Lecture 3

2:18 PM

Euclid's Axioms

323-283 BC

1. A straight line may be drawn between any two points.
2. Any terminated straight line may be extended indefinitely.

3. A circle may be drawn with any given pojnt as center and any given radius. \quad -
4. All right angles are equal. $L \quad \square$
5^{\prime}. For any given point not on a given line, there is exactly one line through the point that does not meet the given line.

Rene Descartes (French) or Renatus Cartesius 1595-1650

Rirget haved

Vectors

- Scalar Products of Vedas

$$
\underbrace{\vec{A} \cdot \vec{B}}_{\uparrow}=\frac{|A| B \mid B \cos \theta}{\text { Nemearer }}
$$

Number $\quad \vec{c}=\hat{c}$

$$
|\vec{C}|=|\vec{a}||\vec{b}|(\sin \theta)
$$

- Cross Prod od

$$
\vec{c}=\vec{a} \times \vec{b}
$$

Vector

- unit vector $|\vec{i}|=1 \quad \hat{x} \equiv \hat{c} \quad \hat{y} \equiv \hat{\jmath} \quad \hat{z}=\hat{k}$

$$
\begin{aligned}
& \begin{array}{l}
\hat{i} \cdot \hat{\jmath}=\frac{|i||j| \cos }{1 \cdot \frac{90^{\circ}}{}}=0 \\
\hat{i} \cdot \hat{k}=0^{\hat{j}} \quad \hat{k} \hat{i}=0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \vec{A} \equiv \vec{B} \\
& |A|=|B| \\
& A_{x}=B_{x} \\
& Q_{A}=O_{B} \\
& A_{3}=B_{3} \\
& \varphi_{A}=\varphi_{B} \\
& A_{2}=B_{z} \\
& \rightarrow \vec{A} \cdot \vec{B}=|A||B| \cos O_{A B}=A_{x} \cdot B_{x}+A_{B} B_{y}+A_{z} B_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \vec{A}=\left(\mid A, \theta_{1}, \varphi\right) \quad \vec{A}=\left(A_{x} \hat{i}+A_{3} \hat{\jmath}+A_{2} \hat{k}\right) \\
& |A|=\sqrt{A_{x}^{2}+A_{3}^{2}+A_{z}^{2}} \\
& A_{z}=|A| \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& A_{x}=|A| \sin \theta \cos \varphi \\
& A_{y}=|A| \sin \theta \sin \varphi
\end{aligned}
$$

$$
\begin{aligned}
& A_{x}=|A| \cos \theta \\
& A_{y}=|A| \sin \theta \\
& \frac{A_{y}}{A_{x}}=\frac{A(A \sin \theta}{|A| \cos V}=\frac{\sin \theta}{\cos \theta}=\tan \theta
\end{aligned}
$$

$$
30+\theta+90=180
$$

Sd

$$
\begin{aligned}
& \vec{A}=\left(A_{1} \hat{\imath}+A_{2} \hat{\imath}+A_{3} \hat{3}+A_{4} \hat{\tilde{q}}+A_{5} \hat{\rho}\right) \\
& A \mid=\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{3}^{2}+A_{5}^{2}}
\end{aligned}
$$

- Euclidean Space

+ curvatare
Riecoman

- curvafure Lobacheosiss

