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Phase unwrapping is a key procedure in interferometric synthetic aperture radar studies, translating
ambiguous phase observations to topography, and surface deformation estimates. Some unwrapping al-
gorithms are conducted along specific paths based on different selection criteria. In this study, we analyze
six unwrapping paths: line scan, maximum coherence, phase derivative variance, phase derivative var-
iance with branch-cut, second-derivative reliability, and the Fisher distance. The latter is a new path
algorithm based on Fisher information theory, which combines the phase derivative with the expected
variance to get a more robust path, potentially performing better than others in the case of low image
quality. In order to compare only the performance of the paths, the same unwrapping function (phase
derivative integral) is used. Results indicate that the Fisher distance algorithm gives better results in
most cases. © 2011 Optical Society of America
OCIS codes: 280.6730, 100.5088.

1. Introduction

Interferometric synthetic aperture radar (InSAR)
phase change measurements have been used to
study earthquake and magmatic induced crustal
deformation [1–5], subsidence due to ground water
extraction and mining [6–9], glacial ice flow [10],
and wetland water level changes [11,12]. Phase
values are defined between −π and þπ, and observa-
tions that capture a signal with a larger dynamic
range require phase unwrapping.

In the past three decades, several phase unwrap-
ping algorithms have been developed. Some of these
algorithms unwrap along a defined path, usually

based on a cost (or quality) function or geometrical
relations. Other unwrapping methods try to mini-
mize a misfit function globally without following a
path. However, there have been few studies that
focus on the importance of the path algorithm. In this
paper, we review previous work on unwrapping with
an emphasis on path, discuss five commonly used
paths, and introduce a new path algorithm based on
the Fisher information theory. We then compare the
results of these algorithms in a variety of test cases
and point out similarities and differences. The focus
of this paper is on the unwrapping path rather than
the unwrapping algorithm, evaluation of the circum-
stances (geometric baseline, noise, aliasing, etc.)
where these paths are likely to fail, and evaluation
of which paths have a tendency to propagate error.
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2. Background

Single polarization synthetic aperture radar (SAR)
provides two observables: amplitude and phase.
Amplitude is proportional to the strength of the sig-
nal scattered back to the satellite from a target and
can be used to create a black-and-white radar image.
The phase observable mainly reflects the distance
between the target and the satellite [13], but is also
affected by atmospheric moisture conditions and
other measurement noise. With two or more SAR
acquisitions, it is possible to exploit differential
phase information to estimate topography (digital
elevation models [DEM]) or surface displacement.

Repeat-pass interferometric phase measurements
are constructed by subtracting the phase of the
second (slave) image from the first (master) image.
Because the images are taken at different times from
the repeating orbits, the satellites are not at the
same exact location creating a baseline (spatial dif-
ference in satellite location). Interferometric phase
can be defined as

ϕI ¼ ϕM − ϕS ¼ 4πðRM − RSÞ
λ ; ð1Þ

where ϕ is the phase, R is the range, λ indicates the
radar wavelength and subscripts I, M, and S stand
for the interferogram, master, and slave [14]. Phase
values are observed modulo 2π, causing range
changes larger than λ=2 to be aliased. For most
applications, the total amount of displacement is
required. Phase unwrapping is the operation to
remove the ambiguity from the phase observations,
converting ambiguous phase change to unambiguous
range change. The presence of noise, decorrelation
effects, aliasing, and radar shadow complicate the
unwrapping procedure. In multipass interferometry,
there are several decorrelation sources: (1) baseline
decorrelation (γbaseline), (2) temporal decorrelation
(γtemporal), (3) Doppler centroid decorrelation (γDoppler),
(4) volume decorrelation (γvolume), (5) thermal decorr-
elation (γthermal), and (6) processing related decorre-
lation (γprocessing) [15]. In addition to decorrelation
effects, orbital errors (γorbit) and atmospheric phase
contributions (γatmosphere) also affect the interfero-
metric phase measurements. The combined effect
of these decorrelation sources is multiplicative, as
follows:

γtotal ¼ γbaseline × γtemporal × γDoppler × γvolume × γthermal

× γprocessing × γorbit × γatmosphere: ð2Þ

Unwrapped phase is the continuous curve of the
argument of the measured data and can be rigor-
ously defined as an integral of arguments derivative,
with the initial condition that the argument of the
starting point is zero [16].

arg½XðejωÞ� ¼
Z ω

0
arg0½XðejηÞ�dη arg½Xðej0Þ� ¼ 0;

ð3Þ
where X is the complex signal, j is the imaginary
number, ω is the argument, and η is the unit vector
along the unwrapping path. Unwrapping can also be
defined as the sum of the wrapped differences of the
principal values [17,18]

ϕðmÞ ¼ ϕð0Þ þ
Xm
n¼1

W2ΔW1½ϕðnÞ�; ð4Þ

where ϕ is the unwrapped phase, W is the wrapping
operation,Δ denotes differentiation,m is the current
pixel, and n is the summing variable. Both defini-
tions are quite similar to one another, except for the
initial phase in Eq. (3), the starting point value is set
to zero. However, in Eq. (4), the reference point value
is set to the signal’s phase value.

Zebker and Goldstein [19] presented one of the
first examples of high-resolution InSAR topography
mapping with the unwrapped phase. Since then,
there have been many unwrapping algorithms devel-
oped for the InSAR. (1) Goldstein’s unwrapping algo-
rithm was based on connecting nearest residues by
branch cuts and unwrapping pixel-by-pixel without
crossing the branch cuts [20]. Residues are defined
as nonzero sums of phase values for pixels in a 2 × 2
neighborhood in a clockwise fashion. This can be re-
presented with the curl of the phase gradient [20,21]

rði; kÞ ¼ ∇ ×∇ϕði; kÞ
¼ Wδiϕði; kÞ þWδkϕðiþ 1; kÞ −Wδiϕði; kþ 1Þ
−Wδkϕði; kÞ; ð5Þ

where rði; kÞ is the residue for pixel ði; kÞ,∇× denotes
curl, ∇ϕ is the phase gradient, W is the wrapping
operator, and δi is the gradient in the i direction.
Results are unreliable with the nearest-neighbor
branch-cut algorithm in areas with high residue
density. In such areas, branch-cut placements are not
straightforward. (2) An unwrapping algorithm based
on cellular automaton, a cell-based discrete mathe-
matical model in a gridded space, was developed for
N-dimensional unwrapping [17]. In the cellular auto-
maton algorithm, local inconsistencies in the 2 × 2
neighborhoods were masked out; however, branch
cuts were not used to connect these inconsistencies.
A lack of global residue mitigation limited the use of
this algorithm. (3) A masking algorithm based on the
second differences of the phase values was developed
to eliminate the computationally expensive search-
ing process for matching branch cuts [22]. The aim
of these methods (1,2,3) is to alter the unwrapping
path so that the unwrapping operation does not prop-
agate errors. In some path-following unwrapping
methods, the unwrapping function is optimized,
instead of the unwrapping path. (4) The extended
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Kalman filter [23–25] and (5) the particle filter [26]
based unwrapping functions are examples of opti-
mized unwrapping functions and are generally
developed to unwrap along fixed-integration (se-
quential) paths. (6) Region-growth algorithms can
be also considered path following, as region growing
is done pixel-by-pixel [27].

Many non-path-following unwrapping algorithms
were also developed. Some of these algorithms are:
(7) weighted least squares using cosine transform
[28], (8) multigrid weighted least squares unwrap-
ping [29], (9) minimum network cost flow [30],
(10) snaphu [31–33], and (11) Bayesian approach
using a priori probability of the phase modeled as
compound Gauss Markov random field [34]. Time-
series generating algorithms, such as the permanent
scatterer InSAR [35], small baselines interferometry
[36], and Stanford Method for PS [37], can also be
thought of as special cases of non-path-following un-
wrapping methods. Non-path-following algorithms
are outside the scope of this paper.

For methods that unwrap interferograms pixel-by-
pixel [20,22,24–27,38–41], unwrapping along an
optimal path is important. However, less attention
has been paid to path selection compared to unwrap-
ping the algorithm itself. Here we specifically inves-
tigate path effects and present a new path algorithm
that we believe is an improvement over existing
methods.

3. Unwrapping Function

We compare the paths using the same unwrapping
function, defined as

ϕ̂0 ¼
Xn
k¼1

argðϕ0Þ þ argðϕk × conjðϕ0ÞÞ
n

; ð6Þ

where ϕ̂0 is the unwrapped value for the observed
phase value (ϕ0), and n indicates already unwrapped
neighboring pixels. Equation (6) is a multidimen-
sional modification of the phase tracking function
[18]. Unwrapped neighbors are searched within the
eight-cell neighborhood (Moore neighborhood) for
two-dimensional applications [42]. For algorithms
that provide a quality map, it is also possible to
define a weighted version of Eq. (6):

ϕ̂0 ¼
P

n
k¼1QðkÞ × ½argðϕ0Þ þ argðϕk × conjðϕ0ÞÞ�P

n
k¼1QðkÞ ; ð7Þ

where QðkÞ is the quality value for the neighboring
pixels. The line scan (LS) algorithm does not offer
a weighting function, and in order to have a fair
comparison between all path algorithms, we base
our analysis on Eq. (6). For comparison, the Envisat
dataset was also processed using Eq. (7).

4. Unwrapping Paths

Unwrapping paths can be divided into two groups:
(1) fixed integration (sequential), and (2) region grow-

ing. In a two-dimensional space, fixed-integration
paths can be generated using space-filling curves
(Peano curves [43–45]). An example of a commonly
used space-filling curve is theLSpath shown inFig. 1.

While the aim of the unwrapping algorithms is to
minimize the misfit, region-growing paths take a
different approach, because misfit calculation re-
quire a priori knowledge of the solution as follows:

χ2 ¼ 1
N

×
XN
k¼0

½ϕ̂ðkÞ − ϕðkÞ�2
σ2ðkÞ ; ð8Þ

where χ2 is the misfit, ϕ̂ is the unwrapped phase, ϕ is
the a priori phase, N is the number of total samples,
and σ is the standard deviation, which is used to nor-
malize the misfit [46]. Therefore, instead of minimiz-
ing the misfit, region-growing algorithms try to
follow a quality function, minimizing a function F,

F ¼
XN
k¼0

k �QðkÞ ð9Þ

where k indicates the number of unwrapped pixels
and QðkÞ represents the quality function, with high
values indicating better quality and 0 indicating
the lowest quality. N indicates the total number of
pixels to be unwrapped. The unwrapping criterion
requires visiting the pixels with higher quality first,
in order to minimize the value of F. An example of a
region-growing path is shown in Fig. 2. Unwrapping
starts from the reference point, and continues
with neighbors of already solved pixels, causing the
unwrapping path to branch, unlike the continuous
space-filling curve.

The reference point will define the initial condi-
tions of the unwrapping path. Therefore, it is impor-
tant to select a good starting point. All of the tested

Fig. 1. (Color online) Example of a fixed-integration unwrapping
path. The dot indicates the start of the path and the arrow indi-
cates the direction. Path is shown as the black stroke. The path can
be drawn from start to end without removing the tip of the pen.
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paths with the exception of a LS can generate a qual-
ity map, which can be used to select a starting point.
Even with a quality map, the selection of the optimal
starting point may still be a difficult problem. The
optimal starting point should minimize the misfit,
which is available only after unwrapping is complete.
In our tests, we used the upper-left corner (1,1) for all
the synthetic interferograms. For the Envisat data-
set, we define the starting point as the point with
the highest coherence in the largest-continuous area
with coherence over 0.4.

Six unwrapping paths are compared: (1) LS
[25,26], (2) maximum coherence (MC), (3) phase
derivative variance (PDV) [38], (4) phase derivative
variance with branch-cut (PDV-BC) [20], (5) second-
derivative reliability (SDR) [40,41], and (6) Fisher
distance (FD). FD is the newly developed algorithm
described here. Also, a benchmark is calculated
following theminimummisfit path. Benchmark solu-
tion is only available when the solution is already
known but useful for evaluating the quality of other
algorithms.

A. Line Scan

LS is an example of the Peano curve and is a sequen-
tial unwrapping method. In this paper, it is imple-
mented as a column-order continuous curve. Odd
numbered columns are solved downwards, and even
numbered columns are solved upwards (Fig. 1).
Along this unwrapping path, four of eight neighbors
in Eq. (6) are solved for pixels that are not on the edge
of the interferogram. Although a high number of
solved neighbors will cause the random noise to be
averaged out, unwrapping errors due to aliasing and
radar shadows propagate as a result of the fixed-
integration path.

LS is used with special unwrapping functions in
the literature such as extended Kalman filters and
particle filters [25,26]. Filter-based unwrapping
functions use previous information and certain as-
sumptions to increase the robustness of the unwrap-
ping operation. In this paper, we use a conventional
unwrapping function, which does not employ special

assumptions about the data. Therefore, we limit the
analysis of fixed-integration paths to LS and test it
only for reference purposes.

B. Maximum Coherence

Coherency of the interferogram can be used as a
quality map, where the pixels with higher coherence
indicate high quality observations. Coherence of an
interferogram is defined as [15]

γ ¼ E½MS��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½MM��E½SS��p ; ð10Þ

where γ is coherence, E indicates expected value, the
asterisk (�) denote complex conjugation, andM and S
indicate master and slave acquisitions. The expected
value needs to be estimated for each pixel, therefore,
coherence can be estimated using

γ̂ ¼
1
N

P
N
i¼0 MiS�

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
N
i¼0 MiM�

i
1
N

P
N
i¼0 SiS�

i

q ; ð11Þ

where γ̂ denotes approximate coherence and N indi-
cates the number of pixels in the neighborhood for
coherence calculation. Throughout the paper, coher-
ence is calculated over an area of 80m× 80m corre-
sponding to 4 × 20 pixels for the Envisat data. MC
path starts from the reference point and follows
the highest coherence available in the neighborhood
of already solved pixels.

C. Phase Derivative Variance

The variance of the phase derivative is one of the ear-
liest methods developed to define the unwrapping
path [38,47]. The PDV is calculated over the four-cell
neighborhood (von Neumann Neighborhood) and the
pixel itself (total of five pixels). Calculated variances
are then summed in all directions

Fig. 2. (Color online) Example of a region-growth algorithm. In the top row, the gray-scale background indicates a measure of signal
quality, where the lighter colors indicate higher quality. The bottom row shows the unwrapping mask, where solved points are marked
with S and neighboring points are marked with N. During initialization, a reference point is selected. Pixels in the 4-pixel neighborhood
are marked as ready to solve. Starting from the reference point, unwrapping continues with the highest quality neighbors.
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PDVk ¼
XN
n¼0

σ2xðnÞ þ σ2yðnÞ; ð12Þ

where PDV is calculated for a pixel k, using itself and
four neighboring pixels indicated by N. For two-
dimensional data, the PDVs are summed over
two dimensions x and y. Our implementation of this
algorithm and its branch-cut variation (PDV-BC) are
based on Spottiswoode [48].

D. Phase Derivative Variance with Branch-Cut

Branch-cut algorithms use the fact that a unique
unwrapped solution is only possible when the sum
of wrapped phase values in any closed path equals
zero [20]. Pixels where the sum of the wrapped phase
values in any closed path does not equal zero are
called residues. Each residue can have a positive
or negative sign depending on the sum of the values.
Branch cuts are placed to connect opposite signed
residues to prevent the unwrapping path going
through these non-zero-sum areas. Alternatively,
residues can be connected to the border of the image.
Since the branch cuts guarantee a unique unwrap-
ping solution, the path algorithm is not important.

Correctly placed branch cuts make the unwrap-
ping solution path independent or unique. There are
several algorithms for placing branch cuts between
residues, for example: nearest neighbor [20], mini-
mum cost matching [49], stable marriages [50], mod-
ified nearest neighbor [51], phase field direction [52],
and residue vector approach [53]. The phase field
direction and residue vector approach are the only
methods that use additional physical information.

In this paper, the PDV-BC path is constructed as
follows: (1) find residues, (2) locate branch cuts,
(3) mask out the branches, and (4) calculate the PDV
path. When there are a small number of branch cuts,
it is expected that the results from the PDV will be
similar to the PDV-BC. Following the same approach,
branch cuts can be implemented to improve results
using any other path, but effects of branch cuts on
different paths are beyond the scope of this paper.

E. Second-Derivative Reliability

SDR is based on the total change in horizontal,
vertical, and diagonal directions of an eight-cell
neighborhood (Moore neighborhood) [40,41]. Total
change is then inverted to create a reliability map,
where high values indicate more reliable pixels. Our
implementation of this method follows Herraez et al.
[40]. A possible shortcoming of this algorithm is
its dependency on the second derivative of the data.
Differentiation decreases the signal-to-noise (SNR)
ratio [54], suggesting that the reliability values
calculated by this approach can be problematic in
low quality areas.

F. Fisher Distance

Like PDV, FD unwrapping path aims at extracting a
quality map using the phase differences. Unlike

PDV, FD compares the phase differences to expected
variance and gives importance to points with similar-
ity in values in areas with lower variance. In general,
lower variance points are located in the high quality
areas. Fisher information is defined as the variance
of the score in information theory. The score is
defined as the gradient of the logarithm of the like-
lihood function [55–57]:

IðϕÞ ¼ E

��
∂

∂ϕ logLðϕ;XÞ
�
2
����ϕ
�
; ð13Þ

where E is the expected value, L is the likelihood
function of ϕ, which is also the probability density
for ϕ (Lðϕ;XÞ ¼ f ðX ;ϕÞ, where f is the probability
density). Fisher information, IðϕÞ, can be thought
as a metric of similarity at the given noise level.
An example is a weather forecast of high daytime
temperatures for a desert area in the summer. This
would have a low Fisher information value, since
most summer days in deserts have similarly high
temperatures. On the contrary, the forecast of low
daytime temperatures in a desert area in the sum-
mer would have a high Fisher information value.
For other forecasts which would fall in between these
two extreme scenarios, the Fisher information value
would be calculated according to the forecasted day-
time temperature and the expected variability of
daytime temperatures at the given location for the
given season.

If phase values for neighboring pixels are consid-
ered independent measurements, assuming a Gaus-
sian probability density (likelihood) function, the
Fisher information for neighboring pixel’s can be
calculated as

I0;1ðϕÞ ¼
ðϕ1 − ϕ0Þ2

2σ20
þ log

ffiffiffiffiffiffiffiffiffiffi
2πσ20

q
; ð14Þ

where ϕ indicates the phase values, which are also
the mean values defining the Gaussian distributions,
σ is the standard deviation, and subscripts indicate
current (0) and neighboring (1) pixels. Standard
deviation of the phase values can be calculated from
coherence values [58] or from PDV [38,47]. In certain
cases, the Gaussian assumption does not hold
[26,59], yet it is an assumption often made to simpli-
fy algorithm development [21,25,34,60–62]. Since
the I1;0 in Eq. (14) depends only on σ0 without incor-
porating σ1, it is not symmetric (in the sense that the
distance from pixel 0 to 1 is not the same as 1 to 0).
Therefore, we use the average of both distances as a
distance metric, defining FD as

Ij01j ¼ 0:5 × ðI1;0 þ I0;1Þ: ð15Þ

FD is a novel method developed for this study (at
the time of writing the authors are unaware of any
other phase unwrapping studies using Fisher infor-
mation as a metric). In this paper, FD values for each
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pixel are calculated over neighbors within the eight-
cell (Moore) neighborhood. For standard deviation,
we tested both the derived values from coherence
[58] and the square-root of the PDV as described in
Subsection 4.C. We obtained better results when the
square-root of the PDV is employed, especially for the
synthetic dataset. Results presented in this paper
with the FD approach uses the PDV as σ20 values
in Eq. (14).

G. Benchmark

Unwrapping paths are compared to each other
according to the misfit between the unwrapped solu-
tion (ϕ̂) and true phase (ϕ). The performance of the
path can be estimated using Eq. (8). In general, the
misfit (χ2) will have larger values when the algorithm
estimates a wrong solution early on, because the
error will be propagated along the path. Standard
deviation of the phase values (σ) are required to cal-
culate the misfit. Standard deviation for the misfit is
calculated using the coherence to standard deviation
relation [58].

If the solution is already known, an unwrapping
path can be defined to follow the minimum misfit.
This can be used to define a reference (benchmark)
solution to assess the performance of other algo-
rithms. However, it must be noted that this path can
only be defined when the true phase (ϕ) is already
known, making it impossible to use in real-world
applications.

5. Test Datasets

The unwrapping paths described above are tested
against synthetic datasets at four different perpendi-
cular baselines, and three sets of real data, using
Envisat interferograms.

A. Synthetic Dataset

The first dataset is based on a synthetic DEM gener-
ated using several shifted Gaussian functions to
define a smooth surface with multiple local minima
and local maxima [63]:

Fig. 3. (Color online) DEM generated for the synthetic dataset
using Eq. (16). The dynamic range of the DEM is about 1450m.
The DEM is 256 × 256 pixels and each pixel has the dimensions
80m× 80m.

Fig. 4. (Color online) (a)–(b) The DEM phase, (c)–(d) interferogram phase, and (e)–(f) coherence are shown for 100 and 150m baselines.
The DEM phase shows the unwrapped, noise-free interferogram. Note the increased fringe rate in (d) compared to (c), as well as reduced
coherence in (f) compared to (e).
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DEMðx; yÞ ¼ 3 × ð1 − xÞ2 × e−x
2−ðyþ1Þ2

− 10 × ðx=5 − x3 − y5Þ × e−x
2−y2

− 1=3 × e−ðxþ1Þ2−y2 ; ð16Þ

where x and y indicate two-dimensional space, and e
is the Euler number (e ¼ 2:7183). The visualization
of the resulting synthetic DEM is shown in Fig. 3.

An interferogram is simulated using the synthetic
DEM (Fig. 3), with European Remote Sensing satel-
lite-1 parameters [64]. Geometric coherence (γbaseline)
is calculated according to the slope of the radar-coded
DEM and the perpendicular baseline. Additive ran-
dom noise is calculated based on the geometric coher-
ence values and total coherence (γ) is calculated as

γ ¼ γbaseline × γnoise: ð17Þ

Comparison of Eq. (17) with Eq. (3) shows that we are
neglecting the effects of many other decorrelation
factors in this dataset. Since the misfit calculation
is based on the standard deviation, which is derived
from coherence [58], the misfit values for this dataset
will be higher than the second dataset where Envisat
interferograms are used.

Figure 4 shows the DEM phase (unwrapped,
radar-coded, noise-free phase), the interferogram
(wrapped, with additive Gaussian noise), and coher-
ence for 100 and 150m perpendicular baseline cases.
Although the perpendicular baseline difference is
only 50 m between these datasets, due to the high
gradients of the DEM the effects of aliasing increase.
The overall coherence values also decrease about 0.1.

B. Envisat Dataset

This dataset uses Shuttle Radar TopographyMission
(SRTM) 3 arc sec DEM and Envisat SAR data col-
lected over Mexico City, Mexico. Baseline infor-
mation is presented in Table 1. The topography
covered by this scene has steep gradients. The small
perpendicular baseline guarantees slow changing

Table 1. Baseline Information for the Envisat Interferograms

Master Slave
(orbits)

Temporal
Baseline (days)

Perpendicular
Baseline (m)

Parallel
Baseline (m)

14,337–14,838 35 −64:8 141.7
17,343–18,345 70 −37:3 246.0
18,345–19,347 70 44.4 −207:1

Fig. 5. (Color online) (a)–(c) The DEM phase, (d)–(f) interferogram phase, (g)–(i) coherence, and (j)–(l) residual phase for the Envisat
interferograms 14,337–14,838, 17,343–18,345, and 18,345–19,347 over Mexico City. The DEM phase images are calculated using the
SRTM DEM and baseline configurations from the interferograms. Note the reduced coherence in nonurban areas for interferograms
17,343–18,345, and 18,345–19,347 (h)–(i) compared to 14,337–14,838 (g). Also note the residuals are showing inconsistencies between
the simulated DEM and interferogram phase (j)–(l).
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phase values over the low relief areas (inside Mexico
City), and creates isolated steep phase slopes and
aliasing in mountains. The interferograms are pro-
cessed in a conventional way [65], and they are flat-
tened but not filtered, in order not to introduce any
artificial changes in the phase.

Mexico City has high subsidence rates in the urban
area [7,66–68] which can introduce about 3:5 cm
range change over the Envisat repeat cycle (35 days).
Each fringe (0 − 2π) corresponds to 2:8 cm at the
Envisat wavelength. The effects of subsidence
are visible at the center of the residuals panels in
Figs. 5(j)–5(l). The combined effect of the deformation
and the limited resolution of the SRTM DEM cause
residuals between the unwrapped DEM phase and
interferogram, especially over the mountainous
areas. These residuals will also cause the benchmark
solution to deviate from the interferogram, making it
challenging to evaluate algorithms.

6. Results

The results are shown in Tables 2 and 3 and Figs. 6
and 7. Misfit values are calculated for each test,
as defined by Eq. (8). The a priori solution for the
Envisat interferograms are not known; therefore,
SRTM 3 arc sec DEM are used as the a priori solu-
tion in the misfit calculation.

A. Synthetic Dataset

Results for the synthetic interferograms are shown
in Table 2, where misfit and its standard deviation
are listed for each path. The values listed in Table 2
are averages of the same dataset over 10 runs with
different additive random Gaussian noise. The aver-

age misfit (E½χ2�) represents the expected misfit for
the method. The standard deviation (σχ2 ) provides an
estimate on the robustness of the algorithm, such
that low standard deviations indicate robustness of
the path algorithms to the changing random noise.
For all the test cases, the LS algorithm has the
largest average misfit and the largest standard
deviation. The MC performs quite well for 50 and
100m baselines, but errors increase dramatically
with the increasing baseline. Larger baselines cause
the geometric coherence (γbaseline) to decrease indicat-
ing that the MC path is not useful when the overall
coherence values are low. PDVand SDR obtain simi-
lar results for the 50 and 100m baselines, though the
SDR performs slightly better for the larger baselines.
The PDV-BC reduces the misfit by almost 10 fold for
the 100m case, and about 50 fold for the 150m case
over the standard PDV. FD obtained low standard
deviations for both cases and presents a similar per-
formance to the PDV-BC. Benchmark results provide
a lower limit for the misfit and the standard devia-
tion. For the 50m baseline case, all algorithms other
than the LS obtain similar results to the benchmark.

The results for the synthetic dataset with 100 and
150m perpendicular baseline are shown in Fig. 6.
For both cases, problems with error propagation in
the LS algorithm are visible. White areas in the
branch-cut algorithm represent no-solution areas,
which occur when branch cuts block access to parts
of the interferogram. The MC, PDV, SDR, and FD
algorithms show similar solutions, with errors
visible to the left of the bottom extreme, and to
the right of the upper extreme, coinciding with the
areas masked out by the branch cut. The benchmark

Table 2. Misfit and Average Error for Synthetic Data`

B⊥ ¼ 50m B⊥ ¼ 100m B⊥ ¼ 125m B⊥ ¼ 150m

Method E½χ2� σχ2 E½χ2� σχ2 E½χ2� σχ2 E½χ2� σχ2

LS 22.04 3.45 624.59 63.05 1085.24 102.36 1614.29 491.91
MC 0.98 0.01 3.12 0.69 32.46 21.70 926.40 467.49
PDV 1.10 0.07 19.85 7.64 70.34 14.48 532.73 370.07
PDV-BC 1.05 0.04 2.48 2.43 5.42 4.47 11.33 12.63
SDR 1.01 0.03 24.84 42.05 50.27 38.31 319.41 260.70
FD 1.03 0.03 8.17 1.49 27.29 4.72 78.57 12.06
Benchmark 1.02 0.02 1.13 0.02 1.21 0.01 1.30 0.02

aE½χ2� is average misfit, and σχ2 is standard deviation of misfit.

Table 3. Misfits for the Envisat Dataset`

14,337–14,838 17,343–18,345 18,345–19,347

Method χ2U χ2W χ2U χ2W χ2U χ2W
LS 92.14 N/A 72.77 N/A 71.10 N/A
MC 17.32 17.33 89.80 93.67 36.80 36.68
PDV 8.82 8.80 117.20 114.81 52.62 54.05
Branch Cut (PDV-BC) 37.73 38.94 32.54 32.52 16.26 16.26
SDR 14.84 15.09 137.35 138.60 91.62 84.51
FD 5.78 5.79 53.45 53.46 14.20 14.21
Benchmark 0.32 N/A 0.52 N/A 0.43 N/A

aχ2U obtained by the unweighted unwrapping function given in Eq. (6).
bχ2W obtained by the weighted unwrapping function given in Eq. (7)
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Fig. 6. (Color online) Average of ten solutions of synthetic dataset for 100 and 150m perpendicular baselines with different Gaussian
noise, for the compared paths. The scale is in radians and each figure is normalized with the number shown in the bottom right corner. The
white areas in the PDV-BC solutions indicate inaccessible areas by branch cuts. Residual figures show the propagation of errors for each
path. Note the small footprint of residuals for FD solutions.

Fig. 7. (Color online) Solutions for the Envisat interferograms are shown in the same way as Fig. 6. Except the LS and PDV-BC, all paths
return decent solutions for 14,337–14,838. Visual comparison of the results and residuals show that the FD returns reasonable results for
interferograms 17,343–18,345 and 18,345–19,347 where others returned large residuals.
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solution proves the existence of a path for an unde-
formed solution. For the 150m baseline, all solutions
look worse in comparison to the 100m case. Errors
are propagated further with the LS algorithm and
the no-solution area is larger in the PDV-BC solution.
Residuals for the FD are small for both cases, indi-
cating that the FD algorithm does not propagate
the errors as much as other algorithms. The MC
spreads the errors even less for the 100m baseline,
suggesting that this algorithm performs well in high
SNR areas.

B. Envisat Dataset

Misfits for Envisat interferograms are shown in
Table 3. The Envisat interferograms are generated

using Envisat Advanced Synthetic Aperture Radar
scenes and unlike the synthetic dataset, there is
no additive random noise in the interferogram.
Therefore, the interferograms in this dataset are
only solved once. For the same reason the standard
deviations cannot be calculated for this dataset. The
Envisat dataset was unwrapped using both un-
weighted and weighted unwrapping functions as
shown in Eqs. (6) and (7). The misfits calculated
by both functions are similar, and hence the figures
look identical in publication size, the figures for the
weighted unwrapping results are not shown here.
PDV and SDR obtained slightly better results for
high-noise (17,343–18,345) and midnoise (18,345–
19,347) interferograms. MC attained slightly worse
misfits for the interferogram 17,343–18,345. Misfits
reported in Table 3 for the LS algorithm are gener-
ally high; however, they are not the highest for all
cases, as was the case for the synthetic dataset. This
is due to the topography being solved at the end
reducing the propagated error. MC obtains a low
misfit for the 14,337–14,838 interferogramwhere the
coherence values are generally high. The PDV and
SDR algorithms perform well for the high coherence
interferogram (14,337–14,838) but obtain large mis-
fits for the other two interferograms. The FD and
PDV-BC score the lowest two misfits for the inter-
ferograms 17,343–18,345 and 18,345–19,347. FD ob-
tains the lowest misfit for 14,337–14,838.

The solutions can be seen in Fig. 7. Residuals are
calculated using the SRTM DEM and are displayed
in the second row of each group. Linear artifacts are
visible in the LS results. For the 14,337–14,838 inter-
ferogram, the MC path result is similar to the bench-
mark solution; however, errors are propagated to the
large portions of the interferogram for the other two
cases. The PDV-BC path misinterprets the mountai-
nous area for the 14,337–14,838 interferogram, and
masks off the mountainous areas completely for the
other two cases. MC, PDV, SDR, and FD obtain simi-
lar results for the high coherence interferogram
(14,337–14,838). MC, PDV, and SDR propagates
the error to the large areas for the interferograms
1,7343–18,345 and 18,345–19,347.

7. Discussion

While the results presented in this paper are
obtained under the same conditions for each algo-
rithm, the fact that the unwrapping function aver-
ages the solutions from neighboring cells can
introduce a bias to our results. The bias is visible
in Fig. 8, where some paths have lower misfit values
compared to the benchmark. The unwrapping func-
tion introduces a bias toward the paths that have a
slow, steady region growth.

All algorithms have higher misfits with higher
noise levels. For the synthetic dataset (Table 2), the
PDV-BChas the lowestmisfit for all baselines. Itmust
be noted that the PDV-BC algorithm implemented in
this paper uses the same quality function as the PDV
path. Therefore, when there are only a small number

Fig. 8. (Color online) Misfit values along various unwrapping
paths for synthetic interferograms with 100 and 150m perpendi-
cular baseline. The misfit (y axis) is in the log scale to better show
the high range of values. The curvature of the misfit curves indi-
cate how the algorithms perform along the path, such that rapid
increase in misfit indicates propagated errors. (a) Note that the
MC achieves very low misfit values. (b) Note that the MC starts
propagating errors early on and does not recover. Also note that
the FD starts propagating the errors the latest.
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of branch cuts, the PDV and PDV-BC algorithms
return similar misfits, as shown in the 50 and 100m
case.

Residuals in Fig. 6 indicate where the errors are
located. The LS algorithm creates a smearing effect,
propagating the error to a large portion of the image.
The MC path has the biggest difference between 100
and 150m solutions. MC provides the smallest area
of errors in the 100m case; however, in the 150m
case, its results are almost as bad as the LS. PDV
spreads the error in the center of the image, more
pronounced in the residuals for the 150m case. SDR
solves for the center of the interferogram correctly;
however, it spreads the errors to the left and right
of the image. Branch cut masks out the problematic
areas successfully in the 100m case, but in the 150m
case it returns large residuals around the top ex-
treme. FD prevents the errors from spreading quite
well in both cases, and high residuals cover small
areas in comparison to other methods.

Analyzing how misfit changes along the unwrap-
ping path can give us some idea of where the errors

occur. An optimal unwrapping algorithm should not
create any large misfits in the beginning of the path,
accumulating the bad points to the end. Having the
bad pixels at the end of the path can give the user a
chance to mask out those areas easily, as well as
reducing the error propagation. The slope of the
curves shown in Fig. 8 indicate the performance of
the path at that point. If the slope is positive, it
means that the path is spreading errors, whereas
a negative slope indicates correct solutions reducing
the average misfit. The misfit values shown in these
curves are averaged like the values in Table 2.
Benchmark values are almost constant along its
path, indicating that the path does not have any pro-
blem areas. The sharp rises in misfit values are an
indication of large errors. The FD path has the latest
rise of misfit values in both figures, indicating it
solved the bad points at the end of the path. PDVand
PDV-BC have similar misfit curves in the 100m case
[Fig. 8(a)], but differ in the 150m case [Fig. 8(b)].
Differences between the PDV and PDV-BC curves
show the effect of branch cuts. LS and SDR have

Fig. 9. (Color online) Paths followed by the path algorithms shown as a color-coded map. Blue indicates the beginning of the path and red
indicates the end. (a) Note that the unreachable areas in the PDV-BC are larger with the 150m baseline. Also note the differences between
the PDV and FD paths. The PDV algorithm unwraps the areas shown in the white boxes earlier in the 150m baseline case. The PDV-BC
algorithm masks out those areas, and the FD algorithm delays the unwrapping of the areas marked with the white boxes until the end.
(b) Note that the paths are quite different for the MC, PDV, PDV-BC, SDR and FD algorithms for different interferograms. This is due to
the differences in general coherence level of the interferograms. The LS path changes depending on the different starting points for each
interferogram.
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early sharp rises, propagating errors to the large
areas. The stepping appearance of the SDRmisfits in
the 100m case [Fig. 8(a)] indicates that the path
visits bad areas one after the other and cannot
recover.

Figure 9 show the paths taken by each algorithm.
For the synthetic dataset [Fig. 9(a)], the LS path is

the same for both cases by definition. The MC, PDV,
PDV-BC, SDR, and FD paths have minor differences.
The benchmark path has some differences between
100 and 150m: (1) the solution of the top and bottom
extremes are delayed, and (2) the boundaries of the
central area are delayed. The delayed areas in MC,
PDV, and FD are easily noticeable (orange to red col-
ors). The SDR paths, do not have distinct areas that
are delayed, and the path image has a grainier look.

The Envisat dataset consists of three interfero-
grams with short baselines providing smooth phase
gradients in the flats, and some aliasing over the
mountains. paths are shown in Fig. 9(b). Residuals
for interferogram 14,337–14,838 in Fig. 7 show that
MC, PDV, and SDR have low misfit in general, espe-
cially in mountainous areas. On the contrary, they
have high residuals for the interferograms 17,343–
18,345 and 18,345–19,347. The paths for MC, PDV,
SDR, and FD look similar in a general sense for all
interferograms in Fig. 9(b). One difference is that the
mountainous area on the top-right corner is delayed
more in FD and MC in comparison to PDVand SDR.
This delay is more obvious for interferograms
17,343–18,345 and 18,345–19,347, where the blue-
green colors are surrounded by the orange to red
in the top-right corner.

Figure 9(b) shows that all quality map driven algo-
rithms solved the gentle sloping areas first for the
Envisat dataset. The paths of the PDV, PDV-BC,
SDR, and FD look rather similar, explaining the
similar performances shown in Fig. 10(a). The slop-
ing behavior of the benchmark misfit curve is due to
the residuals shown in Figs. 5(j)–5(l). For this test
case (14,337–14,838), the PDV-BC scores are worse
than the PDV algorithm, possibly due to incorrectly
placed branch cuts.

For the 17,343–18,345 interferogram, the misfit
curves are given in Fig. 10(b). All paths attain large
misfit values early on the unwrapping path, indicat-
ing poor quality of the interferogram. The LS, MC,
PDV, and SDR score similar values. The PDV-BC
scores the lowest misfit; however, it only unwraps
the highest quality parts of the interferogram, leav-
ing a large area masked out. The FD obtains the
lowest misfit omitting the PDV-BC. It is important
to note that even though the LS is not a quality
driven algorithm, it achieved better results than
the MC, PDV and SDR, because the starting point
and the distribution of mountainous areas prevented
propagation of error to large areas.

The quality of the interferogram 18,345–19,347
is between 14,337 and 14,838 and 17,343 and
18,345. Therefore the expected misfit values should
be between 14,337and 14,838 and 17,343–18,345 for
all algorithms (Table 3). This is the case for all
algorithms, except the PDV-BC, where the misfit
for 17,343–18,345 is lower than the 14,337–14,838
due to early termination. The misfit curves are
shown in Fig. 10(c). The PDV, PDV-BC, and FD
started off the same. The PDV-BC path ended before
the PDV misfit started to rise, indicating that the

Fig. 10. (Color online) Misfit values along various unwrapping
paths for the Envisat interferograms. The misfit (y axis) is shown
in log scale to better represent the high range of values. (a) Note
the last rise in the PDV-BC path. This indicates that the PDV-BC
successfully left a bad area until the end, and the unwrapping
function failed to unwrap that area. The PDV, PDV-BC, SDR
and FD have similar misfits, indicating similar paths, with differ-
ences at the end. (b) The PDV-BC path ends early on. The LS
performs better than the MC, PDV, and SDR. (c) The MC achieves
better misfit than the LS, PDV, and SDR. The PDV, PDV-BC, and
FD start the same. The FD achieves the lowest misfit.

3216 APPLIED OPTICS / Vol. 50, No. 19 / 1 July 2011



masked off area had bad quality. The FD path solves
that area, without having any trouble and lowering
the misfit all along with a gentle negative slope. The
LS starts off with a large misfit, as it hits the top
mountainous area in the beginning of the path going
toward the top left corner from the starting point. It
lowers the misfit until the second portion where the
path goes from the starting point to the lower-right
corner through the mountainous area on the right.
The SDR misfits keep rising and ends up with the
largest misfit among tested paths.

The comparison of weighted and unweighted un-
wrapping functions showed that the performances
of both functions were similar when coupled with
the respective quality maps for MC, PDV, PDV-BC,
SDR, and FD. While PDVand SDR obtained slightly
better results for interferograms 17,343–18,345 and
18,345–19,347, respectively, theMCmisfit was worse
with the weighted unwrapping function. This can be
due to the fact that coherence is over estimated in
areas of low coherence using the maximum likeli-
hood estimator given in Eq. (11) (i.e., γ̂ ≥ γ) [21]. This
is also in line with the low misfits obtained by MC
in a high quality interferogram (14337–14838),
whereas the other interferograms with a lower SNR
resulted in high misfits using MC.

In this study, six path algorithms are compared
using synthetic and Envisat SAR data, using a single
unwrapping function. It is possible that use of a cer-
tain dataset with a particular unwrapping function
could deviate from the results obtained in this paper.
However, the generality of the analysis can be
addressed based on Friis’ formula from the elecom-
munication’s theory [69]:

F ¼ F1 þ
F2 − 1
G1

þF3 − 1
G1G2

þ � � � þ FK − 1
G1G2 � � �GK−1

; ð18Þ

where F indicates the overall system noise figure, FK
is the noise figure, andGK is the gain associated with
the Kth subsystem. Under the Gaussian assumption,

the noise figure related to the unwrapping of the Kth
pixel along a path, for the nonweighted unwrapping
function can be defined as

FK ¼ SNRIN

SNROUT
≈

ffiffiffiffiffi
N

p
; ð19Þ

where SNR stands for signal-to-noise ratio, IN and
OUT represent the input and output of the unwrap-
ping function for pixel K , and N is the number of
neighbors. As shown in Eq. (19), the input to output
SNR values are proportional to number of neighbors,
because the expected variance of the unwrapped
pixel decreases with the number of independent
observations (i.e., equations) defined by the already
unwrapped neighboring pixels [70,71]. Equation (18)
underlines the importance of unwrapping high qual-
ity pixels due to error propagation along the unwrap-
ping path. Equation (19) shows the importance of
delaying the low quality pixels, as the gain of the
unwrapping function will increase with the number
of independent equations related to the unwrapped
neighbors. In other words, delaying the bad quality
pixels not only delays the propagated error, but also
increases the quality of the result. Combining
Eqs. (18) and (19) indicates the importance of the
path and the generality of the results presented in
this paper.

Following the Friis’ formula, a path-following
unwrapping system can be divided into two parts:
(1) individual unwrapping operations, and (2) the
order of operations. The misfit figures reported in
Tables 2 and 3 indicate the performances of the com-
plete system. The effect of the order of operations on
the misfit is analyzed using different paths, namely,
the LS, MC, PDV, SDR, FD. It is also possible to
look at the effect of the order of operations to the
individual unwrapping operations. The errors for in-
dividual unwrapping operations can be analyzed
looking at the error on the phase derivative. Because

Fig. 11. (Color online) Histograms show the combined phase derivative errors in both directions (azimuth and range) for each unwrap-
ping path. The y range of all the plots are between 0 and 250,000, whereas the x range is between −π and π. Red and blue guidelines are
drawn to aid comparison. The red line marks the highest peak in the histograms, and the blue line indicates the highest peak of cycle error.
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the same unwrapping function is used for all algo-
rithms, differences in the results are due to delaying
the low quality pixels, as chosen by each path. The
histograms in Fig. 11 are scaled to the same height,
providing an easy comparison of phase derivative
errors. If there were no errors, the histogram would
have no tails and a very large peak at the center
(zero); therefore, the height of the center peak
provides visual information on how successful the
unwrapping operations were. Cycle errors (errors
larger than �π) and the width of the histograms
indicate how poorly the unwrapping function per-
formed. We see that the LS and PDV-BC algorithms
produce minimal cycle errors. For all cases, the SDR
algorithm results in the largest cycle errors. The fact
that the LS algorithm does not generate large cycle
errors indicates that the unwrapping operations are
done successfully. However, the bad integration path
caused the total misfit to rise. As seen from the
results in Fig. 11, the FD algorithm provides a high
center peak with small cycle errors.

8. Conclusion

We tested six unwrapping paths with two different
datasets. The first dataset focused on the effects of
geometric decorrelation, creating a synthetic inter-
ferogram for different perpendicular baselines. The
second dataset utilized three Envisat interferograms
with small baselines at different qualities. Among
the tested algorithms, the FD algorithms performed
well, scoring either the best or second-best misfit
values in all tests. Correct placement of branch cuts
improve the results for the PDV path, and possibly
any others, but may create large areas masked out
in low quality interferograms. It is important to note
that tested paths might get different results if the
unwrapping function is replaced with another one.
Therefore, even though we believe that the FD path
should improve results with any unwrapping func-
tion, this remains to be tested in the future. However,
for the limited cases tested, our new path selection
algorithm, based on the Fisher information theory,
appears to achieve better results.
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