L24
$\begin{aligned} & \text { Apri17,2021 } \\ & \Rightarrow \text { Summarizing from the lost lecture } \\ & \left\langle n_{i}\right\rangle=\frac{1}{e^{k+\beta \varepsilon_{i}}=1}+\quad \text { Bosons } \\ & \end{aligned} \quad \beta=\frac{1}{k T}$
$\begin{array}{ll}- \text { Introduce } \alpha=-\mu \beta & \mu \text {-chemical Potadial } \\ \left\langle n_{i}\right\rangle=\frac{1}{e^{\left(\varepsilon\left(\varepsilon_{i}-\beta\right)\right.}}+1 & \beta=\frac{1}{k T} \\ & \mu \text {-chemical Potential }\end{array}$
We consider now systems consisting of Infinite number of

- For probabritty of finding $\left\langle n_{i}\right\rangle$ particles in the

State i we obtained

$$
\begin{array}{l}\left\langle n_{i}\right\rangle=\frac{1}{e^{\beta\left(\varepsilon_{i},-1\right)}-1} \text { Bosons } \\ \end{array}
$$

- How to describe infinite number of particles
(1) Consider volume V in which particles are confined

Quantum Mechanically if corresponds to 3-d

$=V \cdot \int \frac{d^{3} P}{(2 \pi \hbar)^{3}}$ - Momentum Phase spare $\frac{d^{3} P}{(2 \pi \hbar)^{3}}$
-if one discusses an Infinite number of particles
in finite volume one expects $n_{x} n_{y} n_{z} \gg 8$
Thus the sum over the quantum
States is defined by $V \int^{d^{3} p} \frac{2 \pi \hbar)^{3}}{}$ a
\Rightarrow System with Infinite Number of Fermones

$$
\left\langle n_{i}\right\rangle=\frac{1-\beta=\frac{1}{k T}}{e^{\beta\left(\varepsilon_{i}-\mu\right)}+1}, \quad
$$

- how to calculate PF T?

Total number of Eermong will be

$$
E_{f}=\frac{1}{2 m}\left(3 \pi^{2} \rho^{2}\right)^{\frac{2}{3}}
$$

- What it means $T \rightarrow 0$ in reality
- Above Approximation is
Fermi- Temperature
grot of $T<\angle T_{F}$ - Degenerate Fermi Gas

$$
T \rightarrow 0
$$

\Rightarrow Degeneracy Pressure

can not settle into any
stare since all ctates ar ar
occupied

Creates an letesion of a Please
Degeneracy Pressure
Fermi
\Rightarrow Calculation of Degeneracy Pressure $1^{\frac{1}{2}}$

- g-order of degeneracy $g=2 s+1 \quad g=2$
- Total Energes of Fermi Particles in the Volume

$$
E_{m i}=g V \int_{P}^{2 n_{i} i \sum_{i}} \frac{d^{3} P^{2}}{(2 n)^{3}}=g V \int_{0}^{p_{0}} \frac{P^{2} \sqrt{2 m}\left(\frac{p^{2} d \Omega}{(2 \pi)^{3}}\right)^{\prime \prime}}{m^{2}+p^{2}}
$$

1) $\frac{g V \pi \pi}{2 m(2 \pi)^{3}} \int_{0}^{P} p^{4} d p=\frac{V}{10 m \pi^{2}} P_{F}^{5}=E_{\text {mo r }}$

- Energy Density Err $=\sqrt{v}=\frac{1}{10 m \pi^{2}} p^{5}$

$$
e=\frac{1}{10 m \pi^{2}}\left(3 \pi^{2}\right)^{5 / 3} \rho_{1}^{5 / 3}
$$

- Analysiz $e=\frac{1}{10 a m \pi^{2}}\left(3 \pi^{2}\right)^{0 / 3} \mathrm{~V}^{-5 / 3 / 3}$

$$
\begin{aligned}
& N=f i x \\
& \text { (stor shinnies by } \\
& \text { gravity Est-incleass })
\end{aligned}
$$

- For Fixed Number of Partules and T FIume $=E$
using $P_{F}=\left(3 T^{2} P\right)^{\frac{2}{3}} \frac{1}{11} P_{F}^{3}$

$$
\begin{aligned}
& 11=-e-v \frac{\partial e}{\partial \rho} \frac{\partial \rho}{\partial v}=-e+\frac{v \rho}{v} \cdot \frac{e \cdot \frac{5}{3}}{s}=-e+\frac{5 \frac{5}{3} e=\frac{\sqrt{3} e}{\xi}}{}=\text { ? } \\
& \rightarrow \frac{\partial S_{N}}{\partial V}=\frac{\partial^{N} /}{\partial V}=-\frac{N}{V^{2}}=-\frac{S_{N}}{V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Thus }(P)=\frac{2}{3} e=\frac{2}{3} \frac{(3 \pi)^{5 / 3}}{10 \mathrm{~m} \pi^{2}} \rho^{5 / 3}=\frac{\left(3 \pi^{2}\right)^{5 / 3}}{15 m^{2}} \rho_{N}^{5 / 3}=
\end{aligned}
$$

$$
\begin{aligned}
& \|=2 V \int_{0}^{P F} \frac{P^{2} d P d \Omega}{(2 \pi)^{3}}=\frac{8 \pi V}{(2 \pi)^{3}} \int_{0}^{0} P^{2} d P=\frac{8 \pi V P_{F}^{3}}{\left(2 \pi \pi^{3}\right.} \frac{P^{3}}{3}=\frac{V}{\eta^{2}} \frac{R^{3}}{3} \\
& N=\frac{V}{3 \pi^{2}} P_{P}^{3} \Rightarrow \sqrt[S_{N}]{N}=\frac{P_{F}^{3}}{3 \pi^{2}} \Rightarrow \sqrt{P_{F}=\left(3 \pi^{2} \rho^{\frac{1}{3}}\right.} \quad E_{F}=\frac{P_{F}^{2}}{2 m}
\end{aligned}
$$

$H W$ - Copper at Room Temperature. $E_{p}=703 \mathrm{eV}$
\Rightarrow Planck Formula
\Rightarrow Electromagnetic Radiation in QM is Radiation of Photons
\Rightarrow photons are spin-1 particles with rest mass =0
\Rightarrow Can use Distribution Function For Bosons

$T T v^{2} d v d \Omega$

$$
S=1
$$

$$
\text { polarization } \quad \frac{g=3}{t}
$$

Planck Formula

$$
\begin{aligned}
& -d r_{x}=2 \cdot 4 \pi \sqrt{\frac{V^{2} \sqrt{D}}{c^{3}} \quad \varepsilon=h V}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon(v) d V=\frac{8 \pi h V}{c^{3}} \frac{V^{3} d V}{e \frac{h^{V}}{k T}-1} \\
& u \not V=\frac{\Sigma(T)}{V} d v=\frac{8 \pi h}{c^{3}} \frac{v^{3}}{e \frac{h^{2}}{k T}-1} d H^{(}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } T_{E}=81500 \mathrm{deg}, \quad v_{n}=6.5 \times 10^{8}(\mathrm{ev})^{3} \\
& T_{\text {Room }}=230^{\circ} \angle \angle T_{f} \text { - Copper is Degeneral } \\
& \text { - } P=3.78 \times 10^{5} \text { atmospheres }
\end{aligned}
$$

