

L25 Monday, April 5, 2021 6 24 PM					
0 1 21					
Quantum Alg	where we be faster I I				
- Superposition	making measurement 2-1				
Ruantum To	allelism				
- Clossical	mputers - one input at a time				
- But output of 3	- Quantum Computers can				
be a super	ertion state - thus many possible answers				
-Role of the Bi	ntum Qlapisthes				
	Output				
Curren Algo					
Superportion 19					
=> Speed of					
	lasses P and NP				
- Consider the fi	lovin poblem	1 Ramanujan			
E 1) Find two P	ime Numbers with the product 3572				
HIZ Find two p	The Nombers with the product 187 3				
H23) Find two p	(or himlers, with x 2402 4 T~CXP_ ine Numbers, with x 88631 5	>			
- Consider now	"opposite" problem				
e is Multiply 7	By 5 and check that it = 35 2				
HI2S Motting 11	2 17 - check = 187	1			
₩3) Hultiply 29 ×	83 - cherk = 2407 4 T ~ polycontem				
	263 - dreft = 88 631 6				
Bis easier 1	lan A - anounty thine grows nore standy				
- Denote number	of digits of the input p				
$(p_{1}) = 2, 2)$	n=3, $3)n=4$ $4)n=5$				
ß					
- Define T(n) -	time or number of steps to				
· · · ·	time or number of stops to also the guestion of the juppet legals n				
	ow T(h) groves with o				
a) If one can	find some positive K and PP				
such t	H T(n) = K n ^P n Le solved in Polynowial Time				
•					
6) If on the o	her hand suc can find 4 and cas				
such the	T(0) > KC				
(problem	cyutres an Exponential Tome)				
Property Ther	is always some 0				
That	$\frac{p_{r}}{T(h)} > \frac{p_{r}}{T(h)}$				
- Question that	an be solved in T(0) - Tradalle				
	an be solved in T(a) - Tractable (in classical graphilation)				
	The Untractable n - viewag of				
	ntrals Solidle with increase pour a computation				

Need classical compoter ~ third	92			
- Our factoring and product problem				
$B \longrightarrow T_{(0)}^{pr}$				
$A \rightarrow T_{a}^{ab}$				
- 1993, RSA Laboratories challinger to				
- 1553, RSA Law old is children in fotor Numbers 100 - 600 decimal	Agts			
300				
- if the problem can be solved in Tip- a	mplen by loss P			
- Say you have a problem and you remo				
-if checking the answer is complexity class				
Then we say problem belogs to complete	A			
Then we say problem belogs to compare this HP (Nonkelowinistic	: Polynowial)			
- The problem A - is NP				
Rolling B -> (lag R)				
=> Theorem: Every P-Is also NP				
Interse is areny NP is P Not p.	olei			
$- \frac{B}{-15} \frac{P}{P}$ $- \frac{B}{-15} \frac{P}{P} \frac{B}{5} \frac{1}{15} \frac{1}{15} \frac{P}{P}$				
- # -15 NP 017 15 17 1 .				
> Problem of whether NP is equal to !				
is on up the most important in computer	Scime			
- Clay Hatherastics lastitude's our of the "Millenian Prize prollast"				
- P versus NP Problem"				
=> Are Quantum Algorithms Feder Than				
Massical Ones				
- Host quarter Computer locs scientists be P \$ NP				
- But QL con solve NP = P pn	blen-			
in Polynomial Time				
- How to compose speed of CC with a	9C			
Theoretical and Protical				
=> Complexity for Duantum Computing Buery Complexits				
- Algorithms - related to evaluating functions				
- Lossider functions that belong to two classes	of protion.			
- Tons functions are given in condom- We have	to Sick			
of Two is to De function bo	there			
- In currier these glarithan - in have to eval	heefe (D f =			
These functions	P 2 199-			
- the query complexity - county the number of				
times that we have to cushede the force to get our assurer				
- The function is called Black Dox - Orac				
- Surging the Black Box or Oracle				

 $//=\frac{1}{2}\left((-1)^{f_{1}(0)}|0>\otimes((10)-11)\right)+(-1)^{f_{1}(0)}|1>\otimes((10)-11))=/$ $= \frac{1}{2} \left((-1) \frac{f_{1}(0)}{10} + (-1) \frac{f_{1}(t)}{11} \right) \otimes (0) - 11 > \right) = 1/2$ 7 Normalized State = $\frac{1}{(1-1)} \frac{f(10)}{10} + (1-1) \frac{f(11)}{10} \otimes \frac{1}{6} \frac{1}{10} - (10) - (1)$ Normalized state Bottom Top - Bubrits are not Entangled -FA 10> - [H] - Top qubit is + (1-1) 10> + (-1) 11> 11>-田 top state the - Examíne $\left(\frac{1}{62}\right)\left(10\right)+11\right)$ F1 =fd0)=0 fd1)=0 For Fo (J)(10>-115) 11>--- $f_{1_2} \begin{pmatrix} f_{1}(0) = 0 \\ f_{1}(1) = 1 \end{pmatrix}$ (-<u>1</u>)(10) - (1)) --11> $f_{1}(0) = f_{1}(0) = D$ fr $\left(-\frac{1}{\sqrt{2}}\right)\left(103+11\right)$ f3(0)=1 f3(1)=1 -10> 73 - Apply A gate A (1/2 (10>+11>)= 10> A(f_(105-11>)= 11> for fo 10> 115 fi f 1-1) fz -10> - If we make measuremout for top she standard Gosis O if if and to - constant we get

	I FL	fi and fz -	- Calances
Undo	.1		