Panther ID: \qquad

Physics 2048 - Physics with Calculus 1

Exam 2, June 15, 2023
Dr. Misak M. Sargsian

USEFUL EQUATIONS AND NUMBERS:

Motion in One Dimension

Displacement $\Delta x=x_{2}-x_{1}$
Average Velocity $v_{a v}=\frac{\Delta x}{\Delta t} \quad$ Instantaneous velocity $v(t)=\frac{d x}{d t}$
Average acceleration $v_{a v}=\frac{\Delta v}{\Delta t} \quad$ Instantaneous acceleration $a(t)=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}$
Velocity at given time $v=v_{0}+a t \quad$ Position at given time $x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$

Motion in Two and Three Dimensions

Vector components $A_{x}=A \cos (\theta), \quad A_{y}=A \sin (\theta)$
Vector magnitude $A=\sqrt{A_{x}^{2}+A_{y}^{2}}$
Position vector $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$
Instantaneous velocity $\vec{v}(t)=\frac{d \vec{r}}{d t} \quad$ Instantaneous acceleration $\vec{a}(t)=\frac{d \vec{v}}{d t}=\frac{d^{2} \vec{r}}{d t^{2}}$
Velocity at given time $\vec{v}=\vec{v}_{0}+\vec{a} t \quad$ Position at given time $\vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}$
Equations through the x components: $v_{x}=v_{0 x}+a_{x} t, x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2}$
Equations through the y components: $v_{y}=v_{0 y}+a_{y} t, y=y_{0}+v_{0 y} t+\frac{1}{2} a_{y} t^{2}$

Newton's Law

Second Law $\sum \vec{F}=m \vec{a}$
Through x projections: $\sum F_{x}=m a_{x}$ Through y projections: $\sum F_{y}=m a_{y}$
Weight $\vec{w}=m \vec{g} ; \quad g=9.81 m / s^{2} \quad$ Hook's law $F_{x}=-k \Delta x$

Applications of Newton's Law

Maximal Static friction: $f_{s, \max }=\mu_{s} F_{n} \quad$ Static Frication $f_{s} \leq \mu_{s} F_{n}$
Kinetic Friction: $f_{k}=\mu_{k} F_{n}$

Work and Energy

Work: constant force $W=F \cos \theta \Delta x$
variable force $\int_{x_{1}}^{x_{2}} F_{x} d x$
Work: constant Force in three dimensions $W=\vec{F} \cdot \vec{s}$ variable force $\int_{1}^{\substack{x_{1} \\ 2}} \vec{F} \cdot \overrightarrow{d s}$
Kinetic Energy $K=\frac{1}{2} m v^{2}$
Work-Kinetic Energy Theorem
Dot Product $\vec{A} \cdot \vec{B}=A B \cos \theta$
Power $P=\frac{d W}{d t}=\vec{F} \cdot \vec{v}$
Gravitational potential energy $U=m g y$
$W_{\text {total }}=\Delta K=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}$
Potential Energy $d U=-\vec{F} \cdot \overrightarrow{d s}$
Potential energy of spring $U=\frac{1}{2} K x^{2}$

Conservation of Energy

Mechanical Energy $\quad E_{\text {mech }}=K+U$
Conservation of mechanical energy $\quad K+U=$ const
$K_{f}+U_{f}=K_{i}+U_{i}$

Systems of Particles and Conservation of Momentum

Center of mass:
$M \vec{r}_{c m}=\sum_{i} m_{i} \vec{r}_{i}$
Motion of center of mass: $\quad \vec{F}_{n e t, e x t}=M \vec{a}_{c m}$
Momentum $\vec{p}=m \vec{v}$
$K=\frac{p^{2}}{2 m}$
When $F_{n e t, e x t}=0$
$\sum \vec{p}_{i}=$ const

Rotation

Angular velocity: $\omega=\frac{d \theta}{d t}$ Angular acceleration $\alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}$
Tangential speed: $v=r \omega$
Tangential acceleration: $a=r \alpha$
Centripetal acceleration: $a_{c}=\frac{v^{2}}{r}=r \omega^{2}$
Torque: $\tau=F l$
Moment of Inertia: $I=\sum m_{i} r_{i}^{2}$
Moment of inertia of uniform disk: $I=\frac{1}{2} M R^{2}$, hoop $I=M R^{2}$, solid sphere $I=\frac{2}{5} M R^{2}$
Newton's Second Law for rotation: $\quad \tau_{\text {net }, \text { ext }}=I \alpha$
Kinetic energy: $K=\frac{1}{2} I \omega^{2}$

Conservation of Angular Momentum

Vector Nature of Rotation: velocity $\vec{\omega}$ Torque $\vec{\tau}=\vec{r} \times \vec{F}$
Vector product:

$$
\vec{A} \times \vec{B}=A B \sin \phi \hat{n}
$$

Angular momentum $\vec{L}=\vec{r} \times \vec{p}$
Conservation of angular momentum: if $\tau_{\text {net,ext }}=0 L_{\text {sys }}=$ const

Gravity

Newton's Law of Gravity: magnitude $F=\frac{G m_{1} m_{2}}{r_{12}^{2}}$
vector force $\vec{F}=-\frac{G m_{1} m_{2}}{r_{12}^{2}} \hat{r}_{12}$
$G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Gravitational potential energy: $U(r)=-\frac{G M m}{r}, U=0$ at $r \rightarrow \infty$
$g=\frac{G M_{E}}{R_{E}^{E}}$; radius of the earth: $R_{E}=6.37 \times 10^{6} \mathrm{~m}$
Escape Velocity: $v_{e}=\sqrt{\frac{2 G M_{E}}{\left(R_{E}+h\right)}}$

Oscillations

Position function: $x=A \cos (\omega t+\delta) \quad \omega=2 \pi f=2 \pi / T$
Total energy: $E_{\text {total }}=\frac{1}{2} k A^{2} \quad K_{A V}=U_{A V}=\frac{1}{2} E_{\text {total }}$
Period: for spring $T=2 \pi \sqrt{\frac{m}{k}} \quad$ for simple pendulum $T=2 \pi \sqrt{\frac{L}{g}}$

Wave Motion

Wave function: $y(x, t)=A \cos (k x \pm \omega t+\delta)$

$$
\omega=2 \pi f=2 \pi / T \quad k=\frac{2 \pi}{\lambda} \quad v=f \lambda
$$

Speed of waves on a string $v=\sqrt{\frac{F}{\mu}} \quad$ sound waves $v=\sqrt{\frac{B}{\rho}}, \quad$ speed of sound: $340 \mathrm{~m} / \mathrm{s}$

Some Trigonometric Relations

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
& \sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \\
& \cos (90-\alpha)=\sin (\alpha) ; \quad \cos (180-\alpha)=-\cos (\alpha) \\
& \sin (90-\alpha)=\cos (\alpha) ; \quad \sin (180-\alpha)=\sin (\alpha) \\
& 1-\cos (\alpha)=2 \sin ^{2}\left(\frac{\alpha}{2}\right) ; \quad \sin (2 \alpha)=2 \sin (\alpha) \cos (\alpha)
\end{aligned}
$$

