MAC 2313
1. (11.1), p. 771, #12-15, 24-28, 48, 49 (Rectangular coordinates in
3-space,
spheres,
cylindrical surfaces )
2. (11.2), p. 782, #7, 8, 11, 15, 22, 24, 26, 32-35, 47, 48.(Vectors)
3. (11.3), p. 792, #12, 13, 24, 25, 37, 38. (Dot
product, projections)
4. (11.4), p. 803, #4, 5, 6, 25, 26, 29.(Cross product)
Quiz 1:
5. (11.5), p. 810, # 3, 4, 17-20, 31, 32, 43, 44, 49, 50, 55. (Parametric equations of
lines)
6. (11.6), p. 819, #4, 5, 14, 15, 30-35, 45, 48, 49. (Planes in
3-space)
7. (11.7), p. 829, #15-20, 29-32. (see table 11.7.2!) (Quadric
Surfaces)
8. (11.8), p. 837, #6, 7, 10, 11, 37-44. (Cylindrical and spherical
coordinates)
9. (12.1), p. 845, #11-14, 18, 25-28.(Introduction to vector valued
functions)
10.(12.2), p. 856, #20-22, 26-28, 33,34,46-48.
(Calculus of vector-valued functions.)
11.(12.3), p. 866, #6-8, 10-12, 26-30.(Change of
parameter; arc length)
12.(12.4), p. 872, #5-10. (Unit tangent,
normal and binormal vectors)
13.(12.5), p. 879, #9-12, 14,15,31,32,46-48, 63. (Curvature)
14.(12.6), p. 891, 5-8, 18-22,26, 27, 32-35, 43, 44. (Motion along a
curve)
15.(12.7), p. , (Kepler's laws of planetary motion)
Exam I:
16.(13.1), p. 913, #23,24, 31-35, 46-52, 58-60.(Functions of two or more
variables)
17.(13.2), p. 925, #3-6, 8,10,11,17-20, 46-51.(Limits and
continuity)
18.(13.3), p. 936, #19-22, 31-34, 48-50, 66-68, 105-106.(Partial
derivatives )
19.(13.4), p. 947, #12-17, 22-25, 35-41, 50-52, 56, 58, 60.(Differentiability, differentials and local linearity)
Quiz 2:
20.(13.5), p. 956, #5-9, 20-24, 50,51. (The chain
rule)
21.(13.6), p. 967, #4-8, 12-15, 20-22, 27, 30-40, 49-52, 56-59,
75.(Directional
derivatives and gradients )
22.(13.7), p. 975, #5-10, 26,29.(Tangent planes and normal
lines)
23.(13.8), p. 985, #11-17, 37-43.(Maxima and minima of
functions of two variables)
24.(13.9), p. 995, #8-11, 20-23 (Lagrange multipliers)
25.(14.1), p.1007, #5-10, 14-16, 30-33.(Double Integrals)
26.(14.2), p. 1015, #3-6, 16,17 22-26, 30,31, 40-43, 51-54.(Double
Integrals over Nonrectangular Regions)
27.(14.3, p.1024, #3-5, 8,9, 28-32.(Double Integrals
in Polar
Coordinates)
28.(14.4), p. 1035 , #2,3, 7-10, 40-43.(Parametric
Surfaces; Surface Area)
29.(14.5), p. 1045, #3-7, 9-11. (Triple Integrals)
30.(14.6), p. 1056, #2,3, 10-12, 15-18.(Triple
Integrals in Cylindrical and Spherical Coordinates)
32.(14.7), p. 1068, #22-26, 36-39, 45-47.(Change of
Variables in Multiple
Integrals; Jacobians)
33. (14.8) (Reading) (Center of gravity using multiple integrals)
Exam II:
34.(15.1), p. 1092. #15-20.(Vector fields)
34. (15.2), p. 1108, #8,9, 17-21, 30, 31, 42, 43. (Line Integrals).
35. (15.3), p. 1120, #4-6, 11-13. (Independance of Path; Conservative
vector fields).
36. (15.4), p. 1127, #2-4, 9-11. (Green's Theorem).
37. (15.5), p. 1135, #4-7, 23, 24. (Surface Integrals).
38. (15.6), p. 1146' #9-14. (Applications of Surface Integral,
Flux)
39. (15.7), p. 1157, #10-14. (The Divergence Theorem).
40. (15.8), p. 1164, #7-10. (Stoke's Theorem).
Final examination: Time limit: 120
minutes, 10 problems