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September 16, 2020

1 Introduction

The reality exists as we observe it and our observation reveals some features which in our perception
has to do with aesthetics and harmony. Systems look to us beautiful due to their geometrical
proportions or sphericity: some systems perceived the same independent from the point of our
observation, some systems look the same if one moves back or fort with in the space and time
and some systems show periodic structure again in the space and the time (like waves). We find
some time that inverting space and time keeps the observation the same or even more subtile, such
as ”happenings” in the system does not depend on references frames we choose, those which are
moving with constant velocity with respect to each other.

All these in which some transformations do not change some observations we associate with
specific symmetries being observed in physical systems. On the other hand the fact of some ob-
servations not being changed due to some transformations can be associate with certain quantities
which are conserved due to considered transformations.

With this chain of logics we can make our first formulation of

the relations between symmetry and conservation of certain ”observables” with respect to the certain ”transformation” .

With above formulation, the discussion of the symmetry of reality requires a consideration of
three main parts: (i) Physical system, (ii) reference frame with respect of which this system is ob-
served, and (iii) modification of the ”observable” due to transformation of the system with respect
to the reference frame.

The transformations which we are interested in are related to the space-time and can be
categorized as follows:

- Rotation in Space
- Space Translation
- Time Translation
- Space Inversion
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- Time Inversion
- Change of Inertial Reference Frame

Building Blocks of Reality: Before to start the mathematical formulation of the concept of
symmetry, we first postulate that in classical mechanics, the building blocks of reality are positions,
r, velocities ~v (or alternatively momenta ~p ) and time, t at which they are measured.

Paradigm of Transformations: As it follows from the above discussions the concept of symmetry
is closely related to the change of our ”viewpoint” of the considered systems which can be achieved
by appropriate transformation of the observed system. However the same change of the ”viewpoint”
can be achieved also by appropriate change (or transformation) of the reference frame were the
observation is being made. We further elaborate two kind of transformations: active transformation
in which the observed system is transformed in the space and time at given reference frame and
passive transformation, in which the reference frame is transformed in the ”opposite direction” of
active transformation.

Now the Paradigm of transformations is the equivalence between Active and Passive transfor-
mations.

2 Space-Time Transformations

We will try not to develop a mathematical framework for description of space-time transformations
which is most relevant for studying classical mechanical systems.

We consider the coordinate ri(t), momentum pi(t) and time t as the most fundamental level
of information that we can gather about the system under the observation. As such the measured
”observable” of the system A will be function of these set of variables: A(ri(t), pi(t), t). Note that
for simplicity we are considering a scalar observable A that is characterized only by its magnitude.

The space-time transformation that we are interested ar:

Space Translations:

~r → ~r + ~a; ~p→ ~p; t→ t

A(~r, ~p, t)→ A(~r + ~a, ~p, t), (1)

Time Translations:

~r(t)→ ~r(t+ ε); ~p(t)→ ~p(t+ ε); t→ t+ ε

A(~r(t), ~p(r), t)→ A(~r(t+ ε), ~p(t+ ε), t+ ε), (2)
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Rotations: Rotation by an angle θ about the direction of a unit vector n̂. This results to the
change of the measured coordinates and momenta in a specific form

ri → r̃′i; pi → p̃′i; t→ t

A
(
~r(t), ~p(t), t

)
→ A(~r′(t), ~p′(t), t), (3)

Galilean Boosts: Galilean Boosts change the observed coordinates and momenta in the system
according to Galilean transformation:

~r → ~r + ~V t; ~p→ ~p+m~V ; t→ t

A
(
~r(t), ~p(t), t

)
→ A

(
~r + ~V t, ~p+m~V , t

)
(4)

Space Reflection: In this case one reverses all the measured coordinates and momenta:

~r → −~r ~p→ −~p+m~V ; t→ t

A
(
~r(t), ~p(t), t

)
→ A

(
− ~r,−~p, t

)
(5)

Time Inversion: In this case one reverses the measured time int the system:

~r(t)→ ~r(−t) ~p(t)→ ~p(−t); t→ −t
A
(
~r(t), ~p(t), t

)
→ A

(
~r(−t), ~p(−t),−t

)
(6)

The one of the cornerstones of the foundation of Classical Mechanics is that Fundamental
Physical Laws does not change due to above transformations and apparent changes should have an
emergent nature.

Digress: Internal Symmetries. While Classical Mechanics allows symmetries only in a
space and time, the quantum mechanics reveals a new reality for symmetries. Those symmetries
does not have analogy with our classical perception of symmetry. These are Charge Conjugation,
matter-antimatter symmetry, isotope symmetry, gauge symmetry etc..

3 Operators of Transformations

To define the above discussed transformations mathematically one introduces operators that act
upon the observed system (active transformation) or the reference frame (passive transformation)
through the ”building blocks” of reality - coordinates, momenta and time.

These operators we can formulate by their action on coordinates as fol
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Transformation Operator Action on Coordinates Action on Momenta

Space Translation T (a) ri → ri + a pi → pi + a
Time Translation U(t0) ri(t)→ ri(t+ t0) pi(t)→ pi(t+ t0)

Rotation R(n̂, θ) r′m =
3∑

n=1
Rmn(n̂, θ)rn p′m =

3∑
n=1

Rmn(n̂, θ)pn

Galilean Boost G(v) ri → ri + v · t pi → pi +m · v
Space Inversion R ri → −ri pi → −pi
Time Inversion T ri(t)→ ri(−t) pi(t)→ −pi(−t)

3.1 Observables

In the above definitions: operators act on the coordinates, ri and momenta pi which are the
observables of classical mechanics. Or more precisely, any observables of the system is described
through the coordinates and momenta (velocities). This statement is one of the foundation of the
classical mechanics for which the degrees of freedom is defined by ri(t) and pi(t) (vi(t)). This
assumes that one can not go deeper or no more fundamental layer of reality exists beyond the
coordinates and momenta.

3.2 Properties of Operators

Our next task is mathematical formulation of the properties of operators. For this we observe
that all above discussed transformations satisfy the definition of the groups with its own rules of
composition. Thus our further discussion will be based on some properties of group theory. Before
go further we notice that the above discussed transformation can be grouped into continuous and
discrete transformation, were continuous are space, time translation, rotation, Galilean boost, while
discrete are space reflection and time inversion. We will start first discussing operators of continuos
transformations.

3.3 Space Translation

T (a1)T (a2) = T (a1 + a2) = T (a2 + a1) = T (a2)T (a1) (7)

for acting on both ri and pi.

Identity: T (0) = 1

Continuos Group: The properties of the group are defined by the properties of the operator at
the neighborhood of identity. Or in human words: any finite transformation is defined through the
small/infinitesimal transformations, i.e.

T (a) = T (ε)
a
ε (8)
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where ε is very small. As a result we can expand:

T (ε) = 1 + T ′(0)ε+
1

2
t′′)(0)ε2 + · · · . (9)

In the limit of ε→ 0 one needs only to know T ′(0).

Example: Let A be an observable. Consider a small transformation in one direction: T (ε). In
this case T (ε) : ri = r′i = ri + ε (δri = r′−r=ε and T (ε) : pi = pi.

Now T (ε)A = A′ = A(r′, p′) . Then

δA = A′ −A =
∑
n,k

(
∂A

∂rn,k
δrn,k +

∂A

∂pn,k
δpn,k

)
=
∑
n,k

∂A

∂rn,k
εk = ~ε ·

∑
n

∇nA, (10)

where n counts the number of constituents in the system and k the components in the reference
frame. Thus we obtained that operator of space translation acted on the observable A is described
through ∇ operators which we will call generators.

3.4 Rotations

Some properties:

• Rotations do not commute

• Euler Theorem: Any Rotation leaves some axis unchanged - therefore any rotation can be
described by n̂ and θ where

R̂n̂ = n̂ (11)

Example: Rotation about ẑ axis.

x′ = x · cos(θ)− y · sin(θ)

y′ = x · sin(θ) + y · cos(θ)
z′ = 0 (12)

In the matrix form it can be written as:

r′ = R̂(n̂z, θ) · r (13)

where r =

 x
y
z

 and r′ =

 x′

y′
z′

 and

R̂(n̂z, θ) =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (14)

5



for small rotation angle θ → ε one obtains

R̂(n̂z, ε) = I +

0 −ε 0
ε 0 0
0 0 0

 (15)

Using Eq.(15) in Eq.(13) one obtains:

x′ = x− εy (16)

y′ = y + εx

z′ = z

If we now represent the above transformation in the form of ~r′ = ~r + ~δr then for ~δr one obtains:

~δr = εn̂z × ~r (17)

which now can be generalized for rotation around any axis n̂ as:

r′ = ~r + εn̂× ~r and δri = ε
∑
j,k

εijknjrk, (18)

where εijk represents the asymmetric Lev-Civita matrices of the rank 3.
The above equation is true for momentum with

δpi = ε
∑
j,k

εijknjpk. (19)

Vectors: In fact this relation can be used as a definition of the vector. That is, V is a vector if
due to infinitesimal rotation ε around any axis n̂ it changes according

V ′ = ~V + εn̂× ~V and δVi = ε
∑
j,k

εijknjVk, (20)

Example: Show that ~L = ~r × p is a vector.

Scalar: If the observable is invariant under the operation of rotation:

S′ = R̂S = S (21)
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3.4.1 Fields:

The question we address now is how the fields change under operation of rotation. The fields can
be as scalar, vector, tensor etc, defined according to their response with respect to the rotation, R.

Scalar Fields: The field (say φ(r, t)) as scalar if it satisfies the following relation:

R̂ · φ(r, t) = φ(r”, t) (22)

where
r”i =

∑
j

R−1i,j rj (23)

Vector Fields: The field (say ~A(r, t)) as scalar if it satisfies the following relation:

A′i(r
′, t) =

∑
j

RijAj(r, t) (24)

where
r′i =

∑
j

Rijrj (25)

3.5 Reflection and Rotation

We can differentiate between real and pseudo- scalars and vectors. The scalarity is defined with
respect to the rotation while real scalar is the one which is even with respect to the space reflection.
Accordingly pseudo-scalar is the quantity which is odd (changes the sign) with respect to the space
reflection.

Similarly, one define real- and pseudo- vectors. In which again vector-ness is defined with
respect to the rotation and real vector is odd and pseudo vector is even with respect to the space
reflection.

Example: Electric vector potential is a real vector:

~A(r, t)→ − ~A(−r, t) (26)

while the Magnetic field is a pseudo-vector

~B(r, t) =→ ~B(−r, t) (27)

3.6 Rotation Matrices

Rotation matrices are in general not commutative:

R̂(n̂1, θ1)R̂(n̂2, θ2) 6= R̂(n̂2, θ2)R̂(n̂1, θ1) (28)

7



but
R̂(n̂, θ1)R̂(n̂, θ2) = R̂(n̂, θ2)R̂(n̂, θ1) (29)

Using the latter property we always can present

R̂(n̂, θ) =

N∏
i=1

R̂(n̂, ε) (30)

where ε = θ
N . If now we take N →∞ and use the fact that

R̂(n̂, 0) = I (31)

we notice that all the properties of rotation can be identified at the neighborhood of unity matrix
I.

This statement is more obvious if one introduce matrix J(n̂) which is called Generator of
rotation around the axis n̂ such that

R(n̂, ε) = e−iJ(n̂)ε, (32)

Then according to Eq.(30) any rotation matrix is defined if its generator is defined:

R(n̂, θ) = e−iJ(n̂)θ. (33)

Note that the matrix exponent is understood as eM = I +M + 1
2M + · · · 1n!M

n

3.7 Generators of Rotation

We now discuss several properties of the generators of rotation J .
We first notice that since rotation matrices R are real the generators J are imaginary orators.

Then using the property of R that
RT = R−1 (34)

we obtain:
(e−iJ)T ≡ e−iJT = eiJ (35)

therefore JT = −J . Using the fact that J is imaginary we obtain that J ’s are Hermitean operators:

J† = J (36)

Using the earlier example of infinitesimal rotation around ẑ in Eq.(15) one notice that J is an
antisymmetric matrix with diagonal elements being zero. From this we conclude that only three
parameters are needed to completely describe rotational matrices. From this it follows that rotation
can be expressed as linear combination of 3 independence generators: J ’s. We define these three
independent generators the once representing rotation around x̂, ŷ and ẑ axises (named by Jx, Jy
and Jz respectively.
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Let us now obtain the expressions for Ji’s:
We start with discussing the rotation of the vector ri such that:

r′i =
∑
j

Rijrj =
∑
j

(
e−iεJ(n̂)

)
ij
rj = ri −

∑
j

iεJ(n̂)ijrj , (37)

where in the last step we used the expansion e−iεJ(n̂) ≈ I − iεJ(n̂). From the above equation we
obtain:

δri = −ε
∑
j

iεJ(n̂)ijrj . (38)

Using this equation and the definition of δr from Eq.(18) one obtains:∑
j,k

εijknjrk = −
∑
k

iεJ(n̂)ikrk (39)

where in the last step we renamed j → k in Eq.(38).
Let us now fix the axis of rotation in some given direction j: n̂→ nj and then define :

Jjnj ≡ J(nj)ik. (40)

Then from Eq.(39) one obtains:

εijknjrk = −iJ(nj)ikrk = −i(Jj)iknjrk (41)

The above equation we can solve for (Jj)ik:

(Jj)ik = iεijk = −iεjik. (42)

Redefining j ↔ i one obtains the final expression for the generators of the rotation:

(Ji)jk = −εijk. (43)

For general direction of rotation n̂:

J(n̂) =
∑
i

niJi. (44)

Using the expression of (Ji)jk from Eq.(43) one can present the generators in the matrix form
as follows:

Jx =

0 0 0
0 0 −i
0 i 0

 Jy =

 0 0 i
0 0 0
−i 0 0

 Jz =

0 −i 0
i 0 0
0 0 0

 . (45)

Using the explicit form of the generators it is easy to show that they satisfy the following
comutating relations:

[JiJj ] = i
∑
k

εijkJk, (46)

which is also called the algebra of generators of rotation.
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4 Home Works

4.1 Angular Momentum is a Pseudo-Vector

First we show that it is a vector, applying the vector definition in terms of the operation of the
rotation: according to which Ai is a vector if it changes during the rotation around the axis n̂
according to the relation:

δAi = ε
∑
j,k

εijknjAk (47)

.
Now defining the angular momentum as:

Li ≡ [r × p]i =
∑
j,k

εijkrjpk (48)

where rj and pk are the components of the vectors of ~r and ~p, we need to show that after the
rotation

L′i = Ri,j(n̂, ε)Lj = Li + δLi (49)

where
δLi = ε

∑
j,k

εijknjLk. (50)

To prove this relation we use Eq.(48) to express L′ as

L′i =
∑
j,k

εijkr
′
jp
′
k =

∑
j,k

εijk(rj + δrj)(pk + δpk). (51)

Now using the fact that ri and pi are vectors and they change during the rotation according to
Eq.(47), for infinitesimal rotation angle ε (neglecting ε2 term) one obtain:

δLi =
∑
j,k

εijkrjδpk +
∑
j,k

εijkδrjpk = ε
∑
j,k

∑
m,n

εijkεkmnnmrjpn + ε
∑
j,k

∑
m,n

εijkεjmnnmrnpk. (52)

Now using the antisymmetric properties of Levi-Civita matrices the above equation we can present
in the following form

δLi = ε
∑
j,m,n

∑
k

εkijεkmnnmrjpn − ε
∑
k,m,n

∑
j

εjikεjmnnmrnpk (53)

then use the relation: ∑
i

εijkεimn = δjmδkn − δjnδkm (54)

to write for Eq.(53)
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δLi = ε
∑
j,m,n

(δimδjn − δinδjm)nmrjpn − ε
∑
k,m,n

(δimδkn − δinδkm)nmrnpk = (55)

ε
∑
j,m,n

(δimδjn − δinδjm)nmrjpn − ε
∑
j,m,n

(δimδjn − δinδjm)nmrnpj = (56)

ε
∑
j,m,n

(δimδjn − δinδjm)nmrjpn − ε
∑
j,m,n

(δimδjn − δijδnm)nmrjpn = (57)

ε
∑
j,m,n

(δijδmn − δinδmj)nmrjpn = ε
∑
j,m,n

∑
k

εkimεkjnnmrjpn = (58)

ε
∑
m

∑
k

εkimnmLk = ε
∑
m,k

εimknmLk, (59)

which proves the relation of Eq.(50). In derivation of above relations we did the following proce-
dures: in the second part of (56) we renamed the index k → j, then in (57) in the second part we
replaced n↔ j, this resulted to the first part of the (58) where we used the relation of Eq.(54) to
obtain the second part. And finally we used the definition of the angular momentum of Eq.(48)
and permutation property of Levi-Civita matrices in (59) part to arrive the final expression.

So far we proved that the angular momentum has a vector properties with respect to the
rotation. To prove that it is a pseudo-vector we consider the operator of space inversion and use
the relation of Eq.(48). This results to

R~L = R(~r × ~p) = (−~r × (−~p)) = ~L (60)

where we used the fact that ~r and ~p are true vectors as it is defined in definition of the space
reflection in Sec. (3)
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