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Abstract: The Florida Everglades is the largest subtropical wetland system in the United 

States and, as with subtropical and tropical wetlands elsewhere, has been threatened by 

severe environmental stresses. It is very important to monitor such wetlands to inform 

management on the status of these fragile ecosystems. This study aims to examine the 

applicability of TerraSAR-X quadruple polarimetric (quad-pol) synthetic aperture radar 

(PolSAR) data for classifying wetland vegetation in the Everglades. We processed  

quad-pol data using the Hong & Wdowinski four-component decomposition, which 

accounts for double bounce scattering in the cross-polarization signal. The calculated 

decomposition images consist of four scattering mechanisms (single, co- and cross-pol 

double, and volume scattering). We applied an object-oriented image analysis approach to 

classify vegetation types with the decomposition results. We also used a high-resolution 

multispectral optical RapidEye image to compare statistics and classification results with 

Synthetic Aperture Radar (SAR) observations. The calculated classification accuracy was 

higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high 

potential for distinguishing different vegetation types. Scattering components from SAR 

acquisition were particularly advantageous for classifying mangroves along tidal channels. 

OPEN ACCESS



Remote Sens. 2015, 7 8564 

 

We conclude that the typical scattering behaviors from model-based decomposition are 

useful for discriminating among different wetland vegetation types. 

Keywords: Polarimetric SAR (PolSAR); polarimetric decomposition; TerraSAR-X; 

wetland vegetation; subtropical wetland; Everglades 

 

1. Introduction 

Tropical and subtropical wetlands are among the most productive ecosystems on Earth, providing 

numerous ecosystems services, including critical habitat for a variety of fauna and flora, energy and 

nutrients for coral reefs, and protection of near-shore areas from natural disasters such as storm surge 

or tsunami [1,2]. Tropical and subtropical wetlands include both inland freshwater and coastal 

saltwater wetland types. The Everglades, which is a World Heritage Site, International Biosphere 

Reserve, and a Wetland of International Importance, is the largest natural region of subtropical 

wilderness in the United States. Over the past century, the Everglades wetlands have been threatened 

by severe environmental stresses induced by climate change, human population growth, urban 

expansion, and agricultural and other land conversion. With the recognition of its global importance, 

various restoration plans have been authorized to protect the Everglades. Protecting the wetlands 

requires detailed assessments of their vegetation distribution in terms of vegetation types and 

vegetation changes over time. 

Previous vegetation classifications of the Everglades were mainly conducted using airborne- and 

space-based images. The conventional approaches of visual interpretation techniques with aerial 

photographs and optical satellite images were adopted to generate detailed vegetation maps [3,4]. A 

related technique was the use of stereo-plotters with color infrared aerial photography to classify the 

vegetation in Water Conservation Area 2A (WCA-2A) of the Everglades [5]. Hyperspectral imagery 

has been regarded as a powerful tool for vegetation mapping due to its fine spectral resolution. Data 

from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) have been used to map vegetation 

over the Everglades using spectral angle mapper and neural network classifiers [6,7]. Fuller [8] 

suggested that IKONOS imagery was likely to be useful for detecting large, dense stands of invasive 

trees in Everglades National Park (ENP). It is important to note that most of these approaches have relied 

on airborne-based optical imagery, which is costly, time-consuming, and limited by the weather condition. 

Remotely sensed Synthetic Aperture Radar (SAR) observations have been widely used for 

monitoring tropical and subtropical wetlands because they can collect images through clouds, rain or 

fog. In addition, SAR images are sensitive to biomass and flooded vegetated structures [9,10]. Wetland 

interferometric SAR (InSAR) techniques, which can measure water-level changes with high spatial 

resolution in the aquatic environments with emergent vegetation, have been used to detect surface flow 

patterns over wetland areas [11–14]. Interferometric coherence, phase and amplitude were used by 

Ramsey et al. [15] in conjunction with a coastal land classification map to study changes in intensity of 

vegetation returns over a season. Several studies have reported on successful wetland vegetation 

mapping of various wetland areas [16–20]. However, because most of these classification studies 

relied on multi-temporal single polarization radar observations, they showed a limited capability to 
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discriminate vegetated wetlands compared with other results from multi-spectral images. As an 

alternative approach, data fusion with multi-sensor and multi-temporal optical and SAR data has been 

reported to improve wetland characterization [21]. As multi-polarimetric SAR observation systems 

have been developed, more backscattering coefficient information over wetlands could be used for 

vegetation classification mapping. As indicated in previous studies, more abundant backscattering 

information of multi-polarimetric SAR observations becomes helpful for more accurate classification 

of vegetated wetlands [22–26]. 

Polarimetric SAR (PolSAR) decompositions are useful for discriminating and mapping the Earth’s 

surfaces according to scattering behaviors [27,28]. Freeman and Durden [29] successfully decomposed 

quadruple SAR data into three components: Single bounce, double bounce, and volume scattering. A 

fourth, helix, component was added to Freeman and Durden’s decomposition by Yamaguchi et al. [30,31], 

to resolve anomalous power problem in the decomposition results. Similarly, several mathematical 

approaches were proposed in recent studies to resolve anomalous behavior in decomposition  

maps [32–34]. More recent studies indicate that conventional scattering theories with simple double 

bounce and volume scattering models are not sufficient for explaining microwave scattering behaviors 

in wetland environments [35,36]. 

Our study was aimed at examining the applicability of four-component decompositions for wetland 

vegetation classification. We based our study on quad-polarimetric data from TerraSAR-X (TSX)  

(X-band, 3.1 cm), which were collected during the Dual Receive Antenna (DRA) Campaign in 2010. 

We chose this dataset because the TSX decomposition is more sensitive to vegetation variation than 

the C-band Radarsat-2 decomposition [37]. 

2. Study Area 

The Everglades are vast and unique subtropical wetlands that cover most of southern Florida. 

Anthropogenic changes in the past century have severely impacted the drainage pattern of the wetlands 

and destroyed a significant part of the natural wetland ecosystem. To preserve and restore this fragile 

wetland environment, the Comprehensive Everglades Restoration Plan was established in 2000. An 

important part of the restoration plan includes vegetation recovery assessment, which is evaluated 

using vegetation types. For our study area we focused on Tarpon Bay in the coastal wetland area, 

which is located in the southwestern section of the ENP in southern Florida (Figure 1a). We chose this 

area because it lies in the transition zone between salt- and freshwater vegetation ecosystems and has 

been affected by the sea level rise and anthropogenic changes to the Everglades hydrological system. 

The vegetation in the study area comprises mainly freshwater swamps and saltwater marshes. 

Sawgrass (herbaceous vegetation) and hardwood hammock (swamp forest in tree islands) covers the 

freshwater swamps. The saltwater marshes consist mainly of mangrove forests of variable height. 

Whereas tall mangrove trees are distributed in the southwestern part of ENP, especially along tide 

channels, short mangrove vegetation is found in many places. In the transition zone, the vegetation was 

classified as prairies, marshes, and scrub [38]. The optical color composite images of Landsat-7  

ETM+ [39] and RapidEye clearly show an inhomogeneous vegetation pattern, affected by the location 

of the tidal channels (Figure 1b). 
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Figure 1. (a) Location of the study area in the western Everglades, shown with a Landsat 

ETM+ image rendered as a true-color composite [39]. The frames mark the swath locations 

of data acquired by X-band TerraSAR-X SAR (16 April 2010) and RapidEye optical  

(3 December 2010) satellite. The green frame indicates the location of main study area.  

(b) RapidEye multispectral true-color composite image over the study area. (c) Pauli 

decomposition of TerraSAR-X SAR image as a color composite image: HH-VV (red), 

HH+VV (blue), and HV (green). 

3. Data 

Our classification study relied on two data types, space-based Synthetic Aperture Radar (SAR) and 

multispectral optical observations. TerraSAR-X is an advanced SAR satellite, which was launched on 

15 June 2007. It has the Dual Receive Antenna (DRA) mode, transmits a radar signal using the full 

antenna area, and receives signal returns using two independent channels, which are divided electrically 

into two sections. We used TerraSAR-X quad-polarimetric data from 16 April 2010, acquired with the 

DRA StripMap mode. Due to the multi-polarization data acquisition, the swath width was relatively 

narrow and extended up to 15 km with 1.2 m in range and 6.6 m in azimuth spatial resolution. 

RapidEye is a satellite constellation mission, with five satellites traveling along the same orbit. Each 

satellite has an equally calibrated identical pushbroom sensor and provides high-resolution 

multispectral imagery (nadir ground sample distance: 6.5 m; orthorectified resampled pixel size: 5 m) 

in five optical bands corresponding to the blue visible (440–510 nm), green visible (520–590 nm), red 

visible (630–690 nm), red-edge (690–730 nm), and near infrared (760–880 nm) portions of the 

electromagnetic spectrum. The red-edge band, which is sensitive to changes in chlorophyll content [40,41], 
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is very useful for classifying vegetation types [42–44]. We used a RapidEye image collected on  

3 December 2010. This image provided the best available data among RapidEye images available for 

this region. The image date was near the beginning of the dry season, which extends from November 

to May. Although the RapidEye image date preceded the date of TSX quad-pol data by five months, 

both datasets were acquired during the dry season under similar environmental conditions and we did 

not anticipate significant changes in the vegetation between the two acquisition dates. Technical details 

of the two datasets are described in Table 1. 

Table 1. Characteristics of the TerraSAR-X (TSX) and RapidEye data used in this study. 

TerraSAR-X  RapidEye  

Acquisition date 16 April 2010 Acquisition date 03 December 2010 

Wavelength 3.1 cm Spectral bands  

Carrier frequency X-band (9.6 GHz) Blue 440–510 nm 

Pulse repetition frequency 2950 Hz Green 520–590 nm 

ADC sampling rate 164.8 MHz Red 630–685 nm 

Polarization Quad-pol Red Edge 690–730 nm 

Flight direction Ascending Near Infrared (NIR) 760–850 nm 

Incidence angle 32.6 deg Incidence angle 7.11 deg 

Azimuth pixel spacing 2.40 m Geometric resolution 6.5 m (resampled 5 m) 

Range pixel spacing 0.91 m Dynamic range 12 bits 

 

Figure 2. Photograph images obtained by the helicopter survey. (a) Mixed vegetation with 

prairie (sawgrass) and forest (mangrove); (b) Mixed vegetation with mostly prairie 

(sawgrass) and small forest (mangrove); (c) Scrub vegetation with short mangrove and 

buttonwood; (d) Typical mangrove dominated forest. 
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The Florida Coastal Everglades Long Term Ecological Research (FCE-LTER) program was 

established by the National Science Foundation in May of 2000 in southern Florida. The FCE-LTER 

project provides a wealth of data and data product, including a vegetation map and digital database of 

South Florida’s National Park [38]. The detailed vegetation database, which is in a geographic 

information system, was developed by the Center for Remote Sensing and Mapping Science at The 

University of Georgia and the South Florida Natural Resources Center, Everglades National Park [3,45]. 

Conventional visual interpretation techniques were used with optical airborne- and spaceborne-based 

observations to generate the vegetation map. Although the map is based on remote sensing data 

acquired two decades ago, it is still widely used as a reference map and is the only available map. 

We used the Vegetation Map and Digital Database of South Florida’s National Park Service Lands 

as reference maps to evaluate our classification results. However, because the information represented 

in the map was dated, we examined possible vegetation changes by comparing multi-temporal 

Landsat-TM images collected from 1994 to 2011. In addition, we conducted a helicopter field survey 

in 2014 to verify the current vegetation distribution in some representative areas (Figure 2). 

4. SAR Decomposition 

Polarimetric SAR (PolSAR) decomposition is a common method for characterizing the  

Earth’s surface. The Pauli decomposition is widely used as a simple method for mapping the surface 

according to the three scattering mechanisms, which are single bounce, double bounce, and volume  

scattering [27,46,47]. A three-component scattering decomposition approach proposed by Freeman and 

Durden has been successfully applied to decompose quadruple polarized SAR data under reflection 

symmetry conditions [29]. Yamaguchi et al. [30,31] added a fourth helix component to their 

decomposition to account for non-reflection symmetry conditions. Several other studies have been 

performed to estimate the volume scattering component considering non-reflection symmetry 

condition [48–50] and an extended volume scattering model was proposed to consider randomly 

orientated diplane scatterers [51]. To resolve anomalous values generated by the previous three- and 

four-decomposition methods, mathematical operations on the decomposed coherency matrix have also 

been studied [32–34]. 

We used the Hong and Wdowinski (H&W) [36] scattering component decomposition approach to 

classify wetland vegetation. This new four-scattering component decomposition method was derived 

by two of the authors of the current paper to extract a double bounce component from cross-pol, which 

was developed in accordance with new SAR phase observations (interferograms) in tropical and 

subtropical wetlands [36]. According to common radar scattering theory, wetland InSAR works 

because of double-bounce scattering components, which reflect inundated conditions beneath the 

vegetation. However, an almost identical fringe pattern indicating surface water level changes in both 

co- and even cross-polarizations has been reported in research in Everglades wetlands [52], signifying 

that the cross-polarization signal samples the water surface beneath the vegetation. To explain these 

interesting phase observations from the cross-pol, we adopted a rotated dihedral model, which is the 

simplest scattering mechanism that accounts for scattering in the cross-pol signal. The decomposition 

extracts the co-polarization double bounce components which are calculated based on the conventional 

polarimetric decomposition approach and the cross-polarization double bounce components. The full 
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description and mathematical formulation of the four scattering decomposition model have been 

described by Hong and Wdowinski [36]. This previous study indicated that the decomposition  

method showed enhanced distinctions in land cover beyond those revealed with the Yamaguchi 

decomposition [37]. Thus, we chose the H&W decomposition method to evaluate its performance for 

classifying wetland vegetation types in the Everglades. Yamaguchi’s decomposition has been widely 

regarded as the most popular method for polarimetric SAR decomposition, and its applicability has 

been demonstrated. To evaluate the utility of our decomposition particularly for wetland vegetation 

classification, we compared our classification results with results obtained using Yamaguchi’s 

decomposition method based on rotated coherence matrix [32]. 

 

Figure 3. Hong & Wdowinski decomposition analysis of TerraSAR-X (TSX) quadruple 

polarimetric data acquired over the study area. (a) Single bounce component; (b) Double 

bounce component from co-pol; (c) Double bounce component from cross-pol; (d) Double 

bounce component from both the co- and cross-pol; (e) Volume scattering component;  

(f) Color composite image using our decomposition: blue = single bounce, red = double 

bounce (both from the co- and the cross-pol), and green = volume scattering. 

We used a 3 × 3 coherency matrix, which was extracted with PolSARpro software [28] to derive the 

four scattering component model. The coherency matrix was computed using a multi-look process 

with 1 × 2 factors in direction of range and azimuth, respectively. To suppress speckle noise in the 

SAR image, a relatively large window size of 11 × 11 was applied to estimate an ensemble average, 

accounting for creating reduced spatial resolution. Figure 3 represents the results of the H&W 

decomposition analysis using the TSX data. The TSX quad-pol decomposition is more sensitive to 

vegetation variation compared with our previous results using Radsatsat-2 quad-pol C-band 
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observations [36]. The decomposition results from our previous research with Radarsat-2 data over 

Tarpon Bay showed dominant volume scattering throughout the image [36], and most of the double 

bounce scattering occurred over sawgrass and some mangroves. Hence, we roughly could distinguish 

sawgrass from scrub with relatively low resolution. However, the decomposition of the TSX dataset 

shows large color variability resulting from the shorter wavelength of the X-band SAR signal, which 

has more sensitivity for vegetation variation with high resolution [37]. These newer and more detailed 

features of vegetation distribution can be useful for classifying wetland vegetation. 

5. Vegetation Changes in Everglades and Selection of Vegetation Types 

To be aware of recent vegetation condition, we compared various available materials including 

Landsat TM time-series imagery, a RapidEye image, a vegetation map, and aerial photographs 

acquired by a helicopter survey. A visual comparison of Landsat TM time-series images from 1 April 

1994, 23 April 2008, 25 December 2010, and 10 November 2011, showed that the general distribution 

of vegetation had hardly changed in the Tarpon Bay region (Figure 4). Most vegetation typically 

adapts to the prevailing environmental conditions, except for indicator species, which are very 

sensitive to environmental changes. We concluded that the distribution of coarse vegetation types in 

our study area appeared to be constant over the past two decades. 

We then compared Landsat TM data from 25 December 2010, with RapidEye imagery from 

23 December 2010, by overlaying the vegetation map on both images. Although Landsat TM images 

have a limited resolution for identifying detailed vegetation species, the higher-resolution RapidEye 

image allowed us to visually interpret vegetation conditions in more detail. Even though the vegetation 

near the Tarpon Bay area seemed to be unchanged, we could not completely rely on the vegetation 

map. In addition, some vegetation species were not even detected by photographs acquired during the 

helicopter survey. We therefore decided to simplify the vegetation types in our classification to three 

classes: forest, scrub, and prairie. 

 

Figure 4. Cont. 
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Figure 4. A time series of Landsat TM data rendered as false-color composite images 

overlaid with the vegetation map created in 1999. (a) 1 April 1994; (b) 23 April 2008;  

(c) 25 December 2010; (d) 10 November 2011. The intensive red color along the tidal 

channel corresponds well with the mangrove forest, and the color ranges are consistent 

across the time series. 

 

Figure 5. Field sample sites for training (red) and reference (yellow) shown on the 

RapidEye image (true-color combination using red, green, and blue visible bands). 

For these three vegetation types, we set up 145 sample sites based on the RapidEye satellite image, 

where the characteristic features could be recognized by comparison to the reference vegetation map 

and photographs from the helicopter survey. These sites were then separated randomly into training 

(74 sites) and reference samples (71 sites) (Figure 5). 
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6. Wetland Vegetation Classification 

6.1. Method 

Quad-pol-based vegetation classification previously has been conducted with two different data types. 

One type relied on coefficients of radar backscatter [53–57] and the other type used decomposition maps, 

which are based on physical scattering mechanisms [23,27,29–31,34,46–48]. In this study, we compared 

classification results derived from PolSAR decomposition with those derived from optical satellite image 

data. We also compared classification results using Yamaguchi’s decomposition method [32] to evaluate 

the benefit of our decomposition for wetland vegetation classification. 

We applied an object-oriented approach to classify vegetation cover. This approach is based on 

classifying objects or image segments that are delineated as homogeneous units with similar spectral 

characteristics (this delineation process is called segmentation), rather than classifying individual pixel 

values. Segmentation enables the acquisition of a variety of textural and spatial features, such as shape, 

in addition to spectral values, resulting in improved classification accuracy [58]. SAR images usually 

have speckle noises or relative roughness compared to optical images. Similar artifacts of the SAR 

signal, which can be found in the scattering component results from TSX quadruple data, prevent the 

characterization of the surface type into specific classes using only pixel values. Thus, we assumed that 

the object-oriented classification would be a better approach than a pixel-based classification. The 

advantages of object-oriented classification using high-resolution image data have been reported by 

many studies [59–63]. However, determining appropriate segmentation parameters is a time-consuming 

process, generally based on trial and error evaluation to derive homogeneous image segments 

representing similar thematic units such as vegetation types [62,64,65]. 

We applied a multi-resolution segmentation method with eCognition Developer 8 [66]. First, 

different parameters for the scale factor, shape, and compactness were evaluated through iterative trial 

and error (Table 2). For the object homogeneity eCognition Developer adopts three criteria of scale, 

shape/color and compactness/smoothness. The shape defines the percentage the spectral values of the 

image layers will contribute to the entire homogeneity criterion. As the shape and the color are 

complementary, the assigned shape value determines automatically the color criteria. In addition to 

spectral information, the object homogeneity is optimized with regard to the object shape, defined by 

the compactness parameter. The compactness should be used when different image objects are rather 

compact, are separated from non-compact objects only by a relatively weak spectral contrast. 

Table 2. Parameter settings for image segmentation. 

Segmentation Type Image Source Image Layer Scale Shape Compactness 

Type O RapidEye Blue, Green, Red, Red-Edge, NIR, NDVI 50 0.1 0.5 

Type S TSX 
Single, Double, Double from co-pol,  

Double from cross-pol, Volume 
50 0.1 0.5 

Type M TSX & RapidEye 

Blue, Green, Red, Red-Edge, NIR, NDVI,  

Single, Double, Double from co-pol,  

Double from cross-pol, Volume 

50 0.1 0.5 

We then generated three types of segmentation outputs based on the different optical and SAR 

datasets. One output relied on optical RapidEye’s spectral characteristics (segmentation type: O). A 
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second output was based on processed SAR decomposition components (segmentation type: S). The 

third output was calculated with both TSX and RapidEye features (segmentation type: M). 

We configured image segmentation settings to build object boundaries around sample sites for the 

training and reference samples. In this way, sample sites were delineated as image objects for use in 

training and testing of the supervised classification. 

After image segmentation we conducted a supervised classification with a nearest neighbor 

classifier, which used a set of training samples from different classes to assign membership values. We 

used 74 sample sites for training (24 for forest, 23 for scrub, 18 for prairie, and nine for water). The 

membership values were between 0 and 1, depending on the image object’s feature space distance 

from its nearest neighbor. A membership value of 1 is assigned when the image object is identical to a 

sample. If the image object differs from the sample, the feature space distance has a fuzzy dependency 

on the feature space distance from the nearest sample of a class. The user can select the features to be 

considered for the feature space. For an image object to be classified, only the nearest sample is used 

to evaluate its membership value. The effective membership function at each point in the feature space 

is a combination of the fuzzy function over all samples of that class. When the membership function is 

described as one dimensional it means it is related to one feature [67]. 

Table 3. Classification scenarios. 

Scenario Image Layer Features Used for Classification (Mean Object Value) Segmentation Type 

Scenario 1 RapidEye’s blue, green, red, red-edge, NIR, and NDVI Type O 

Scenario 2 
RapidEye’s blue, green, red, red-edge, NIR and NDVI & TerraSAR-X’s single,  

double, double from co-pol, double from cross-pol, and volume 
Type O 

Scenario 3 TerraSAR-X’s single, double, double from co-pol, double from cross-pol, and volume Type O 

Scenario 4 TerraSAR-X’s single, double, double from co-pol, double from cross-pol, and volume Type S 

Scenario 5 TerraSAR-X’s single, double, volume and helix using the Yamaguchi decomposition  Type O 

We applied five classification scenarios, which adopted different nearest neighbor feature spaces as 

described in Table 3. Scenario 1 used only optical image information with the five multispectral bands 

of RapidEye (blue, green, and red visible, red-edge, and near-infrared) and its normalized difference 

vegetation index (NDVI), based on the segmentation type O. Scenario 2 used all available features 

from TSX and RapidEye image layers, with the segmentation type O. Scenario 3 adopted five TSX 

decomposition components layers (single, double, double from co-pol, double from cross-pol, and 

volume), but was based on the segmentation type O, in which the image objects were created with 

RapidEye’s spectral features. Since the differentiation of vegetation type into forest, scrub, and prairie 

using optical satellite imagery is relatively easy, we assumed that image objects by segmentation 

type O would be reliable as homogeneous vegetation units. Hence, we could examine how the SAR 

polarimetric decomposition components were related to vegetation types by comparing these three 

combinations of input layers. Scenario 4 used the five TSX decomposition components layers based on 

the segmentation type S, in which the image objects were created with TSX data only. This scenario 

provided the contrasting case of using only SAR features. Finally, Scenario 5 adopted four TSX 

decomposition results using Yamaguchi’s method with segmentation type O, which we then compared 

with results from Scenario 3. 
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6.2. Segmentation Results 

We tested three segmentation types, one calculated by the five SAR decomposition components, 

one by RapidEye’s spectral bands, and one by both of TSX and RapidEye’s features. The mixed use of 

five TSX features and six RapidEye’s spectral bands produced segmentation results very similar to 

those calculated with just the RapidEye spectral bands. Thus we continued the analysis with only two 

types of segmentation output (Type O and Type S) (Table 2). 

The segmentation by the SAR features was conducted at the coarse resolution level and did not 

divide the vegetation units into much detail, whereas the segmentation based on RapidEye’s spectral 

features produced fine units, despite using the same parameter settings (Figures 6 and 7). In 

segmentation type S, the segments were relatively well divided near the Tarpon Bay areas where 

mangrove forests appeared along the water and sawgrass occurred on the inward side (Figure 6a,b). 

However the image objects in inland areas where the mangroves and buttonwood scrubs were mixed 

with sawgrass were not well segmented (Figure 6c,d). In the case of segmentation type O, the image 

objects were smaller and quite well divided, representing different vegetation characteristics (Figure 7). 

 

Figure 6. Segmentation results of type S displayed on the TSX image using false-color 

composite image decomposition layers (red = double bounce scattering, green = volume 

scattering, and blue = single bounce scattering in [a] and [c]) and on the RapidEye image 

using false-color composite images (red = near infrared, green = red visible, and blue = green 

visible bands in [b] and [d]); (a,b) are near tidal canals; (c,d) are near inland areas. 
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Figure 7. Segmentation results of type O displayed on the TSX image using false-color 

composite image decomposition layers (red = double bounce scattering, green = volume 

scattering, and blue = single bounce scattering in [a] and [c]) and on the RapidEye image 

using false-color composite images (red = near infrared, green = red visible, and blue = green 

visible bands in [b] and [d]); (a,b) are near tidal canals; (c,d) are near inland areas. 

6.3. Classification Results and Accuracy Assessment 

Results differed among the five classification scenarios. When only optical multispectral 

characteristics were used (Scenario 1), the forest class mostly was assigned along water flows 

corresponding well with highly vital vegetative areas; the prairie class appeared mostly in the inland 

areas (and was particularly well recognized in the area marked B in Figure 8d); and the scrub class 

covered the remaining areas. When RapidEye and TSX features were used together (Scenario 2), the 

classification results were very similar to those of Scenario 1. When SAR features were based on 

segmentation type O (Scenario 3), wider areas near tidal canals were assigned to the forest class. For 

example, vegetation along the narrow tidal canals was classified as forest in Scenario 3, but shown as 

scrub class in Scenario 1 (particularly recognizable in the area marked C in Figure 8d). These areas 

showed very high vitality in the original RapidEye image. Thus, we interpreted these areas as the 

edges of mangrove forest, which were classified as scrub in Scenario 1 using multi-spectral features 

and as forest in Scenario 3 using SAR features. In this case, the SAR classification was advantageous 

for identifying the successive mangrove forest. In Scenario 3, more areas were classified as prairie in 

the north part of the study area (particularly in area A in Figure 8d). The classification results using 
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SAR features only (Scenario 4) show that the forest class is a bit exaggerated along the tidal canals due 

to the coarse segmentation. Narrow mangrove forests were not classified as forest and the scrub and 

prairie classes were found as scattered on the northern part of the study area. From Scenario 5 using 

Yamaguchi’s decomposition method, the overall classification pattern was similar to Scenario 3, as 

shown Figure 8c; however, more areas were classified as water in the northern part of the study area. 

In summary, the classification results of five scenarios showed some differences, but shared common 

patterns of distributed vegetation type such as forests along the tidal canal, prairies behind the forest 

inward to the land, and scrubs distributed widely in the inland area. 

 

Figure 8. Classification results. (a) Scenario 1 (brown = forest, yellow = scrubs,  

green = prairie, blue = water); (b) Scenario 2; (c) Scenario 3; (d) RapidEye image with 

false-color combination (red = NIR, green = red visible, and blue = green visible); 

(e) Scenario 4; and (f) Scenario 5. 

We calculated the classification error matrix (Table 4) by using 71 field sample sites (25 for forest, 

22 for scrub, 21 for prairie, and three for water). The classification by RapidEye’s spectral features 

(Scenario 1) showed the highest overall classification accuracy (95.8%), followed by the classification 

developed using SAR features with segmentation type O (Scenario 3; 93.0%). The classification 

resulting from mixed optical and radar features (Scenario 2) was somewhat less successful (88.7%). 

The classification based on SAR features only with segmentation type S (Scenario 4) had the lowest 

classification accuracy among the four scenarios (87.3%), and the prairie class was more often 

misclassified, compared with forest and scrub classes. The accuracy difference between Scenarios 2 

and 4 is statistically not significant. Scenario 5, which was based on Yamaguchi’s method, resulted in 

84.5% overall accuracy, which was the lowest classification accuracy among scenarios. 
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Table 4. Accuracy of each scenario by class (F = forest, S = scrub, P = prairie, 

N = Not classified, PA = producer’s accuracy [%], UA = user’s accuracy [%], 

OA = overall accuracy [%]). 

Scenario 1 

 Reference 

 F S P W PA (%) 

class 

F 22 100.0 
S 25 100.0 
P 21 100.0 
W 0.0 
N    3  

 UA 100.0 100.0 100.0 0.0 

 OA 95.8     

Scenario 2 

  Reference    

  F S P W PA (%) 

class 

F 21  1  95.5 
S 1 24 2  88.9 
P   18  100.0 
W     0.0 
N  1  3  

 UA 95.5 96.0 85.7 0.0  

 OA 88.7 

Scenario 3 

 Reference 

 F S P W PA (%) 

class 

F 22  1 95.6 
S 24 1 1 92.3 
P  1 20 1 90.9 
W    0.0 
N      

 UA 100.0 96.0 95.2 0.0 

 OA 93.0     

Scenario 4 

  Reference    

  F S P W PA (%) 

class 

F 21 1 1 1 87.5 
S 1 22 1 1 88.0 
P  1 19 1 90.5 
W  1   0.0 
N      

 UA 95.5 88.0 90.5 0.0  
 OA 87.3     
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Table 4. Cont. 

Scenario 5 

 Reference 

 F S P W PA (%) 

class 

F 20 3 2 1 76.9 
S 2 22 1 1 84.6 
P 18 1 94.7 
W 0.0 
N      

 UA 90.9 88.0 85.7 0.0 

 OA 84.5     

In all scenarios, none of the water reference sites were classified correctly; consequently, the 

producer’s and user’s accuracies both were 0.0%. This may have resulted because we included very 

few training and reference samples for water, as our main focus was on the potential of SAR features 

for vegetation classification. However, we examined three small water reference sites to determine if 

the SAR features were more advantageous for water detection. The interesting result was that the water 

areas were unclassified in the Scenario 1 approach (multispectral features only), but classified as 

vegetation types (each site differently as forest, shrub, and prairie) in scenarios based on SAR features 

(Scenario 3 and 4). We suppose that the misclassification could be caused by the short wavelength of 

the X-band SAR signal being reflected from a rough water surface surrounded by vegetation, which 

may act like volume scattering. 

7. Discussion and Conclusions 

In this study, we examined the usefulness of quad-pol X-band TerraSAR-X data for vegetation 

mapping over the Everglades wetland. We applied the H&W four-component decomposition model to 

extract scattering behavior for characterizing the wetland vegetation. We hypothesized that each 

vegetation type is characterized by typical scattering behavior detectable by the decomposition 

approach and would be helpful for the vegetation classification. We also compared the classification 

results using Yamaguchi’s decomposition to evaluate the performance of our decomposition method. 

Overall accuracy for our classification results ranged from 84.5% to 95.8%. The best accuracy was 

achieved using only RapidEye multispectral layers, which indicates that cloud-free optical data are 

very good for generating maps of general vegetation types. Good accuracy (93.0%) was also achieved 

with SAR image feature layers, indicating the high potential of polarimetric SAR decomposition 

products for detecting wetland vegetation, particularly for mangrove forests. The overall pattern of 

classification results between our decomposition and Yamaguchi’s method were very similar, even 

though the overall accuracy using our decomposition method was much higher than achieved with 

Yamaguchi’s decomposition. Our reference samples were placed in the middle of relatively unchanged 

vegetation stands to capture their homogeneous characteristics. Consequently, the classification matrix 

could not validate the classification accuracy over areas transitioning from forest to shrub or edges 

between two vegetation types. From our visual inspection of the original RapidEye image, we 

determined that mangrove forests along the tidal canals were underestimated in the classification based 



Remote Sens. 2015, 7 8579 

 

on optical data, but classified well when SAR features were used. The better performance of SAR 

decomposition products for detecting mangrove forest is likely due to the radar signal containing 

physical scattering characteristics over the target surface. The multispectral image contains just 

reflectance from sun illumination, whereas the SAR signal includes information about the surface 

geometry in the form of backscattering effects (e.g., surface, double bounce, and volume scattering). 

We can use the scattering information to ascribe physical meaning to the surface targets. Polarimetric 

SAR decomposition with the aid of optical imagery could be very useful for vegetation classification. 

Furthermore, a high accuracy level in the vegetation classification using SAR decomposition features 

shows a very advantageous benefit, particularly in the case of cloudy weather conditions, in which 

optical sensors have limited ability to sense the vegetation. 

However some limitations still remain. Operational space-based X-band quadruple polarimetric 

observations are not yet available. The returned values of the SAR image are recorded as a power, and 

therefore are always positive. We can discover the negative power when we apply a model-based 

decomposition algorithm. Our decomposition approach suffers from a negative power problem similar 

to those encountered with other model-based decomposition methods [32–34]. Once these scattering 

decomposition results are improved by developing a better model, the accuracy of vegetation 

classification should also improve. The negative value could be due to speckle-like noise in the input 

image that prohibits the segmentation and subsequent classification. Most decomposition methods for 

estimating various scattering components rely on quad-pol SAR observations [28,46]. Although  

dual-pol observations have more information than single-pol SAR images, the ability to distinguish 

between the different vegetation types is somewhat limited. The only operational polarimetric SAR 

satellite system currently is the C-band Radarsat-2, but its polarimetric sensitivity over tropical and 

subtropical wetlands is not better than that of the X-band wavelength data [37,68]. 

It is impressive that the short wavelength of X-band TSX decomposition products yielded very 

good sensitivity for vegetation characterization, particularly the detail with which the mangroves along 

the tidal channels were mapped. The high sensitivity indicates that the scattering behaviors around the 

mangroves in SAR observations can be very helpful in discriminating mangroves from other 

vegetation types. We interpret that the high sensitivity of the X-band TSX data were very suitable for 

the characteristics of vegetation cover in Everglades wetlands. In upland vegetated areas, longer 

wavelength radar observations have proven more useful for classifying the vegetation because of 

increased canopy penetration depth [69–71]. Thus, a mix of polarimetric SAR systems could provide 

stronger capabilities for mapping a greater variety of vegetation types.  

We observed that our decomposition method can provide better classification accuracy (93.0%) 

than Yamaguchi’s decomposition approach (84.5%), which is based on rotated coherency matrix [32]. 

Both of the classification results revealed similar patterns, as shown in Figure 8c,f, but Yamaguchi’s 

method (Scenario 5) resulted in a relatively overestimated water class. We can also detect a greater 

portion of the scrub class in Scenario 5, compared with Scenario 3. The higher probability to be 

classified as prairie in region A of Figure 8d can be explained by more dominant surface and volume 

scattering components of Yamaguchi’s method. The better classification accuracy using H&W 

decomposition may result from the characteristics in which the wetland environment was 

considered [36]. The H&W decomposition has limitation in that it produces more negative single 

scattering component compared other decomposition methods. However, it has an advantage to 
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provide more double bounce scattering component from both co- and cross-pol SAR observations at 

the wetland environment. These characteristics might be useful to discriminate tall mangrove forest or 

scrub from other herbaceous vegetation such as prairie. We will further investigate the performance of 

our decomposition method for other study areas comparing other decomposition results. 

Our classification results showed that a SAR feature-based approach offers good potential for 

vegetation mapping, even though multispectral and hyperspectral remotely sensed images have been 

widely utilized to map wetland vegetation [72–75]. We achieved a mapping accuracy of more than 

85% when only SAR features were used. However, accuracy of more than 90% was achieved when 

SAR features were used for vegetation classification following the application of multispectral bands 

to develop vegetation object boundaries (image segmentation). Where both multispectral and SAR data 

are available, they can be used in combination to improve vegetation mapping, but where persistent 

cloud cover limits the availability of multispectral data, as is often the case in tropical and subtropical 

wetland environments, the high accuracy level we attained with only SAR data demonstrates the value 

of SAR systems for mapping these globally important resources. 
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