 \qquad

$$
\frac{B_{z}}{\pi}=\frac{\mu_{t} I a^{2} \pi}{2\left(z^{2}+a^{2}\right)^{2 / /}}
$$

$$
\left[\begin{array}{ll}
10,2,[] & =0 \\
\end{array}\right.
$$

$$
\left[H_{0}, 2\right]=0
$$

$$
\left[H, J^{2}\right]=0
$$

$$
\begin{equation*}
\left[H, S^{2}\right]=0 \tag{s}
\end{equation*}
$$

$$
\left[K_{i} L_{j}\right]=i \sum_{k} \varepsilon_{i j k} L_{k}
$$

$$
\left[H, L_{z}\right] \neq 0 \quad\left[H, S_{z}\right) \neq 0
$$

$$
\left[H, J_{\tau}\right]=0
$$

$$
\left.\begin{array}{l}
{\left[H, J^{2}\right]=0} \\
{\left[H, L^{2}\right]=0}
\end{array} \quad \rightarrow e\right]_{\text {not }}^{\text {not }} \text { (me }
$$

$$
\left[L . S, L_{i}\right] \neq 0
$$

$$
\left[\left[\cdot S, L_{i}\right]+S, L^{2}\right]=0 \Longrightarrow \sum_{j}\left[L_{j} S_{j}, L^{2}\right]=\sum_{k} \sum_{j}\left[L_{j} S_{j}, i_{k} \cdot L_{k}\right]=
$$

$$
\left[L_{k} L_{j}\right]=i \sum_{m} \varepsilon_{k j \mu} L_{m}
$$

$$
\begin{aligned}
& {\left[L \cdot S, L^{2}\right]=0 \Longrightarrow \sum_{j}\left[L_{j} S_{j}, L^{2}\right]=\sum_{k} \sum_{j}\left[L_{j} S_{j}, L_{k} \cdot L_{k}\right]} \\
& {\left[L \cdot S, S^{2}\right]=0}
\end{aligned}=\sum_{k} \sum_{j}\left(L_{j} S_{j} L_{k} L_{k}-L_{k} L_{k} L_{j} S_{j}\right)=\sum_{k} \sum_{j}\left(L_{j} L_{k} L_{k} S_{j}-L_{k} L_{k} L_{j} S_{j}\right)=
$$

$$
=\sum_{k} \sum_{j}\left(L_{j} L_{k} L_{k} S_{j}-L_{k}\left(L_{j} L_{1}+i \sum_{m} \varepsilon_{k j} L_{k}\right) \cdot S_{-}\right.
$$

Total Angular Momanturs

$$
=\sum_{k J}^{k}\left(L_{j} L_{k} L_{k} S_{j}-L_{k} L_{j} L_{k} S_{j}-L_{k} i \sum_{m} \varepsilon_{k j m} L_{m} S_{j}\right.
$$

$$
\left|\psi_{e, m e}\right\rangle=Y_{e}^{m}(\theta, \varphi)
$$

$$
\begin{aligned}
& \Rightarrow\left|\psi_{\text {e, me }}\right\rangle=Y_{e}^{m}(\theta, \varphi) d \\
& \Rightarrow\left|\psi_{\left.s, m_{s}\right\rangle}\right\rangle=\left|s, m_{s}\right\rangle-\text { spin queertum state }=\binom{1}{0}\binom{0}{1}
\end{aligned}
$$

Qom| related to $\left.\psi_{\text {em }}\right\rangle$ and $\left|s_{1} M_{s}\right\rangle$

$$
\begin{aligned}
& \hat{J}_{i}=\hat{L}_{i}+\hat{S}_{i} \\
& {[H J i]=0,\left[H J^{2}\right]=0 \quad\left[H, L^{2}\right]=0,\left[H, S^{2}\right]=0=\sum_{k J}\left(L_{j} L_{k} K_{k} S_{j}-L_{k} L_{j} L_{k} S_{j}-i \sum_{k j m} \sum_{k j m} L_{k} L_{m} S_{j}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& J^{2}\left|\phi_{j, m_{j}}\right\rangle=j(j+1)\left|\oint_{\nu, m_{j}}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \vec{B}=\frac{\vec{\mu}}{\pi r^{3}} \\
& \begin{array}{l}
H=\frac{p^{2}}{\frac{2 m}{2 m}}-\frac{z^{2}}{r}-\frac{k^{2} e^{2}}{(2 m)^{2}} \frac{(3 \cdot \vec{L}}{\pi r^{3}} \\
{\left[H L_{i}\right] \neq 0} \\
{\left[H L_{i}\right]=\left[H_{0} L_{i}\right]-\frac{e^{2}}{(2 m)^{2}}\left[\overrightarrow{s i n}, L_{i}\right]} \\
0
\end{array}
\end{aligned}
$$

