# **Regional-scale hydrological monitoring of wetlands with Sentinel-1 InSAR Observations: Case study of the south Florida Everglades**

Heming Liao, Shimon Wdowinski, Shanshan Li

## S1. Sentinel-1 SAR data information

In this section, we present two tables that contain important technical information for our study. The first table (Table S1) presents the acquisition dates of all Sentinel-1 data used in the study. The second Table (Table S2) lists the main acquisition parameters used for acquiring the Sentinel-1.

| Acquisition data                                                                                         |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 2016                                                                                                     | 2017                                                                                                                                                                                                                                                                 | 2018                                                                                                                                                                                                                                                                                                                                                                             | 2019                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 20160927<br>20161009<br>20161015<br>20161021<br>20161102<br>20161114<br>20161126<br>20161208<br>20161220 | 20170101<br>20170113<br>20170125<br>20170206<br>20170302<br>20170314<br>20170326<br>20170407<br>20170513<br>20170525<br>20170618<br>20170724<br>20170817<br>20170829<br>20170910<br>20171004<br>20171004<br>20171016<br>20171028<br>20171121<br>20171203<br>20171215 | 20180108<br>20180120<br>20180201<br>20180213<br>20180225<br>20180309<br>20180321<br>20180402<br>20180402<br>20180414<br>20180426<br>20180508<br>20180520<br>20180613<br>20180625<br>20180707<br>20180719<br>20180719<br>20180731<br>20180731<br>20180824<br>20180905<br>20180917<br>20180917<br>20180929<br>20181011<br>20181023<br>20181104<br>20181128<br>20181128<br>20181210 | 20190103<br>20190115<br>20190127<br>20190208<br>20190220<br>20190304<br>20190316<br>20190328<br>20190409<br>20190421<br>20190503<br>20190515<br>20190527<br>20190608<br>20190620<br>20190702<br>20190714<br>20190726<br>20190726<br>20190807<br>20190819<br>20190819<br>20190831<br>20190906<br>20190912<br>20190924<br>20191006<br>20191018<br>20191030<br>20191111<br>20191123 |  |  |  |

Table S1. Acquisition dates of all Sentinel-1 data used in this study

| rubie 52. Seminer r data teeningde configurations |                |                              |             |  |  |
|---------------------------------------------------|----------------|------------------------------|-------------|--|--|
| Sentinel-1 SAR data technique                     | Swath Coverage | Pixel Spacing (m)            | Polarimetry |  |  |
| configurations                                    | (km)           | i mor sprong (m)             |             |  |  |
| Parameters                                        | ~250 km        | range x azimuth:<br>~2.5 x14 | VV          |  |  |

Table S2. Sentinel-1 data technique configurations

### S2. Accuracy analysis of the InSAR derived water level change measurements

The accuracy analysis is conducted by comparing valid InSAR and gauge measurements (represented by the blue solid circle in following subplots), invalid InSAR gauge measurements including low coherence InSAR estimate (red 'x'), dry gauge measurements (red '+'), dynamics gauge measurements (red rectangle), outliers (red square). Details of these invalid cases are explained in detail in Sec 4.4.1 in the paper). We analyzed a total of 74 InSAR-derived water level change maps by plotting the all reliable InSAR vs gauge water level change measurements. We also calculated the RMSE estimates based on all reliable InSAR-gauge pairs.















Figure S1. Accuracy analysis of each Sentinel InSAR derived water level change map by using all reliable InSAR vs Gauge water level measurements (each subplot corresponding to one dataset).

### S3. Water level time series of two representative gauges (G-3437, G-596)

In this short section we present hourly water level record of two gauges (G-3437, G-596), in order to show the origin of the discrepancy between InSAR and gauge derived water level maps.



Figure S2. Time series hourly water level at gauges G-3437, G-596 for time period 20161008—20161022. Ground surface elevation at gauge G-3437 and G-596 are marked with horizontal dash blue lines. From SAR acquisition time 1 to SAR acquisition time 2, water level at gauge G-3437 drops from above surface to below surface; while at gauge G-596, the water levels corresponding to the two SAR acquisition times are both below surface but experience an increase. These below water level changes are captured by gauge measurements, however, above the surface there is little change detected by InSAR. This is why we see the big discrepancies from the InSAR- and gauge- derived water level change maps.

#### S4. InSAR derived water level change maps

There is a total of 74 interferograms. Two water level change maps are presented in the main paper, remaining are presented below. Each map corresponding to one interferograms, the acquisition dates of the InSAR data are labeled in each sub-figure. For the water level change maps, area with low coherence below 0.5 are masked to eliminate unreliable results.











cm ∎ 10

0

-10

cm ∎ 10

0

-10

cm

10

0

-10

-81.2 -81 -80.8 -80.6 -80.4 Water level change (InSAR)



26.6

26.4

26.2

26

25.8

25.6

25.4

26.6

26.4

26.2

26

25.8

25.6

25.4

(a)

Water level change (InSAR)





10

-10

10

-10

10

-10



-81.2 -81 -80.8 -80.6 -80.4

26.6

26.4

26.2

26

25.8

25.6

25.4

26.6

26.4

26.2

26

25.8

25.6

25.4

(a)

Water level change (InSAR)





26.4 26.2 26 25.8 25.6 25.4 (a) -81.2 -81 -80.8 -80.6 -80.4 Water level change (InSAR) 20180321-20180309

26.6



Water level change (InSAR)









26.4

26.2

26

25.8

25.6

25.4

26.6

26.4

26.2

26

25.8

25.6

25.4

26.6

26.4

26.2

26

25.8

25.6

25.4

(a)

(a)







26

25.8

25.6

25.4

-81.2 -81 -80.8 -80.6 -80.4





-81.2 -81 -80.8 -80.6 -80.4



26.4

26.2

26

25.8

25.6

25.4

26.6

26.4

26.2

26

25.8

25.6

25.4

26.6

26.4

26.2

26

25.8

25.6

25.4

(a)

(a)



26.4

26.2

26

25.8

25.6

25.4

26.6

26.4

26.2

26

25.8

25.6

25.4

26.6

26.4

26.2

26

25.8

25.6

25.4



Figure S3. The remaining 72 Sentinel-1 InSAR derived water level change maps (each subplot stands for one interferograms dataset).