
Lecture 7: Three Dimensions with Spherical Symmetry

January 26, 2022

1 General Definition of Rotation in Quantum Mechanics

Our goal here to defined the concept of spherical symmetry in Quantum Mechanics. According
to Correspondence Principle number 2 all the symmetries in the Classical Physics should be valid
in Quantum Physics too. This is a general principle and we already learned that mathematical
realization of this principle was that all the symmetry transformations of Classical Physics which
was applied on ri and pi in Quantum Mechanics should be applied to the quantum state vector
defined in the Hilbert Space.

Our definition of Spherical symmetry will be based on the above principle with the operator
of rotation, R(n̂, θ), being applied on the quantum state vector.

Classical Mechanics:In classical physics we defined the operator of rotation:

R̂(n̂, θ), (1)

where R̂ means that it is an operator and n̂ is the unit vector around which the rotation on θ angle
takes a place. In classical physics R(n̂, θ) is being acted on coordinate and momentum (building
blocks of reality in classical mechanics). For example

R̂(n̂, θ) : ~r = ~r′ or in the matrix form r′i =
∑
k

Ri,k(n̂, θ)rk, (2)

where for infinitesimally small rotation θ = ε

δri = r′i − ri = ε
∑
i,j

εijknj , rk = ε [n× r]i . (3)

Since the operator R is a contineous transformation (Li Group) one can define three component
generator of rotation Ĵi defined such thath:

R̂(n̂, ε) = e−iĴiniε, (4)

where by repeating indices i one assumes a summation.
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For the case when rotation was applied on the 3d vectors in the Euclidean space (such as
vector ri) we found that three generators of roations are (3× 3) matrices in the form (see Lecture
2, Eq. (43))

(Ji)jk = −εijk. (5)

where εjik are Levi-Civita matrices and in the matrix form can be presented as:

Jx =

0 0 0
0 0 −i
0 i 0

 Jy =

 0 0 i
0 0 0
−i 0 0

 Jz =

0 −i 0
i 0 0
0 0 0

 . (6)

The important property of these generators of rotation is that they satisfy commutator relations

[Ji, Jj ] = i
∑
k

εijkJk (7)

which are generally referred to as Li Group Algebra. The important property of this algebra is that
they are invariant with respect to the Group representation. What this mean in practice is that
while the explicit form of the Generators of rotation depends on the object that is being rotated
(for Eqs.(5,6) the rotated objects are 3d vectors in the Euclidian space) the expression of algebra
in Eq.(7) is the same for any other kind of the objects that being rotated, such as fields, scalars,
vectors in higher dimensional euclidean and non-euclidean spaces.

Quantum Mechanics: According to the Second Correspondence principle, in Quantum Me-
chanics the Symmetry transformation operator should now act on the “basic building block” of the
quantum reality, which is the quantum state vector | ψ〉, i.e we should consider now:

R̂(n̂, θ) | ψ〉. (8)

For infinitesimally small rotations one can introduce the generator of rotation Ĵi in Quantum
Mechanics and present the above transformation in the form:

R̂(n̂, ε) | ψ〉 = e−i
∑

i Ĵiniε | ψ〉 =| ψ′〉. (9)

Note that even if we don’t know the exact form of Ĵi we know that due the invariance of the Algebra
of generators it will satisfy the relation of Eq.(7).

1.1 Property of Generators of Rotation in Quantum Mechanics

Our starting point is the algebra of generators, Eq.(7). We will discuss following nine steps that
allow us to elucidate the main properties of generators of rotation which are universal for any
representation.

Step 1. We define the following operator (generally referred to as Casimir operator):

Ĵ2 =
∑
i

ĴiĴi = Ĵ2
x + Ĵ2

y + Ĵ2
z (10)

which is a Hermitian operator because of Ĵi being Hermitian.
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Step 2. We now show that operator Ĵ2 commutes with individual components of Ĵi.

Using the relation:
[ab, c] = a [b, c] + [a, c] b (11)

and Eq.(7) resulting in:[
Ĵ2, Ĵj

]
=
∑
i

[
ĴiĴi, Ĵj

]
=
∑
i

Ĵi

[
Ĵi, Ĵj

]
+
∑
i

[
Ĵi, Ĵj

]
Ĵi = i

∑
ik

εijkĴiĴk + i
∑
ik

εijkĴkĴi = 0,

(12)

where in the last part of the equation we used the algebra of Eq.(7) and the fact that for
antisymmetric matrices like Levi-Civita, summation by any two identical vectors gives 0:∑

ik εijkJkJi = 0.

The above relations allows us to choose one of the Ĵi operators (usually Ĵz) together with Ĵ2

and consider their common eigenstates | ψλJ2 ,m〉 as follows:

Ĵ2 | ψλJ2 ,m〉 = λJ2 | ψλJ2 ,m〉

Ĵz | ψλJ2 ,m〉 = m | ψλJ2 ,m〉, (13)

where λJ2 and m represent the eigenvalues of Ĵ2 and Ĵz operators respectively.

Step 3. We define the Ĵ± operators as follows:

Ĵ± = Ĵx ± iĴy. (14)

First using Eq.(12) one obtains: [
Ĵ±, Ĵ

2
]

= 0 (15)

then using the algebra of generators (7) one can show that:[
Ĵz, Ĵ±

]
=

[
Ĵz, Ĵx

]
± i
[
Ĵz, Ĵy

]
= i
∑
k

εz,x,kĴk ∓
∑
k

εz,y,kĴk =

= iεz,x,yĴy ∓ εz,y,xĴx = iĴy ± Ĵx = ±(Ĵx ± iĴy) = ±Ĵ±, (16)

where in the derivation we used the fact that Levi-Civita tensor is zero for identical indices,
εz,x,y = −εz,y,x = 1. Applying the same algebra also gives:[

Ĵ+, Ĵ−

]
= 2Ĵz (17)

Step 4. We use several useful representations of operator Ĵ2 using Eq.(17):

Ĵ2 =
1

2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
+ Ĵ2

z = Ĵ+Ĵ− − Ĵz + Ĵ2
z = Ĵ−Ĵ+ + Ĵz + Ĵ2

z . (18)
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Step 5. We show that Ĵ± represent rising and lowering operators for eigenstates of Ĵz.

For this let us take the eigenstate of operator Ĵz from Eq.(13) and act by Ĵ+. It will produce
another state vector | φ+〉 in the Hilbert space:

| φ+〉 = Ĵ+ | ψλJ2 ,m〉. (19)

Let us now check whether | φ〉 is an eigenstate of Ĵz:

Ĵz | φ+〉 = ĴzĴ+ | ψλJ2 ,m〉 = (Ĵ+Ĵz + Ĵ+) | ψλJ2 ,m〉 = Ĵ+(Ĵz + 1) | ψλJ2 ,m〉 =

= (m+ 1)Ĵ+ | ψλJ2 ,m〉 = (m+ 1) | φ+〉, (20)

where in the above derivation we used a relation ĴzĴ+ = Ĵ+ + Ĵ+Ĵz from Eq.(16). Thus from
the above equation it follows that Ĵ+ is a step up operator on the eigenstate of Ĵz increasing
its eigenvalue by one unit:

Ĵ+ | ψλJ2 ,m〉 ∼| ψλJ2 ,m+1〉 (21)

With the very similar approach now using the relation ĴzĴ− = −Ĵ− + Ĵ−Ĵz one can show
that Ĵ− represents a step down operator on the eigenstate of Ĵz increasing decreasing its
eigenvalue again by one unit: Indeed, if

| φ−〉 = Ĵ− | ψλJ2 ,m〉, (22)

then,

Ĵz | φ−〉 = ĴzĴ− | ψλJ2 ,m〉 = (Ĵ−Ĵz − Ĵ−) | ψλJ2 ,m〉 = Ĵ−(Ĵz − 1) | ψλJ2 ,m〉 =

= (m− 1)Ĵ+ | ψλJ2 ,m〉 = (m− 1) | φ−〉. (23)

Thus
Ĵ− | ψλJ2 ,m〉 ∼| ψλJ2 ,m−1〉. (24)

Thus we proved that Ĵ+ and Ĵ− operators create a ladder structure for the eigenstates of Ĵz
operator with eigenvalues presenting a ladder with unit step up or unit step down.

Note that both sate vectors in Eq.(21) and (24) are still eigenstates of operator Ĵ2 with
eigenvalue of λJ2 .

Step 6. We now will demonstrate that above mentioned ladder has top and bottom, that is there are
limiting states | ψλJ2 ,mmin

〉 and | ψλJ2 ,mmax〉 below and above which one can not claim. To

show this we consider the expectation value of the Ĵ2
x + Ĵ2

y operator which is by definition is
positive definitive:

〈ψλJ2 ,m | Ĵ2
x + Ĵ2

y | ψλJ2 ,m〉 ≥ 0. (25)
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Using Eq.(10) the above equation can be presented as follows:

〈ψλJ2 ,m | Ĵ2 − Ĵ2
z | ψλJ2 ,m〉 = λJ2 −m2 ≥ 0. (26)

Where in the last step we used the relations of Eq.(13).

From the above equation it follows that

m2 ≤ λJ2 (27)

which means that eigenvalues of Ĵz operator bounded from below and above, i.e.

mmin ≤ m ≤ mmax (28)

Step 7. Computation of the λJ2 eigenvalues.

We now use Eq.(28) to calculate the value of λJ2 . We first defined

j ≡ mmax , (29)

and using Eq.(28) observe that
Ĵ+ | ψλJ2 ,j〉 = 0, (30)

which is a mathematical statement that we reached the “top” eigenstate of Ĵz operator and
can not step-up further. Multiplying Eq.(30) by Ĵ− and using Eq.(18) one obtains:

Ĵ−Ĵ+ | ψλJ2 ,j〉 = (Ĵ2 − Ĵz − Ĵ2
z | ψλJ2 ,j〉 = λJ2 − j − j2 = λJ2 − j(1 + j) = 0. (31)

From the above equation it follows that

λJ2 = j(j + 1) (32)

where j was the maximal possible value of m.

We now want to evaluate the magnitude of mmin we For which we notice that:

Ĵ− | ψλJ2 ,j〉 = 0, (33)

which is a mathematical statement that we reached the “bottom” eigenstate of Ĵz operator
and can not step-down further. Multiplying Eq.(33) by Ĵ+ and using Eq.(18) one obtains:

Ĵ+Ĵ− | ψλJ2 ,j〉 = (Ĵ2+Ĵz−Ĵ2
z | ψλJ2 ,j〉 = λJ2 +mmin−m2

min = j(1+j)−mmin(mmin−1) = 0,
(34)

where in the last part of the derivation we used the previous result: λJ2 = j(j + 1). The
above equation has two solusions:

mmin = j + 1 and mmin = −j. (35)
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Since by definition j was the highest possible magnitude of m, the only relevant solution will
be the one:

mmin = −j (36)

Thus we conclude that eigenvalue m has minimal and maximal value with equal absolute
magnitude:

−j ≤ m ≤ j (37)

In further considerations we will follow the convention in which whenever the eigenstate λJ2

used as an index for the eigenstate it is denoted by j, i.e.

| ψλJ2 ,m〉 ≡| ψj,m〉 (38)

Step 8. Allowed values of j.

Since the step-up and step-down operators change the value of m by one unit (changing it
from -j to j), from Eq.(37) it follows that

j − (−j) = 2j = integer (39)

thus we conclude that allowed values of j can be either integers or half integers.

j = 0, 1
2 , 1,

3
2 , 2, · · · (40)

Step 9. Matrix elements of Ĵ± operators.

We now calculate the coefficients of proportionality in Eqs.(21) and (24) that we can define
as:

Ĵ+ | ψj,m〉 = ajm | ψj,m+1〉 (41)

and
Ĵ− | ψj,m〉 = bjm | ψj,m−1〉. (42)

For Eq.(41) calculating the inner product of the state | φ〉 = ajm | ψj,m+1〉 one obtains

〈ψj,m+1 | a∗jmajm | ψj,m+1〉 =| ajm |2= 〈ψj,m | Ĵ†+Ĵ+ | ψj,m〉 = 〈ψj,m | Ĵ−Ĵ+ | ψj,m〉 (43)

where in the last stage we used the relation Ĵ†+ = Ĵ−.

From Eq.(18) we can substitute Ĵ−Ĵ+ = Ĵ2 − Ĵ2
z − Ĵz into the above equation:

| ajm |2= 〈ψj,m | Ĵ2 − Ĵ2
z − Ĵz | ψj,m〉 = j(j + 1)−m(m+ 1) (44)

Choosing phase factors such that ajm to be real and using Eq.(41) one obtains:

Ĵ+ | ψj,m〉 = ajm | ψj,m+1〉 =
√
j(j + 1)−m(m+ 1) | ψj,m+1〉 (45)
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With similar approach from Eq.(42) one obtains:

〈ψj,m−1 | b∗jmbjm | ψj,m−1〉 =| bjm |2= 〈ψj,m | Ĵ†−Ĵ− | ψj,m〉 = 〈ψj,m | Ĵ+Ĵ+ | ψj,m〉 (46)

where, now, in the last stage we used the relation Ĵ†− = Ĵ+. From Eq.(18) we can now

substitute Ĵ+Ĵ− = Ĵ2 − Ĵ2
z + Ĵz into the above equation:

| bjm |2= 〈ψj,m | Ĵ2 − Ĵ2
z + Ĵz | ψj,m〉 = j(j + 1)−m(m− 1) (47)

Again, choosing phase factors such that bjm to be real and using Eq.(42) one obtains:

Ĵ− | ψj,m〉 = bjm | ψj,m+1〉 =
√
j(j + 1)−m(m− 1) | ψj,m+1〉. (48)

Using Eq.(45) together with Eq.(41) we can calculate the matrix element of Ĵ+ operator as
follows:

〈ψj,m′ | Ĵ+ | ψj,m〉 = ajm δm′,m+1 =
√
j(j + 1)−m(m+ 1) δm′,m+1. (49)

With the similar approach Using Eq.(48) together with Eq.(42) we obtain:

〈ψj,m′ | Ĵ− | ψj,m〉 = bjmδm′,m−1 =
√
j(j + 1)−m(m− 1) δm′,m−1. (50)

Finally, for the future use we summarize the results of Eqs.(45) and (48) in the form

Ĵ± | ψj,m〉 =
√
j(j + 1)−m(m± 1) | ψj,m±1〉 (51)

1.2 Generators of Rotation for Coordinate Wave Functions

Since we are discussing a rotation in the Euclidian space that is defined by space coordinates it
is more convenient if we consider the above equation realize for coordinate wave function ψ(ri) ≡
〈ψr | ψ〉 : where 〈ψr |, with ri, i = 1, 2, 3 represents the eigenstate of coordnat operator r̂. in 3d
space of the reference frame where we are observing the given quantum state.

〈ψr | R̂(n̂, ε) | ψ〉 ≈ 〈ψr | (I − iĴin̂iε) | ψ〉 = ψ(ri)− i〈ψr | Ĵin̂iε | ψ〉 = (1− iL̂in̂iε)ψ(ri) = ψ′(ri),
(52)

where by repeating indices i we assume a summation and where also we defined

L̂iψ(ri) = 〈ψr | Ĵi | ψ〉. (53)

In Eq.(52, ψ′(ri) describes the “rotated” (by ε angle around n̂ axis) wave function observed in the
same reference frame in which the quantum state was observed before the rotation. Now we recall
the paradigm of “passive” and “active” transformations according to which the rotated by ε angle
around n̂ axis system is identical with the observation in which the reference frame is rotated by
−ε around the same n̂ axis. This result in a relation

ψ′(ri) = ψ(r′i), (54)
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where r′i corresponds to the coordinates of wave function in the rotated (in the opposite direction)
reference frame, thus:

r′i = R̂CL(n̂,−ε)i,jrj , (55)

where R̂CL is the operator of rotation of euclidean vector in Classical Mechanics (see Eq.(54)). For
rotation by −ε angle from Eq.(3) one has:

δri = r′i − ri = −ε
∑
i,j

εijknj , rk = −ε [n× r]i . (56)

Comparing now Eqs.(52), (54) and (56) one obtains:

(1− iL̂in̂iε)ψ(ri) = ψ(r′i) = ψ(ri + δri). (57)

Using the smallness of ε we can also expand the ψ(ri + δri) function into Taylor series keeping first
order in ε

ψ(ri + δri) ≈ ψ(ri) + δri∇iψ(ri) = ψ(ri)− ε [n× r]i∇iψ(ri), (58)

where in the last part of the equation we used the relation of Eq.(56).
Comparing now Eqs.(57) and (58) one obtains:

ψ′(ri) ≈ (1− iL̂iniε)ψ(ri) = ψ(ri)− ε [n× r]i∇iψ(ri) (59)

which now can be solved for L̂i:

L̂ini = −i [n× r]i∇i = −i [r ×∇]i ni (60)

where we used a relation [A × B] · C = [B × C] · A to express [n × r]i∇i = [r]ini. From above
equation one obtains for the generator of rotation acted on the quant state:

L̂i = −i [r ×∇]i (61)

Remembering that this was the case of Ĵi acting on the state vector and projecting to the coordi-
nate eigenstate wave one concludes that the expression for L̂i acting on the quantum state in the
Euclidean space will be:

L̂i =
[r̂ × p̂]i
h̄

(62)

In the above equation we can introduce the operator of orbital angular momentum in the form:

L̂QMi = [r̂ × p̂]i (63)

and conclude that the generator of rotations in Quantum Mechanics is related to the Orbital
Angular Momentum operator as:

L̂i =
L̂QMi
h̄

(64)
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Note the interesting analogy that the generators of time and space translations K̂ and K̂i were
related the Hamiltonian and momentum operators in the form:

K̂ =
Ĥ

h̄
(65)

K̂i =
p̂i
h̄

Going back to the generator of rotation Ĵi, we notice that its particular representation in
Eq.(62) is different from the representation in case of rotation of 3d-vector in Euclidean space
Eq.(5). However due to the invariance of the algebra of generators, one still expects that generators
of Eq.(62) to satisfy the relation:

[Li, Lj ] = i
∑
k

εijkLk (66)

Note: In the further discussions we adopt the notations in which we identify orbital orbital
angular momentum operator with the generator of rotation in wave function representation, i.e.:

L̂i =
L̂QM

h̄
. (67)

We will however distinguish it from L̂QMi which represents the “true” operator of orbital angular
momentum.

1.3 General Definition of Spherical Symmetry in Quantum Mechanics

With the generator of rotation defined in Quantum Mechanics according to Eq.(62) we are able to
give a formal definition of Spherical Symmetry in Quantum Mechanics.

Let us assume that we have a stationary quantum system that is characterize with Hamiltonion
Ĥ such that :

Ĥ | ψ〉 = E | ψ〉 (68)

where ψ(r) is the wave function of the system in the considered reference frame.
Let us now rotate the quantum system around arbitrary n̂ axis. Then for this rotated quantum

system one has:
Ĥ | ψ′〉 = E′ | ψ′〉 (69)

We now state the Quantum System has a spherical symmetry if

E = E′ . (70)

To see what are the mathematical consequence of the above relation we use the expression

| ψ′〉 ≈ (1− iĴiniε) | ψ〉 (71)
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in the LHS part of Eq.(69):

Ĥ | ψ′〉 = Ĥ(1− iĴiniε) | ψ〉 = E | ψ〉 − iĤĴiniε | ψ〉. (72)

Applying now Eq.(71) to the RHS part of Eq.(69) and using condition of Eq.(70) one obtains:

E′ | ψ′〉 = E | ψ′〉 = E(1− iĴiniε) | ψ〉 = E | ψ〉 − iĴiniεĤ | ψ〉. (73)

where in the last part of the equation we moved E after Ĵiniε and used E | ψ〉 = Ĥ | ψ〉. Note that
in the above expressions by the repeating indices of i we assume a summation: i.e. Ĵini =

∑
i
Ĵini

Subtracting now Eqs.(72) and (73) one obtains:[
Ĥ, Ĵi

]
= 0 (74)

Thus we conclude that mathematical formulation of spherical symmetry in Quantum Mechanics is
that the generator of rotation commutes with the Hamiltonian of quantum system.

If Eq.(74) is satisfied, one observes also the following commutator relation for Ĵ2 =
∑

i ĴiĴi:[
Ĵ2Ĥ

]
= ĴiĴiĤ −HĴiĴi = HĴiĴi −HĴiĴi = 0 (75)

Thus combining the above relation with Eqs.(7), (12) and (74) one obtains the following set of
relations for Generators of Rotation in Quantum Mechanics,Ĵi and Hamiltonian Ĥ.

[Ji, Jj ] = i
∑
k

εijkJk,
[
J2, Ji

]
= 0,

[
Ĥ, Ĵi

]
= 0,

[
Ĵ2, Ĥ

]
= 0. (76)

The above relations indicate that there should be common eigenstates for operators Ĥ, Ĵ2 and one
of the components of Ĵi (Conventionally being chosen to be Ĵz). The latter follows from the fact
that operators Ĵi are mutually non-commutative, but each of them communicate with Ĵ . Thus
these eigenstates should satisfy simultaneously to the following relations:

Ĥ | ψE,j,m〉 = E | ψE,j,m〉
Ĵ2 | ψE,j,m〉 = j(j + 1) | ψE,j,m〉
Ĵz | ψE,j,m〉 = m | ψE,j,m〉,

(77)

where we used the result of Sec.1.1 according to which the eigenvalue of Ĵ2 operator is j(j + 1),
where j is the maximal value of m.
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1.3.1 Spherical Symmetry for the case of Coordinate Space Wave Functions

In Sec.1.2 we learned that rotation of coordinate wave functions are realized through the Angular
Momentum operator defined as:

L̂i =
[r̂ × p̂]i
h̄

. (78)

In analogy to Eq.(75) the spherical symmetry for the case of coordinate wave function will require
the following condition to be satisfied: [

Ĥ, L̂i

]
= 0, (79)

where now the Hamiltonian operator is defined as:

Ĥ = − h̄
2∇2

2m
+ V (~r). (80)

Before to check the condition of Eq.(79) it is useful to show that:[
p̂i, L̂j

]
= i

∑
k

εijkp̂k[
r̂i, L̂j

]
= i

∑
k

εijkr̂k. (81)

Using now Eq.(81) we can check the first part of the condition of Eq.(79):[
p̂2

2m
, L̂j

]
=

1

2m

[
p̂2, L̂j

]
=

1

2m

∑
i

(
p̂i

[
p̂i, L̂j

]
+
[
p̂i, L̂j

]
p̂i

)
=

1

2m

∑
ik

(εijkp̂ip̂k + εijkp̂kp̂i) = 0.

(82)
The last part is equal zero since the antisymmetric tensor εijk couples with identical vectors pk and
pi and there is a summation by i, k components.

To complete the proof of Eq.(79) one needs to show that[
V (~r)), L̂j

]
= 0 (83)

It can be shown (see appendix) that the above condition will be satisfied if the potential energy
depends on the magnitude of r, i.e.

V (~r) = V (r). (84)

In this case it is enough to show that [
r̂2, L̂j

]
= 0 (85)

in order the condition of Eq.(83) to be satisfied. The proof of Eq.(85) proceeds similar to that of
Eq.(82) using the relation for the commutator of [r̂i, L̂j ] from Eq.(81).
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With this we conclude that in order the condition of Spherical Symmetry to be satisfied for the
coordinate space wave function the condition is that the potential energy in the coordinate space
representation of the Hamiltonian in Eq.(80) should depend on the magnitude of the coordinate r,
(84).

With the spherical symmetry condition satisfied (Eq.(79) the analog of the Eq.(76) will be:[
L̂i, L̂j

]
= i
∑
k

εijkL̂k,
[
L̂2, L̂i

]
= 0,

[
Ĥ, L̂i

]
= 0,

[
L̂2, Ĥ

]
= 0. (86)

and the one will have following system of eigenstate/eigenvalue equations:

ĤψE,l,m(r) = E · ψE,l,m(r)

L̂2ψE,l,m(r) = l(l + 1) · ψE,l,m(r)

L̂zψE,l,m(r) = m · ψE,l,m(r), (87)

where similar to Eq.(77) we denote the eigenvalue of L̂2 operator as l(l+ 1) where l is the maximal
value of m.

1.3.2 Calculating L̂2 and L̂z Operators

h̄2L̂2 =
∑
i

(r̂ × p̂)i(r̂ × p̂)i =
∑
i

∑
jk

εijkr̂j p̂k
∑
lm

εilmr̂lp̂m =
∑
i

∑
jklm

εijkεilmr̂j p̂kr̂lp̂m

=
∑
i

∑
jklm

εijkεilmr̂j(r̂lp̂k − ih̄δlk)p̂m =
∑
jklm

(δjlδkm − δjmδkl)r̂j(r̂lp̂k − ih̄δlk)p̂m, (88)

were in the above derivations we used commutator relation:

[r̂lp̂k] = ih̄δkl (89)

and sum rule relation for Levi-Civita matrices:∑
i

εijkεilm = δjlδkm − δjmδkl. (90)

Simplifying Eq.(88) further, one obtains:

h̄2L̂2 =
∑
jklm

(δjlδkm − δjmδkl)r̂j r̂lp̂kp̂m − ih̄
∑
jklm

(δjlδkm − δjmδkl)r̂jδlkp̂m = (91)

= r̂2p̂2 −
∑
i

r̂j(
∑
k

r̂kp̂k)p̂j + 2ih̄
∑
j

r̂j p̂j .
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The above expression can be simplified further if we move from polar to cartesian coordinates.
Using the derivative expression for the momentum operator, p̂j = −ih̄ ∂

∂rj
and relations of Eq.(??)

one obtains ∑
j

r̂j p̂j = −ih̄r ∂
∂r

(92)

and ∑
i

r̂j(
∑
k

r̂kp̂k)p̂j = −h̄2r2 ∂
2

∂r2 . (93)

Substituting above equations into Eq.(92) one arrives at:

h̄2L̂2 = r2p̂2 + h̄2r2 ∂
2

∂r2
+ 2h̄2r

∂

∂r
= r2

(
p̂2 + h̄2 1

r2

∂

∂r
r2 ∂

∂r

)
. (94)

In the above derivation we used the fact that in the coordinate space representation r̂i = ri. Now
if we use the polar coordinate representation of p̂2 operator.

p̂2 = −h̄2∇2 = −h̄2

(
1

r2

∂

∂r
r2 ∂

∂r
+

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin θ2

∂2

∂φ2

))
, (95)

in Eq.(94) one obtains:

L̂2 = −
(

1
sin θ

∂
∂θ sin θ ∂

∂θ + 1
sin θ2

∂2

∂φ2

)
. (96)

To calculate the L̂z operator one again use the polar coordinate representation of cartesian deriva-

tives. Using the explicit form of the L̂z operator and Eq.(156) one obtains

h̄L̂z = (r̂ × p̂)z = −ih̄
(
x
∂

∂y
− y ∂

∂x

)
= −ih̄ ∂

∂φ
(97)

From above relation one obtains

L̂z = −i ∂∂φ . (98)

As it follows from Eqs.(96) and (98), the remarkable properties of L̂2 and L̂z operators are
that they are independent of the radios r and fully defined by polar angle θ and φ for the case of
L̂2 and only φ for the case of L̂z operators.

1.4 Eigenstates and Eigenvalues of Orbital Angular Momentum Operators

Because of the relation [
L̂i, L̂j

]
= i
∑
k

εijkL̂k,
[
L̂2, L̂i

]
= 0 (99)

13



one can choose a common eigenstate for L̂2 and for one of the L̂z operators.

L̂2Y m
l (θ, φ) = l(l + 1) · Y m

l (θ, φ), (100)

and
L̂zY

m
l (θ, φ) = m · Y m

l (θ, φ), (101)

where eigenstates Y m
l (θ, φ) reflect the fact that L̂2 (Eq.(96)) and L̂z (Eq.(98)) depend only on polar

angles θ and φ.
The spherical wave functions are normalized as follows:∫

Y m′
l′ (θ, φ)†Y m

l (θ, φ)dΩ = δl′,lδm′,m (102)

1.4.1 Eigenstates and Eigenvalues of the L̂z Operator

We first consider the solution of Eq.(101). Using Eq.(98) on obtains

L̂zY
m
l (θ, φ) = −i ∂

∂φ
Y m
l (θ, φ) = m · Y m

l (θ, φ). (103)

The above equation is a simple first order differential equation depending only on φ which indicates
that we can look for the solution in the form in which θ and φ arguments are separated:

Y m
l (θ, φ) = Θl,m(θ)Φm(φ). (104)

Inserting this expression into Eq.(103) one obtains:

− i ∂
∂φ

Φm(φ) = mΦm(φ), (105)

whose solution has a form:
Φm(φ) = Ceimφ. (106)

One can find the normalization constant and gain some idea about the magnitude of m by consid-
ering the orthonormality condition:

2π∫
0

Φ†m′(φ)Φm(φ)dφ = δm′m. (107)

For m′ = m one obtains

C22π = 1 → C =
1√
2π
. (108)

Thus one obtains for the eigenstate of L̂z operator:

Φm(φ) =
1√
2π
eimφ (109)

14



Possible values of m: To evaluate the magnitude of m one first observes that, if m′ 6= m
from Eq.(107) one obtains:

1

2π(m′ −m)
e(m′−m)2π = 0 (110)

which indicates that
m′ −m = integer. (111)

This result is in agreement with the Step.8 of Sec.1.1. However, mathematically the above relation
does not indicate whether m is integer of half-integer.

However if one requires a singlevaluedness of the function, which will constrains the solution of
Eq.(109) requiring that it reproduces itself after rotation by azimuthal angle 2π, i.e. φ → φ + 2π
one arrive to the integer values for m.

Thus the requirement that the eigenstates of L̂z operators are single valued results in a condition
that eigenvalues of orbital angular momentum operators are integers.

1.4.2 Eigenvalues of Eigenstates of the L̂2 Operator

From the observation from the above subsection that that m should have integer value to satisfy
singlevaluedness of eigenstate Φm(φ) we conclude that l too should have an integer value.

To obtain the eigenstate of L̂2 operator, we use Eqs.(100,96) and Eq.(104) to obtain

L̂2Θl,m(θ)Φm(φ) = −
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin θ2

∂2

∂φ2

)
Θl,m(θ)Φm(φ) = l(l + 1)Θl,m(θ)Φm(φ).

(112)
Now using Eq.(101) the above equation reduces to the following differential equation:[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

(
l(l + 1)− m2

sin θ2

)]
Θlm(θ) = 0. (113)

Introducing a variable z = cos θ, the above equation can be presented in the form:

(1− z2)
d2

dz2
Θl,m(z)− 2z

d

dz
Θl,m(z) +

(
l(l + 1)− m2

(1− z2)

)
Θl,m(z) = 0. (114)

We can solve the above differential equation considering first the case m = 0, which reduces the
above equation to the Legandre’s equation”

(1− z2)
d2

dz2
Θl,0(z)− 2z

d

dz
Θl,0(z) + l(l + 1)Θl,0(z). (115)

Thus one can relate Θl,0(z) to the Legandre polinomials Pl(z) which are solutions of the above
equation.

Θl,0(z) = Cl,0Pl(z) (116)
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where with Cl,0) we denote the constant of proportionality. For future application we may use the
Rodrigues’ representation of the Legandre polynomials in the form:

Pl(z) =
1

2ll!

dl

dzl
(z2 − 1)l. (117)

Let us now consider Eq.(115) with Legandre Polinomials Pl(z) and differentiate it m times:
One obtains:

(1− z2)
d2

dz2
u(z)− 2z(m+ 1)

d

dz
u(z)− (l −m)(l +m+ 1)u(z) = 0, (118)

where

u(z) ≡ dm

dzm
Pl(z). (119)

We define now a new function referred to as Associated Legandre Functions

Pml (z) ≡ (1− z2)
m
2 u(z) = (1− z2)

m
2
dm

dzm
Pl(z). (120)

Using the above definition the Eq.(118) can be written as:

(1− z2)
d2

dz2
Pml (z)− 2z

d

dz
Pml (z) +

(
l(l + 1)− m2

(1− z2)

)
Pml (z) = 0. (121)

Comparing the above equation with Eq.(114) we conclude that:

Θl,m = Cl,mP
m
l (cos θ), (122)

where Cl,m is a normalization constant which can be fixed using the relation (need to be derived
in the project)

π∫
0

Pml′ (cos θ)Pml (cos θ)d cos θ =
2

2l + 1

(l +m)!

(l −m)!
δl′l. (123)

Using the above equation for Θl,m function that is normalized to unity one obtains:

Θl,m(θ) = (−1)mil

√
(2l + 1

2

(l −m)!

(l +m)!
Pml (cos θ), (124)

here (−1)mil is a phase factor that does not change the overall answer however is conventional in
characterizing states with given orbital angular momentum and its projection in z direction.

The above derivation is made for m ≥ 0. However we know that −l ≤ m ≤ l, thus m also have
negative values symmetric to its positive magnitudes. The −m cases of eigenstates can be obtained
from the above solution if one assume that we changed the direction of ẑ in the opposite direction.

16



In this case l will not change thus Pl(cos(θ)) should not change too, but d
dz should change to − d

dz ,
which according to Eq.(119) will result in:

Θl,−m(θ) = (−1)mΘl,|m|(θ). (125)

Using Eqs.(124,125) together with Eq.(109) one arrives to the final expression for Y m
l (θ, φ)

Y m
l (θ, φ) = (−1)

m+|m|
2 il

√
(2l + 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimφ. (126)

The above functions generally referred to as Spherical Harmonics, with orthonormality conditions
defined in Eq.(102).

One important property of Spherical Harmonics that frequently used is its space inversion
property. If one replaces ~r → −~r, in the polar coordinates it corresponds to r → r, θ → π − θ and
φ→ φ+ π. Using the properties of Φm(φ) and Pml (cos θ) functions, from Eq.(109) (117) and (120)
one can show that:

Y m
l (π − θ, φ+ π) = (−1)lY m

l (θ, φ) (127)

2 Radial Part of the Schroedinger Wave Function Equation

Recall that we are considering a solution for Schroedinger wave equation:(
− h̄

2∇2

2m
+ V (r)

)
ΨE(~r) = EΨE(~r) (128)

for spherically symmetric potential V (r) ≡ V (|r|).
Using Eq.(95) for −h̄2∇2 and Eq.(96 for L̂2 operators, the expression Eq.(128) can be written

as:

− h̄2

2m

(
1

r2

∂

∂r
r2 ∂

∂r
− L̂2

r2

)
ΨE,l,m(r, θ, φ) + V (r)ΨE,l,m(r, θ, φ) = EΨE,l,m(r, θ, φ), (129)

where we also expressed the wave function in the polar coordinates. We can further separate the
spherical part from the wave function in the form

ΨE,l,m(r, θ, φ) = RE,l,m(r)Y m
l (θ, φ), (130)

where RE,l,m represents the radial part of the wave function. Substituting Eq.(130) back into

Eq.(129) and using the fact that spherical part of the wave function is the eigenstate of the L̂2

operator (Eq.(100)) for Eq.(129) one obtains:

− h̄2

2mr2

[(
d

dr
r2 d

dr
− l(l + 1)

)
+ V (r)

]
RE,l(r) = ERE,l(r). (131)
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As it follows from the above equation it does not depend on eigenvalues of L̂z operator m but
depends on l. Thus one expects that the energy of the quantum particle under such potential will
depend only on l. Since for any given l one has 2l + 1 different ms (−l ≤ m ≤ l) one concludes
that for spherical symmetric potentials there is a degeneracy in m in the order of 2l + 1.

Now we would like to analyze the general properties of the radial part of the wave function.
First, we notice from Eq.(131) that the radial part does not depend on m. Furthermore, for

bound and unbound systems the normalization conditions for the total wave function are as follows:

for bound

∫
| ΨE,l,m(r, θ, φ) |2 d3r = 1

for unbound

∫
Ψ†E′,l,m(r, θ, φ)ΨE,l,m(r, θ, φ)d3r = δ(E′ − E). (132)

Using now the relation d3r = r2dΩ and the normalization condition for the spherical harmonics
(Eq.(102)) for the normalization condition of radial wave functions one obtains:

for bound

∫
| RE,l(r) |2 r2dr = 1

for unbound

∫
R†E′,l(r)RE,l(r)r

2dr = δ(E′ − E). (133)

For the proceeding discussion we express the radial wave function through the new function
uE,l(r) in the form:

RE,l(r) ≡
uE,l(r)

r
, (134)

for which the normalization conditions now become:

for bound

∫
| uE,l(r) |2 2dr = 1

for unbound

∫
u†E′,l(r)uE,l(r)dr = δ(E′ − E). (135)

One general property of uE,l(r) function is that, in order RE,l(r) to be finite at the origin

lim
r→0

uE,l(r)→ r1+β → 0, with β ≥ 0, (136)

otherwise radial wave function in Eq.(134) will not be finite at the origin.
Substituting Eq.(134) in Eq.(131) on now obtains:

− h̄2

2mr2

(
d

dr
r2 d

dr

)
uE,l(r)

r
+

h̄2

2mr2
l(l + 1)

uE,l(r)

r
+ V (r)

uE,l(r)

r
= (137)

− h̄2

2mr2

(
d

dr
(u′E,lr − uE,l)

)
+

(
h̄2

2mr2
l(l + 1) + V (r)

)
uE,l(r)

r

− h̄2

2mr
u′′E,l(r) +

(
h̄2

2mr2
l(l + 1) + V (r)

)
uE,l(r)

r
= E

uE,l(r)

r
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where by ′ we defined the d
dr derivatives. Cancelling the 1

r parts in the last part of the above
equation, one arrives at:

− h̄2

2m
u′′E,l(r) + Veff (r)uE,l(r) = EuE,l(r), (138)

where

Veff ≡
h̄2

2mr2
l(l + 1) + V (r). (139)

The most striking result of Eq.(138) is that it analytically identical with the one dimensional
Schroedinger equation:

− h̄2

2m
ψ(x) + V (x)ψ(x) = Eψ(x) (140)

with differences such as: (a) 0 ≤ r ≤ ∞ while −∞ ≤ x ≤ ∞, (b) It is only required that ψ(x)
to be finite at any x, while for the radial wave function, uE,l in addition of finiteness it should be
zero at the origin (see Eq.(136). (c) Finally instead of potential energy V (x) for the radial case one
has Veff (r) defined according to Eq.(139). The additional term in Veff can be associated with the
centrifugal motion.

We now consider Eq.(138) to obtain several asymptotic values for the radial wave function in
the r →∞ and r → 0 limits.

First, we consider r →∞ limit assuming:

lim
r→∞

V (r) ∼ const

rα
→ 0 with α > 1. (141)

At this limit Eq.(138) becomes:

− h̄2

2m
u′′E,l(r) = EuE,l(r). (142)

For the case of E > 0 the above equation has two solutions

u+(r) = Aeikr and u−(r) = Beikr (143)

that corresponds to diverging and converging radial waves for function RE,l(r):

R+(r) = A
eikr

r
and R−(r) = B

eikr

r
(144)

where k =
√

2mE
h̄2

and A and B are constants.

For the case of E < 0 Eq.(142) has the two following solutions:

u+(r) = Ceκr and u−(r) = De−κr, (145)
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resulting in:

R+(r) = C
eκr

r
and R−(r) = D

e−κr

r
(146)

where κ =
√
−2mE
h̄2

, with C and D being constant. Here we observe that R+(r) solution is not

finite at infinity thus is not physical and can be discarded. This results in the final expression of
the asymptotic form of the radial wave function:

R−(r) = D
e−κr

r
, (147)

which is exponentially decreasing function with the distance that is characteristic to the bound
system.

First, we consider r → 0 limit assuming that potential is such thath

lim
r→0

V (r)r2 = 0, (148)

that it has slower than 1
r2

dependence at the origin. In this case one can neglect by the potential
energy in Eq.(??) but keep the centrifugal part, i.e.:

− h̄2

2m
u′′E,l(r) +

h̄2

2mr2
l(l + 1)uE,l(r) = EuE,l(r). (149)

Since we consider finite values for energy E and according to Eq.(136) one expects uE,l(r) to
disappear at the origin, in the above equation one can also neglect the EuE,l(r) part of the equation
compare to centrifugal as well as derivative parts of the equation arriving at:

− h̄2

2m
u′′E,l(r) +

h̄2

2mr2
l(l + 1)uE,l(r) = 0. (150)

The solution for the above equation one can look in the form of:

uE,l(r) ≈ consrα. (151)

Inserting the above form in Eq.(150) one obtains:

α(α− 1)
uE,l
r2

= l(l + 1)
uE,l
r2

→ α(α− 1) = l(l + 1). (152)

The RHS part of the equation has two solutions:

(a) α = l + 1 and (b) α = −l. (153)

Since one expects the uE,l(r) function to disappear at the origin one concludes that only (a)
represents the physical solutions. Therefor one obtains:

uE,l = const · rl+1 and RE,l(r) ≡
uE,l(r)

r
= const · rl. (154)

The above result indicates that quantum states with high orbital angular momentum approach to
zero at the origin faster while for the case of l = 0 the radial function can be finite at the origin.
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3 Appendix A

∂

∂x
= sin θ cosφ

∂

∂r
+ cos θ cosφ

1

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ
(155)

∂

∂y
= sin θ sinφ

∂

∂r
+ cos θ sinφ

1

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

∂

∂z
= cos θ

∂

∂r
− sin θ

1

r

∂

∂φ
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