Tangent lines and rates of change)
  • 13. (2.2), p. 152, #12-14, 47, 48 (The derivative function)
  • 14. (2.3), p. 161, #3-6, 11-14, 42, 59, 65, 68 (Introduction to techniques of differentiation)
  • Quiz 2: September 17. Sections: 1.5, 1.6, 2.1, 2.2, 2.3, 2.4.
  • Problem session: Friday, September 14.
  • Exam I, Monday, October 01. Sections:1.1--1.6, 2.1,--,2.6, 3.1, 3.2.
  • 6 problems, 90 minutes maximum time.
  • Problem session: Friday, September 28.
  • 15. (2.4), p. 168, #10-15, 32, 33 (The product and quotient rules)
  • 16. (2.5), p. 172, #12-16, 32 (Derivative of trigonometric functions)
  • 17. (2.6), p.178, #13-20, 35-40, 48, 49 (The chain rule)
  • 18. (3.1), p. 190, #5-10, 15-17, 26, 27 (Implicit differentiation)
    Quiz 3: Monday, October 15. Sections 3.3-3.6, 4.1.
  • Problem session: Friday, October 12. Attendance will be taken!
  • Quiz 4: Wednesday, November 14. Sections:4.2--4.5.
  • Problem session: Friday, November 09
  • 19. (3.2), p. 195, #8-16, 28, 39, 54, 55 (Derivatives of logarithmic functions)
  • 20. (3.3), p. 201, #17-25, 40-45, 59, 60 (Derivatives of exponential and inverses trigonometric functions)
  • 21. (3.4), p. 208, #12-17, 37, 43, 46 (Related rates)

  • 22. (3.5), p. 217, #23-25, 44, 45, 52, 53, 62-65 (Local linear approximation, differentials)
  • 23. (3.6), p. 226, #10-20, 26-30, 36-40 (L'Hopital's rule; Indeterminate forms).
  • 24. (4.1), p. 240, #19-24,35-38, 45,46, 57 (Analysis of functions I:Increase, Decrease and Concavity).


  • 25. (4.2), p. 252, #5-11, 34-38, 54-58 (Analysis of functions II: Relative extrema, graphing polynomials).
  • 26. (4.3), p. 264, #5-10, 21-24,32-36, 50-54, 58-60 (Analysis of functions III: Rational functions, cusps and vertical tangents).
  • 27. (4.4), p. 272, #10-15, 22-26,27, 28 53, 54 (Absolute maxima and minima).
  • 28. (4.5), p. 283, #4-10, 21-26, 38, 44, 55 (Applied maximum and minimum problems).
  • 29. (4.8), p. 308 #21-24, 29, 30 (Rolle's Theorem, Mean Value Theorem)
  • Exam II: Monday, November 26. Sections 3.3--5.3.
  • Exam II, Six problems, maximum of 100 pts.
  • Problem session: Wednesday, November 21.
  • 30. (5.2), p. 329, #11-16, 21-26, 44-46, 53-56. (The indefinite Integral).
  • 31. (5.3), p. 338, #7-10, 27-32, 40-45. (Integration by substitution).
  • 32. (10.1), Page 701, #5-10, 48-54. Page 716, #9-12, 33-38. Page 726, #1-5. (Parametric equations; Tangent lines for parametric and polar curves).
  • Final Examination: Friday, December 7, 2012. 1200-1400, Paul Cejas Architecture 165.
  • 8 problems, maximum score: 120 points.