MAC 2312
1. (5.4), p. 350, #11-15, 27, 29, 37, 38, 48.(The definition of area as
limit; Sigma notation)
2. (5.5), p. 360, #14-17. (The definite integral)
3. (5.6), p. 373, #20-25, 32, 34, 60-64.(The
fundamental Theorem of Calculus)
4. (5.7), p. 383, #14-16, 34-36, 41, 43.(Rectilinear motion
5. (5.8), p (Average value of a function and its applications)
6. (5.9), p. 394, #10-15, 35-40. (Evaluating
definite integrals
by substitution)
Quiz 1:
7. (5.10 .), p. 406, #3, 4, 7, 11, 12. (Logarithmic
functions from the
integral point of view)
8. (6.1) p. 419 #3, 4, 6, 8, 10, 17. (Area between two curves).
9. (6.2) p. 429, #7, 8, 10, 40-45. (Volumes by
slicing; Disks and
washers).
10. (6.3), p. 436, #1,2, 8-11, 15, 16, 30-32. (Volumes
by cylindrical
shells).
11. (6.4), p. 441, #5-8, 29-32. (Length of a plane curve).
12. (6.5), p. 447, #2,3,7,8. (Area of a surface of revolution)
13. (6.6), p. 456, #7, 20-24. (Work).
14. (6.8), p. 472, #5,6,8,10. (Fluid pressure and force).
Quiz 2.
Examination I:
15. (7.2), p. 498,#4-8,15-20,30-34, 56-58. (Integration by parts)
16. (7.3), p. 506, #2-8,30-36, 60-62.(Integrating trigonometric
functions)
17. (7.4) p. 513, #9-16,23,24, 35, 40-44.
(Trigonometric substitutions
(including
quadratic polynomials))
18. (7.5) p. 521, #11-16, 28-32, 43.(Integrating rational functions
by partial fractions)
Quiz 3:
19. (7.7) p. 544, #2-5, 8-11, 14-17. (Numerical
Integration; Simpson rule)
20. (7.8) p. 554, #10-15, 23-26, 30-32.(Improper integrals)
21. (9.1) p. 605, #15-20, 25-27.(Sequences)
22. (9.2) p. 613, #3-5, 10-12, 17-20. (Monotone sequences)
23. (9.3) p. 621, # 1,2, 9-14. (Infinite series)
24. (9.4) p. 629, #2,4, 5-7, 15-21.(Convergence
tests)
25. (9.5) p. 636, #2,3,7,8, 14-16, 35-40.(The Comparison,
ratio and roots tests)
26. (9.6) p.646, #3,5,14-19,35,36,38,39, 52,53. (Alternating
series; conditional convergence)
27. (9.7) p.657, #10-15, 21-24. (McLaurin and Taylor polynomials)
Quiz 4.
28. (9.8) p.667,#20-23, 35-42. (McLaurin and Taylor series; Power
series)
Exam II:
29. (9.9) p. 676,#5-10. (Convergence of Taylor series)
30. (9.10) p. 686, #1,7,8,17,18,27. (Differentiating and integrating
power series; modeling with Taylor series)
31. (10.1) p. 700, #5-10, 47-50, 66-70, 76-78. (Parametric
Equations; Tangent lines and arc length for parametric curves)
32. (10.2) p. 716, #4-6, 9,10,11, 29-35. (Polar
coordinates)
33. (10.3) p.726, # 3-6, 20-22, 31-34, 41-45. (Tangent lines, arc length
and Area for
polar curves)
Final exam:
points.)