- 1. (20 points) Calculate eigenstates of \hat{L}_z operator. Demonstrate that eigenvaleus of this operator are integer numbers.
- 2. (40 points) Calculate eigenstates of \hat{L}^2 operator. Present a detailed derivation.

3. (20 points) Calculate $\hat{L}_x \psi_{l,m}$ and $\hat{L}_y \psi_{l,m}$ where $\psi_{l,m}$ eigenstates of \hat{L}^2 and \hat{L}_z operators

4. (20 points) Using the expression: $Y_{l}^{m}(\theta, \phi) = (-1)^{\frac{m+|m|}{2}} \left[\frac{2l+1}{4\pi} \left(\frac{(l-[m])!}{(l-[m])!} \right) \right]^{\frac{1}{2}} P_{l}^{|m|}(\cos\theta) e^{im\phi}$ where $P_{l}^{|m|}(\cos\theta)$ is Associated Legendre Function. Show that $Y_{l}^{m}(\pi - \theta, \phi + \pi) = (-1)^{l} Y_{l}^{m}(\theta, \phi)$.

Explain why this relation is related to the parity of the

quantum state