L6

Hycrogenpike Atoms

$$
\iint^{e}
$$

1. Spherically Symudatic

$$
\Gamma_{E}<0
$$

2. $\psi_{\bar{k}, m}(r, \theta, \varphi)=R_{\text {eel }}(r) \sum_{e}^{m}(\theta, \varphi)$
$3 E=$? $\quad R_{E E}(r)=$?
$E=$? Wethal of Commenting Dperabors \hat{O}
\Rightarrow Planefary System

$$
\begin{aligned}
& V_{G}(r)=-\frac{G M m}{r} \\
& V_{0}(r)=-\frac{z e^{2}}{r} \\
& V(r)=-\frac{K}{\Gamma}
\end{aligned}
$$

Keplerian Prelean

$$
\frac{d}{d t} \vec{A}=0 \quad \vec{A}=? \quad \frac{d \vec{L}}{d t}=0
$$

$$
\left[\hat{A}_{i} \hat{H}\right]=0
$$

\Rightarrow Repler $1571-1630$ - 3 lance $1605 t^{2} \sim R^{3}$

$$
\begin{aligned}
& \text { Classical Physics } \\
& \text { Laplau-Runge - Lenz Vector } \\
& \left.\vec{A}=\vec{L}^{2} \times \vec{p}+\frac{k m \vec{r}}{r} \right\rvert\, \quad V(r)=-\frac{k}{r} \\
& \vec{L} \cdot \vec{A}=0=\vec{L} \cdot\left(\frac{\vec{L} \times \vec{P}}{}+\frac{k m \vec{L} \cdot \vec{r}}{r}\right. \\
& \hat{L} \times(L \times P)=\cdot \\
& \vec{L}=(r \times p) \\
& \frac{d \vec{A}}{d t}=\overrightarrow{\vec{A}}=\overrightarrow{\vec{R}} \times \overrightarrow{\vec{p}}+\vec{L} \times \overrightarrow{\dot{P}}-R m_{0} \frac{d \vec{r}}{d t \vec{r}} \\
& \left.\frac{d \vec{A}}{d t}=I \vec{L} \times \frac{d \vec{P}}{d t}\right]+K m \frac{d}{d t}\left(\frac{\vec{r}}{r}\right)+\frac{d}{d t}\left(\frac{\vec{r}}{r}\right)=\frac{\dot{\vec{r}}}{r}-\vec{r} \frac{\dot{r}}{r^{2}} \\
& \frac{d \vec{P}}{d t}=\vec{F}=-\vec{\nabla} V(r)=-\vec{\nabla}\left(\frac{-k}{r}\right)=k \vec{\nabla} \frac{1}{r}=-k \frac{\vec{r}}{r^{3}} \\
& \vec{L}=r \times p=\vec{r} \times m \vec{r}=m(\vec{r} \times \vec{r}) \\
& (A \times B) \times C_{\vec{B}}=\vec{B}(A \cdot C)-\vec{C}(A \cdot B) \\
& I=m(\vec{r} \times \vec{r}) \times(-k) \frac{\vec{r}}{r^{3}}=\frac{-m k}{r^{3}}(\vec{r} \times \vec{r}) \times \vec{r}=-\frac{m k}{r_{3}}\left(\vec{r}\left(r_{0}^{2}\right)-\vec{r}(\vec{r} \cdot \vec{r})\right) \\
& \text { II }=\frac{k m \vec{r}}{r}-k m \vec{r} \cdot \dot{r} \\
& \text { dA }=-m k \frac{\vec{F}}{r}+m k \frac{\vec{r}(\vec{r} \cdot \dot{\vec{r}})}{r^{3}}+\frac{k m \vec{F}}{r}-\frac{k m \vec{r} \dot{r}}{r^{2}} \\
& \frac{d}{d t} \sqrt{x^{2}+x^{2}+x^{2}=} \\
& \operatorname{lr} \pi=\sqrt{x^{2}+4^{2}+\rightarrow^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& {[\hat{O} \hat{H}]=0} \\
& \begin{array}{l}
{[\hat{O H}]=0} \\
\hat{O}=\hat{L}_{2} \quad[\hat{A} \hat{H}]=0
\end{array} \\
& \begin{array}{ll}
{\left[L^{2}, \hat{H}\right]=0} & {\left[\hat{A} \psi_{\text {sat }}(\hat{r})=a \psi_{B}\left(r_{m}\right)\right.} \\
{\left[L_{z}, \hat{H}\right]=0} & \hat{A} \sim \hat{H}) \text { sine for }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{H}=\frac{p^{2}}{2 m}+V(r)=\frac{p^{2}}{2 m}-\frac{z e^{2}}{r} \quad \alpha=\frac{1}{137.030} \\
& \hat{H} \psi_{\text {Eem }}(r, \theta, \varphi)=E n \psi_{\text {Eem }}(r, \theta, \varphi) \\
& F=\frac{2 q q_{2}}{\sigma^{2}} \quad r \rightarrow \infty \\
& \left.V(r)\right|_{r \rightarrow \infty} 0 \\
& F=\frac{q_{1} f_{2}}{r^{2}}
\end{aligned}
$$

Direction

Quantum Mecharics
1926
inofereng Palli $i \hat{A}_{i}{ }^{O N}=$?

$$
\left[\hat{H} A_{i}^{\theta^{M}}\right]=0
$$

$$
\begin{aligned}
& \hat{A}^{t}=\left(\hbar \hat{p} \times \hat{L}_{i}+\frac{k m \hat{r}_{i}}{r}\right. \\
& (A \cdot B)^{t}=B^{t} A^{t} \\
& A_{i}^{+} \pm A_{i} \\
& \sum \hat{A_{i}} \Rightarrow \hbar \sum \varepsilon_{i j k} \hat{L}_{j} \hat{p}_{k}+\frac{k m \hat{\sigma}_{i}}{r_{\lambda}} \\
& {\left[\hat{P}_{K} \hat{L}_{J}\right]=i \sum_{m}{\left.\sum K_{N M}, \hat{P}_{m}\right]}_{n}^{n} \sum_{m} \varepsilon_{K J J m} \hat{P}_{m}} \\
& A_{i}^{+}=\hbar \sum S_{i j k} \hat{P}_{k}^{+} \hat{L}_{j}^{+}+\frac{k m r_{i}^{+}}{r}=\hbar \sum \sum_{i j k} \hat{P}_{k} \hat{L}_{j}+\frac{k m r_{i}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{A_{i}^{O N}}=\frac{1}{2}(\hbar L \times P)_{i}-\frac{1}{2}(P \times \hbar L)_{i}+K m \frac{r_{i}}{r} \\
& A_{i}^{O M}=A_{i}^{O M t} \quad \tilde{L}^{+}=\tilde{L}_{2} \quad \hat{r}^{+}=\hat{r}_{2,} \hat{r}^{+}=p \\
& \left.f_{i}^{\theta N}=\frac{1}{2}(\rho \times \hbar L)_{i}-\frac{1}{2}(\hbar L \times p)_{i}+k m \frac{r_{i}}{r}\right\}^{0} \\
& {\left[P_{i} L_{j}\right]=i \sum \varepsilon_{i j k} P_{k} .} \\
& \prod_{l}^{2 \frac{\theta}{Q M}}=\frac{\hbar}{2} \sum_{i} \sum_{i j k} P_{j} L_{k}-\frac{\hbar}{2} \sum S_{i j k} L^{j P_{k}}+k n \frac{r_{i}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \vec{A}}{d t}=\frac{m k \overrightarrow{F \cdot} \cdot \dot{\dot{F}}}{r B_{2}}-\frac{m k \vec{F} \vec{F}^{0}}{r^{2}}=0=\frac{1}{2} \frac{d x^{2}}{d t}+\frac{1}{2} \frac{d y^{2}}{d t}+\frac{1}{2} \frac{d z^{2}}{d t} \\
& =\frac{1}{2} \frac{d\left(x^{2} t^{2} t^{2} z^{2}\right.}{d t}=\frac{1}{2} \frac{d r^{2}}{d t}=\frac{d r}{d t}
\end{aligned}
$$

\Rightarrow Classical Limit $-\frac{1}{2}(2 \times p)$

$$
\begin{aligned}
& \text { Classical Limit }-\frac{1}{2}(L \times p) \\
& A_{i}=\frac{\frac{1}{2}(L \times p)-\frac{1}{2}(p \times L)}{1^{2}}+k m \frac{r_{i}}{r}
\end{aligned}
$$

\Rightarrow Hydrogen live Anons $K=z e^{2}$

$$
\begin{aligned}
& A_{i}=\frac{1}{2}(\hbar L \times p)_{i}-\frac{1}{2}(p \times \hbar 2)_{i}+z^{2} m \frac{r_{i}}{r} \\
& {\left[H A_{i}\right]=0 \Rightarrow\left[H A^{2}\right]=0 \quad H W} \\
& {\left[L_{i}, A_{j}\right]=1 \sum \varepsilon_{i j k} A_{k}} \\
& \left.\left[A_{i} A_{j}\right]=-2 i m \hbar^{2} H \sum_{k} \varepsilon_{i j k} L_{k}\right] \quad\left[L^{2}, A_{i}\right]=0 \\
& \left.\Rightarrow \text { Use } A^{2}\right]=0
\end{aligned}
$$

