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a b s t r a c t

Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the
displacement of the Earth’s surface. Changes in the Earth’s surface can result from a wide range of
phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes
in wetland water levels. Time series analysis is applied to interferometric phase measurements, which
wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the
spatio-temporal ‘‘unwrapping” of phase observations is necessary to obtain physically meaningful
results. Several different algorithms have been developed for time series analysis of InSAR data to solve
for this ambiguity. These algorithms may employ different models for time series analysis, but they all
generate a first-order deformation rate, which can be compared to each other. However, there is no single
algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used
in a variety of applications with different characteristics, each algorithm possesses inherently unique
strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we
discuss several algorithms developed for time series analysis of InSAR data using an example set of
results for measuring subsidence rates in Mexico City.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Synthetic Aperture Radar (SAR) systems emit electromagnetic
(EM) waves and collect the returned energy from a target in the
antenna look direction. Many radar systems emit coherent radia-
tion in the microwave portion of the spectrum, meaning that the
EM radiation has a sinusoidal radiation pattern with amplitudes
going through well-defined minima and maxima. Each wavelength
(distance between two consecutive maxima or minima) corre-
sponds to 360� or 2p radians. Wavelength defines the unit distance
for SAR phase measurements.

SAR measurements have two observables: amplitude, and
phase. The amplitude is the strength of the back-scattered EM
wave and is related to the targets shape, orientation, and electrical
properties. As the wave propagates in the air, the phase of the wave
changes from �p to +p for every wavelength of distance traveled.
SAR systems can measure the phase of the return signal very
precisely, but the range, the total number of wavelengths, is diffi-
cult to measure directly. This is similar to having a very accurate
analog watch, without the minute or hour hands. Even though this
watch would be capable of measuring small variations differently,
time frames over a minute (3600 rotation of the second hand)
would result in ambiguous measurements. InSAR phase measure-
ments detect changes between two SAR acquisitions, which are
generally referred to as master and slave acquisitions. Fig. 1 illus-
trates the basic phase observable for a typical InSAR measurement.

In a simplified scenario the phase return of a single point scat-
terer is given as (Hanssen, 2001):

u ¼ 2Rp2p=kþuscat ð1:1Þ
where

u is phase,
Rp is range between radar and the point on the ground,
k is the radar wavelength and
uscat denotes the scattering phase contribution and is related to
the target’s electrical properties.

InSAR measurements are especially sensitive to topography,
ground motion, atmospheric conditions, spatial separation
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Fig. 1. Schematic illustration explaining the repeat pass interferometry. Initial
(master) acquisition displays the line-of-sight and phase measurement. Using the
position of the second acquisition (slave), perpendicular (B?), parallel (Bk) baseline
vectors are formed. The sum of perpendicular and parallel baselines define total
spatial baseline between master and slave. Red portion of the measured signal
corresponds to the difference in phase measurements. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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between satellites, and the electrical properties of the ground as
shown in Eq. (1.2) (Ferretti et al., 2001; Colesanti et al., 2003).
InSAR phase signal is a lumped sum of changes in all these factors,
and depending on the application some factors can be considered
noise. For example, if generating a Digital Elevation Model (DEM)
is the main goal, then deformation can be considered noise. In a
similar way, the time series analysis methods have to remove the
stable topographic phase contribution (DEM) to obtain the ground
motion.

Du ¼ uflat þutopo þuorbit þudefo þutropo þuiono þuscat þunoise

ð1:2Þ
where

Du: interferometric phase (or phase change between SAR
acquisitions),
uflat: flat earth phase,
utopo: topographic phase contribution,
uorbit: the phase error induced by errors in orbit information,
udefo: phase contribution related to ground deformation,
utropo: tropospheric phase contribution,
uiono: ionospheric phase contribution,
uscat: phase contribution related to the scatterer’s electrical
properties,
unoise: the combined noise term.

Flat earth (uflat), topographic phase (utopo) and ground deforma-
tion (udefo) are all parts of the range difference equation between
two passes, which is a function of the satellite orbits, and topogra-
phy. The change in range is related to phase based on the equation
(Bamler and Hartl, 1998):

Duflat;topo;defo ¼ 4p=k � DR ð1:3Þ
where k denotes the radar wavelength, and DR indicates the range
change between first and second passes of the satellite. The flat
earth phase is due to the shape of the Earth, which can be calculated
given the satellite orbits and the geodetic datum (i.e. WGS84). Most
SAR imaging software focus the images with the assumption of a
flat earth, hence the phase difference between flat and actual earth
has to be considered. The flat earth phase is related to the parallel
baseline as follows (DEOS, 2009):

uflat ¼ 4p=k � Bk ð1:4Þ
where the Bk is the parallel baseline for each pixel. Topographic
phase is the phase component of the interferogram related to the
topography above the reference ellipsoid and it is proportional to
the perpendicular baseline as shown in Eq. (1.5) (Ferretti et al.,
2007a):

utopo ¼ 4p=k � =B?=Rsinh � Dz ð1:5Þ
where utopo is topographic phase contribution, B? is perpendicular
baseline, R is range between target and satellite, h is antenna look
angle, and Dz is topography above the reference ellipsoid. In
Eqs. (1.4) and (1.5) the flat earth and topographic phase values
are given relative to the baselines (Bk and B?). Therefore any error
in the orbit information will result in residual phase error, which
is shown as uorbit . Deformation is also a part of the interferometric
phase and is measured in the line-of-sight direction. Deformation is
positive when the range between satellite and the ground is
increasing, which maps subsidence as positive phase change. Given
that deformation is denoted by DRdefo the interferometric phase due
to deformation is given by (Ferretti et al., 2007a):

Dudefo ¼ 4p=k � DRdefo ð1:6Þ
Differences in atmospheric conditions during the acquisitions of

master and slave images also contribute to the interferometric
phase measurements. Tropospheric phase contribution results
from the refractivity index of troposphere being slightly above that
of free space, which has a refractivity of 1 (Zebker et al., 1997).
Tropospheric phase delay can be separated into wet and dry
components, and is generally contained within a phase cycle
(Ferretti et al., 2007a).

utropo ¼ 4p=k � DRtropo ð1:7Þ
where DRtropo indicates the range change due to atmospheric delay.
The atmospheric phase contribution can be estimated using exter-
nal measurements like the Envisat MERIS (Moisseev et al., 2005)
and atmospheric models (Hanssen and Feijt, 1997; Zebker et al.,
1997). Generally the tropospheric phase contribution is referred
as the atmospheric phase screen (APS) for C-band (4–6 GHz) and
higher frequency radars. However, for L-band (1–2 GHz) and lower
frequency radars, changes in the ionospheric total electron content
(TEC) can also affect the interferometric phase significantly.
Changes in ionospheric conditions can also cause blurring in range
and azimuth directions, introducing challenges for image coregis-
tration, as well as reducing coherence due to Faraday rotation
(Meyer and Nicoll, 2009; Wegmuller et al., 2006). 1 unit of TEC
difference ð1016 m�2Þ would result in a phase delay of 2 cycles at
L-band, 0.5 cycles at C-band and 0.3 cycles at X-band given by the
following formula (Wegmuller et al., 2006):

uiono ¼ 1:69 � 10�6Nk ð1:8Þ
where N is the number of electrons per unit area, and k is the
wavelength.

The phase contribution due to changes in the scatterer’s electri-
cal properties are usually assumed negligible for topography
and deformation observations. However, there are studies on
estimating penetration depth, water equivalent of dry snow, and



Fig. 2. The wrapped phase (blue), relative unwrapped phase (green) and absolute
phase (red). (Modified from Massonnet and Feigl, 1998). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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soil moisture (Guneriussen et al., 2002; Nolan and Fatland, 2003;
Nolan et al., 2004) based on the changes in dielectric properties
of the scatterer. It must be noted that the interferometric measure-
ments can reflect changes in different phenomena. Therefore, cer-
tain assumptions are often made to analyze the results. In general,
the larger signal dominates the interferogram and smaller signals
like changes in penetration depth are often masked by bigger
signals like ground deformation or topography. Study of smaller
signals requires a good understanding of the larger contributors
so that their effects can be minimized.

The interferometric phase noise term (unoise) can be linked to
coherence and be broken into four different decorrelation terms
(Zebker and Villasenor, 1992). The effect of different decorrelation
terms is multiplicative and can be given as:

ctotal ¼ cspatial þ cDoppler þ ctemporal þ cthermal ð1:9Þ
where ctotal is the total correlation (interferometric coherence),
cspatial is spatial baseline decorrelation, ctemporal is temporal decorre-
lation, cDoppler is Doppler centroid decorrelation, and cthermal is
thermal decorrelation. Total correlation is 1 when there is no decor-
relation. The spatial baseline decorrelation is related to the horizon-
tal separation between two satellite orbits. Doppler centroid related
decorrelation effects occur when the satellite attitude (yaw, roll,
pitch) is different during master and slave acquisitions. The effect
is due to the squint angle (W), which is dependent on the yaw
and pitch of the satellite (Miranda et al., 2003). Temporal decorre-
lation occurs when the physical properties of scatterers in a resolu-
tion cell changes over time. Temporal decorrelation is stronger in
forests where volume scattering is dominant. Thermal noise of the
radar also creates a decorrelation term and is generally neglected
for interferometry.

As shown in Eq. (1.2) interferometric phase is a sum of many
phenomena such that errors in satellite position, and topography
alter deformation measurements. Furthermore, changing atmo-
spheric conditions also degrade the deformation signal. Since
2000, many groups worked on mitigating these unwanted signals,
using multiple acquisitions over the same area (Ferretti et al., 2000,
2001, 2009c, 2011; Berardino et al., 2002; Werner et al., 2003;
Hooper et al., 2004; Kampes, 2005, 2006; Lanari et al., 2007;
Blanco-Sanchez et al., 2008; Costantini et al., 2008, 2012;
Crosetto et al., 2008; Kuehn et al., 2010; Perissin and Wang,
2012). Aside from these deterministic phase contributions,
unwrapping of interferometric phase is a non-deterministic prob-
lem that has many equally correct solutions, and can only be
solved under certain assumptions (Bioucas-Dias and Valadão,
2007). These assumptions change among time series algorithms
that are reviewed in this paper.

2. Phase unwrapping

InSAR phase measurements are wrapped between �p and +p.
For most practical applications continuous phase values are
required, and are called unwrapped phase (Fig. 2). Regardless of
being defined in 2D or 3D, unwrapped phase is the continuous
curve of the argument of the measured data, and can be rigorously
defined as an integral of the phase derivative, with the initial con-
dition that the argument of the starting point is zero as shown in
Eq. (2.1) (Tribolet, 1977).

uN ¼
Z N

m¼0
u0

mdm ð2:1Þ
u0 ¼ 0

where u0 is the reference point, uN is the end point, m is the inte-
gration variable (samples along measurement axis), and u0

m is the
complex phase derivative. Because InSAR measurements are
relative, the offset (Du) between absolute phase and relative
unwrapped phase can only be resolved using additional informa-
tion, such as GPS measurements.

There are other definitions of the phase unwrapping operation
in the literature. Unwrapping is also defined as sum of the
complex-wrapped differences of the principal values (Ghiglia
et al., 1987; Itoh, 1982):

uN ¼ u0 þ
XN
m¼0

Dum ð2:2Þ

where Dum is the phase of discrete complex derivative operation
(angleðDeium Þ). For the discrete case the only practical difference
between Eqs. (2.1) and (2.2) is the value of the initial pixel, where
it is set to zero in Eq. (2.1), but set to the angle of the initial pixel
in Eq. (2.2). An expansion of these unwrapping functions to multiple
dimensions can be found in Osmanoglu et al. (2011a).

2.1. Review of phase unwrapping algorithms

One of the first unwrapping algorithms was introduced almost
four decades ago by Tribolet (1977). Since then several unwrapping
algorithms have been developed. For two or more (e.g. 3-D) dimen-
sions these unwrapping algorithms can be separated into two
groups: (1) path-following and (2) path-independent algorithms.
Path-following unwrapping algorithms follow a path in the wrapped
phase and unwrap each pixel locally. The path-independent unwrap-
ping algorithms take a more global approach and minimize some
measure of misfit between the unwrapped solution and wrapped
phase gradients (Ghiglia and Pritt, 1998).

2.1.1. Path following unwrapping algorithms
There are many different path following unwrapping algo-

rithms in the literature, including but not limited to: Goldstein
et al., 1988; Bone, 1991; Ghiglia and Pritt, 1998; Xu and Cumming,
1999; Krämer, 1998; Kim and Griffiths, 1999; Herráez et al., 2002;
Abdul-Rahman et al., 2007; Loffeld et al., 2008; Martinez-Espla
et al., 2009; Navarro et al., 2012. All these algorithms utilize a local
unwrapping function, and unwrap all the pixels one-by-one starting
from a reference point. The phase of the reference point is either
known a priori or assumed to be zero.

Sequential paths are the simplest paths used for path-following
unwrapping methods. Sequential paths do not use quality (or cost)
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maps to define a preferred path, and any area-filling (2-D) or
volume-filling (3-D) curve can be used to define a sequential path.
These paths are generally combined with filter based unwrapping
functions, which can reduce noise induced errors effectively during
the unwrapping operation (Krämer, 1998; Loffeld et al., 2008;
Martinez-Espla et al., 2009; Navarro et al., 2012).

One of the first and more popular phase unwrapping algorithms
for 2-D data was Goldstein’s branch-cut algorithm (Goldstein et al.,
1988). Branch-cut theory defines ‘‘residues”, which are local errors
caused by noise or discontinuities in the data. Residues are calcu-
lated using a rotational sum of phase differences over the data
and can be either positive or negative (Goldstein et al., 1988;
Chen and Zebker, 2000; Bamler and Hartl, 1998). A ‘‘branch-cut”
is placed between residues with opposite signs or between the
edge of the image and a residue. An unwrapping path that does
not go through any residues can then be calculated, providing a
unique (non-ambiguous, path independent) solution. However
there are many different ways to draw branch-cuts, and several
papers have been written on the topic using different methods:
nearest neighbor (Goldstein et al., 1988; Zheng and Da, 2011), min-
imum cost matching (Buckland et al., 1995), stable marriages
(Quiroga et al., 1995), modified nearest neighbor (Cusack et al.,
1995), phase field direction (Gutmann and Weber, 2000), and resi-
due vector approach (Karout et al., 2007). Branch-cut algorithm has
since been applied to 3-D unwrapping as well, for which 2-D
branch-cut surfaces are defined (Huntley, 2001; Cusack and
Papadakis, 2002; Salfity et al., 2006; Hooper and Zebker, 2007).

Another class of path-following unwrapping algorithms are
defined using quality or cost maps. While quality maps show the
quality of individual pixels with respect to others, cost maps define
a ‘‘penalty” value for using a certain pixel in the solution. Even
though these two maps show opposite values, the idea behind
them is similar when it comes to defining a path: use the high-
quality (low-cost) pixels as soon as they become available, and
delay unwrapping of low-quality (high-cost) pixels. Unwrapping
paths employing quality or cost maps can also incorporate
branch-cuts to the path resulting in a combined algorithm.

2.1.2. Path-Independent unwrapping algorithms
Path independent unwrapping algorithms find a global solution

minimizing a certain measure of misfit between the wrapped data
and unwrapped solution. Because the algorithm operates globally
on the complete dataset, no unwrapping path is required. An
important class of path-independent unwrapping algorithms is
the minimum L � p norm, which also includes least squares
(L � 2 norm).

L � p norm algorithms operate with the assumption that there
should be a small misfit between the derivative of the unwrapped
data, and complex phase derivative obtained from the wrapped
data (Ghiglia and Romero, 1996):

jXjp ¼
XN
k¼1

ðûk � ûk�1Þ � argðuku
�
k�1Þ

�� ��p ð2:3Þ

where jXjp is the misfit, N is the total number of pixels, û is
unwrapped phase estimate, u is wrapped phase, and p is the degree
of the norm. Helmholtz decomposition can separate any vector field
into rotational and irrotational, parts suggesting that Eq. (2.3)
should satisfy zero rotational field condition (no residues) as
follows (Ghiglia and Pritt, 1998):

r�ru ¼ 0 ð2:4Þ
where the r�r denotes the curl operator and u is the wrapped
phase. Following the Helmholtz decomposition, if the rotational
part is zero, the L � p norm solution reduces to the following
Poisson’s equation (Ghiglia and Romero, 1994; Chen, 2001):
r2 ^̂u ¼ r2u ð2:5Þ

where r2 indicates the Laplacian operator, ^̂u is the estimated
unwrapped phase, and u is the wrapped phase. The right side of
Eq. (2.5) can be calculated directly from the wrapped phase values.
When p = 2 and no weighting is used the solution of Eq. (2.3) is
equivalent to solving Poisson’s equation (Eq. (2.5)) with Neumann
boundary conditions (Ghiglia and Romero, 1996). The Neumann
boundary conditions state that the derivative of the unwrapped
phase is equal to the angle of complex phase multiplication.
Without weighting (p = 2), the Laplacian operation is equivalent to
convolution of the following kernel on the left side of Eq. (2.5).

Using the relations between convolution in time domain and
multiplication in frequency domain (convolution theorem), the
Laplacian kernel can be deconvolved from the right side of the
equation by division in the frequency domain. Hence the solution
can be achieved using 2-D discrete cosine transforms or fast Four-
ier transforms (Ghiglia and Romero, 1994; Pritt and Shipman,
1994). However, if residues exist, the rotational field (r�ru) is
not zero (see Eq. (2.4)), and the L � p norm algorithms will under-
estimate the signal, often indicated by missing fringe lines (Xu and
Cumming, 1999; Loffeld et al., 2008). Residue-cut algorithms can
be utilized to adjust weighting of weighted L � p norm algorithms
to reduce misfit. The residue cut algorithm was extended using the
network theory to obtain an efficient solution to the phase
unwrapping problem in 2-D (Flynn, 1997; Costantini, 1998; Chen
and Zebker, 2000). In the network flow model, each 2 � 2 pixel is
considered a node and the calculated residue value is used as
an arbitrary commodity. The network is then balanced by satisfy-
ing the commodity supply and demand with the help of minimum
cost flow theory. The SNAPHU, a statistical-cost network-flow
algorithm for phase unwrapping, uses different statistical cost
models for unwrapping problems of topography and deformation,
combined with the network theory to obtain approximate L0 norm
solutions.

Most InSAR unwrapping methods focus on unwrapping a single
image, hence are 2-D. With the advent of multi-temporal InSAR,
3-D phase unwrapping gained importance. 3-D unwrapping can
be achieved using 1 + 2D operations, where a series of 1-D and
2-D operations are consecutively used to unwrap the 3-D data.
For example a popular path independent 1-D phase unwrapping
method applied to phase history of a single pixel is called
periodogram. Periodogram method tries to find the best fitting
frequency and phase constant to a series of wrapped phase sam-
ples (Clarkson, 1999). The method relies on finding the maximum
likelihood estimate for the periodogram, which is defined as:

fðfÞ ¼
XN
n¼1

ðeiuÞðe�i2pfnÞ
�����

����� ð2:6Þ

where fðf Þ denotes the periodogram at frequency f , N is the number
of periodogram samples, and ðeiuÞ is the complex phase. Solution is
generally achieved by calculating the periodogram using FFT, and
finding the frequency maximizing the periodogram with a gradient
descent algorithm (Clarkson, 1999). Periodogram is often combined
with spatial (2-D) unwrapping to constitute a solution for unwrap-
ping of 3-D data.

3. Time series analysis of InSAR data

Time series analysis of InSAR data, which observes the displace-
ment of the Earth’s surface over time, is an indispensable tool for
many fields of Earth science. Several algorithms have been devel-
oped for time series analysis of InSAR data (in alphabetical order):
Coherent Pixels Technique (CPT) (Blanco-Sanchez et al., 2008);
Delft Persistent Scatterer Interferometry (DePSI) (Kampes, 2005,
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2006); Interferometric Point Target Analysis (IPTA) (Werner et al.,
2003); Permanent Scatterer InSAR (PSInSARTM) (Ferretti et al., 2000,
2001); Persistent Scatterer Pairs (PSP) (Costantini et al., 2008,
2012); Quasi Persistent Scatterers (QPS) (Perissin and Wang,
2012); Small Baseline Subset (SBAS) (Berardino et al., 2002;
Lanari et al., 2007); Stable Points Network (SPN) (Crosetto et al.,
2008; Kuehn et al., 2010); SqueeSARTM (Ferretti et al., 2009c,
2011); and Stanford Method for Persistent Scatterers (StaMPS)
(Hooper et al., 2004; Hooper, 2008).

Fig. 3 shows the average number of citations for the most pop-
ular reference of the technique, and the average number of papers
referring to the technique based on Google Scholar, Scopus and
Web of Science. PSInSARTM is the most cited technique, while IPTA
has the most publications, even though it is possible to change
these numbers somewhat by using different keywords in the
search engine. All these techniques aim to connect wrapped phase
measurements to produce a near continuous record of displace-
ment. Despite their common goal of producing an unwrapped
time series of InSAR phase observations, these algorithms have
important theoretical and practical differences. For instance, some
algorithms rely mostly on persistent scatterers, while others focus
on distributed scatterers.

The distributed and persistent scatterers have real physical
differences, such as the size of the target relative to the resolution
cell and reflected power. Differences in target behavior give rise to
different algorithms to solve for surface deformation. General
procedure of each algorithm is outlined together with an example
to demonstrate their similarities and differences.
3.1. Persistent Scatterer Interferometry (PSI)

PSI, PSInSARTM, and IPTA share the same basic theory. For the
sake of simplicity, in this section all of these algorithms will be
referred to as PSI. In the science community the technique is
referred as PSI in order not to infringe on the PSInSARTM trademark.
The PSI time series algorithm was developed to use the persistent
scatterers (PS), which are scatterers that have dimensions smaller
than the SAR resolution cell (Ferretti et al., 2001; Kampes, 2006).
Therefore, PS are not affected by baseline decorrelation, and a
single master stack of interferograms can be formed even if the
baselines are longer than the critical baseline, which results in
phase decorrelation for distributed scatterers. Without baseline
decorrelation all acquired data can be used to form interferograms,
which is a key advantage of this algorithm. On the PS it is possible
to achieve sub-meter DEM precision and a surface motion
precision of a few millimeters (Ferretti et al., 2007b).
Fig. 3. Popularity of different InSAR time series methods covered in this study.
Y-axis is in logarithmic scale to show the wide range. Exact paper and citation
numbers are shown above each column.
The PS can be geolocated more accurately and a residual DEM
error can be calculated after the initial DEM subtraction. Several
types of PS can be distinguished from each other, and provide a
way of locating the points in the resolution cell (Perissin and
Ferretti, 2007). Because PS are more abundant in urban environ-
ments, PSI is a suitable method for time series analysis in
metropolitan areas (Soergel, 2010).

The main processing steps of PSI are:

1. Generation of single master stack interferograms and removal
of topographic phase.

2. Selection of candidates based on amplitude dispersion method.
3. Estimation and removal of atmospheric phase screen (APS).
4. Finding additional PS.

Generation of the single master stack interferograms and
removal of topographic phase from each interferogram is accom-
plished using an InSAR processing software, like DIAPASON, DORIS,
ISCE, ROI-PAC, etc. It is important to note that due to large baseli-
nes some interferograms will not have visible fringes, but pixels
containing PS will remain coherent.

Persistent scatterer candidates (PSC) are points that are a first
step approximation to PS based on predefined selection criteria.
The amplitude dispersion method selects the PSC based on the
scatterer amplitude value over time. The idea is that given the
same level of noise applied to a strong (high amplitude) scatterer
and a weak (low amplitude) scatterer the phase change due to
the same amount of noise will be much less in the strong scatterer,
as shown in Fig. 4. The amplitude dispersion of an individual pixel
is defined as the ratio of its standard deviation to its mean value
and can be calculated as follows (Ferretti et al., 2001):

DA ¼ rA=lA ð3:1Þ
where DA indicates the amplitude dispersion value, and rA and lA

indicate standard deviation and mean of amplitude values. Typi-
cally, points with a DA of less than 0.25 are selected as PSC.

Corrected values for DEM and estimates of deformation veloci-
ties are calculated for the selected points by the amplitude disper-
sion method using an iterative calculation starting from the small
baseline interferograms. The next step is to calculate atmospheric
phase screen (APS), which starts with the estimation of the master
APS. A 2-D spatial network is formed using the PSC and residual
phase values are calculated for each PSC after the DEM (utopo)
and deformation (udefo) signals are removed. This remaining
Fig. 4. Amplitude of weak ðSW Þ and strong ðSSÞ scatterers are indicated by the vector
length. When the same noise N is applied to both scatterers, the phase angle of the
resulting vector for the weak scatterer ðRW Þ changes more than that of the strong
scatterer ðRSÞ.
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residual phase includes the phase contributions of uatmo, uscat , and
unoise as in Eq. (1.2). For the PSC the changes in the dielectric
constant of the scatterer (uscat) can be neglected. Since the interfer-
ograms are formed as a single master stack, all interferograms have
the atmospheric contribution from the master acquisition, which
can be estimated by an average of the residual. Once the uatmo

for all the PSC in the master acquisition is known, a low pass filter
and Kriging operation are applied in space domain to calculate APS
for the master acquisition. The APS for other acquisitions can be
calculated in the same way, allowing removal of uatmo from all
interferograms. All PSI techniques require a larger number of
scenes available (>10) for reliable solution, especially in case of
inaccurate baselines and topographic height maps to estimate
the atmospheric phase screen correctly (Werner et al., 2003;
Kampes and Hanssen, 2004).

After the APS calculation, all unwanted signals can be removed
from the observation and DEM errors and scatterer velocity can be
calculated on a pixel-by-pixel basis for all points. This operation is
done using a time series analysis of the phase values maximizing
the coherence value. For the high SNR case and with >30
acquisitions, the expected DEM accuracy for the PS is 0.5 m and
the deformation rate precision is 0.5 mm/yr (Ferretti et al., 2001).

Several variations of the PSI algorithm have been developed
over the past years. SPN, and PSP are two examples and their
differences are mentioned in the following sections.

3.1.1. Stable point network (SPN)
PSI algorithms use a single master stack because by definition

the PS are not affected by baseline decorrelation. Even though
SPN utilizes persistent scatterers, it uses a multi-master stack
aimed at limiting the geometric decorrelation for imperfect PS.
SPN can select persistent scatterers using three different selec-
tion criteria: amplitude stability; interferometric coherence;
and spectral coherence which is to be used when only a few
scenes are available and processing has to be done at full resolu-
tion (Crosetto et al., 2008). SPN is built on the DIAPASON
Fig. 5. Satellite image of Mexico City. White rectangle shows the study area common to
from former Lake Texcoco that is prone to consolidation. Red triangles show the locatio
figure legend, the reader is referred to the web version of this article.)
interferometric processor, which is developed by CNES since
1992 (Duro et al., 2004). SPN has been successfully applied to
several ground deformation phenomena (Crosetto et al., 2008;
Kuehn et al., 2010; Herrera et al., 2011).

3.1.2. Persistent scatterer pairs (PSP)
PSI relies on accurate estimation and removal of spatial arte-

facts, like orbital ramps, atmospheric phase contribution and
DEM errors. To achieve this, a large number of scenes and a
deformation model, which is generally defined to be linear, are
used. The persistent scatterer pairs method, relaxes the necessity
of the deformation model, by introducing an assumption such that
the spatial artefacts are correlated in space, and can be ignored
when comparing neighboring points. PSP defines arcs using neigh-
boring points, and constructs a network defining all the potential
PS with a minimum set of arcs (Costantini et al., 2010). For each
arc, the difference in height and deformation velocity is calculated
over the network, which can later be integrated to obtain an
unwrapped solution using finite difference integration (Costantini
et al., 2012).

3.1.2.1. Application (Osmanoglu et al., 2011b). Subsidence in Mexico
City has been studied with PSI (Osmanoglu et al., 2011b) using an
earlier version of Delft PSI Toolbox (DePSI). In an urban setting like
Mexico City, PSI is a natural choice for deformation analysis due to
abundance of persistent scatterers. In this analysis GPS stations
(Fig. 5) were used to validate the PSI results. The GPS station shown
as white in Fig. 6 is used as a tie-point between GPS and PSI
deformation rates, achieving a RMS agreement of 6.9 mm/yr. The
maximum observed line of sight rate is over 30 cm/yr.

3.2. Stanford Method for Persistent Scatterers (StaMPS, a.k.a.
MAINSAR)

StaMPS has some similarities with the PSI method, however, the
persistent scatterers are redefined as scatterers with stable phase
Figs. 6, 7, 10 and 11. Red boundary shows the limit of clay-rich lacustrine sediments
ns of continuous GPS stations. (For interpretation of the references to color in this



Fig. 6. Results using PSI over Mexico City between January 2004 and July 2006. The white triangle indicates the location of the UCHI continuous GPS station used as the
reference point for PSI analysis (Osmanoglu et al., 2011b). This reference point was chosen because it is outside of the subsiding area.
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characteristics in space and time regardless of their amplitude
(Hooper et al., 2004). Therefore, even though the points are called
persistent scatterers like in PSI, the meaning of the term only
agrees in regards to the phase characteristics and not in the
method for finding these points. This change allows use of StaMPS
over non-urban terrain to measure deformation.

StaMPS and PSI both utilize amplitude dispersion for the initial
selection of PSC, but the threshold value for StaMPS is higher (0.4).
StaMPS also employs an iterative model, where coherence of the
PSC are calculated using other nearby PSC and points with low
coherence values are rejected. PSI only selects PSC with a stable
temporal behavior, eliminating more points than StaMPS. Further-
more, the model for finding additional PS is different. In PSI, the
model is a combination of the topography, linear phase, and long
Fig. 7. Deformation map of Mexico City, obtained by StaMPS using Envisat data between
area common to all results. The color scale is the same as Fig. 6. (For interpretation of the
this article.)
wavelength error sources (atmosphere and orbit), whereas in
StaMPS the only constraint is phase variance of the phase in a local
window (Kampes, 2006; Hooper et al., 2004; Sousa et al., 2009).

The way the unwrapping operation is handled has changed
since the initial version of StaMPS was released. The initial version
employed a series of 2-D unwrapping operations to generate the 3-
D time series. The unwrapping was first done in time domain and
then an iterative least square method was used to integrate a 3-D
solution over all the samples. The latest version of the StaMPS is
3.3b1, released 12 September 2013, while StaMPS comes with a
3-D unwrapping method since version 2.0, that consists of estimat-
ing the probability density functions in space dimension after tem-
poral unwrapping, interpolating the sparse points to a regular grid,
and defining cost-maps to optimize spatial unwrapping achieved
2002 and 2010. (modified from Siles et al., 2015). The white outline marks the study
references to color in this figure legend, the reader is referred to the web version of



Fig. 8. Distributed scatterers can be coherently summed to reduce the effect of
random noise on the signal of interest.

Fig. 9. Block diagram for SBAS al

Fig. 10. Subsidence rate estimated by SBAS over Mexico City from 38 Envisat images b
et al., 2009). The white outline shows the comparison area, and the color scale is the sa
reader is referred to the web version of this article.)
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by SNAPHU) (Hooper et al., 2009; Hooper, 2009). Since version 3.0,
StaMPS allows for analysis of distributed scatterers with small
baselines method (Section 3.3), as well as combining the PS and
SBAS solutions.

3.2.1. Coherence Pixel Technique (CPT)
Coherent pixel technique is similar to PSI methods, because it

utilizes persistent scatterers for analysis and starts from wrapped
interferograms. However CPT uses minimum spanning tree net-
work in three dimensions with temporal, perpendicular and Dop-
pler centroid frequency as three axes to form a multi-master
stack of interferograms instead of a single master stack (Blanco-
Sanchez et al., 2008). The interferometric phase is solved over
the arcs, using an iterative optimization routing called conjugate
gradient method (CGM). Non-linear deformation can be estimated
using singular value decomposition after the interferograms are
unwrapped with an initial linear model.

3.2.1.1. Application (Siles et al., 2015). Envisat ASAR data over Mex-
ico City between 2002 and 2010 are analyzed with StaMPS to
obtain deformation rate over the entire swath. The subsiding area
shown in Fig. 7 agrees well with the clay rich lake sediment area
gorithm (Lanari et al., 2007).

etween 2002 and 2007. Maximum subsidence rate is 38 cm/yr (modified from Yan
me as Fig. 6. (For interpretation of the references to color in this figure legend, the



Fig. 11. SqueeSAR subsidence map of Mexico City using Envisat data between 2003 and 2010. (Hernández-Espriú et al., 2014). White polygon outlines the comparison area.
The color scale is the same as Fig. 6. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Comparison between results obtained from PSI, StaMPS, SBAS and
SqueeSAR algorithms cropped to the study area. The time spans for the data are
not exactly the same.
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shown in Fig. 5. The high point density in the urban area allows for
analysis over large structures such as the elevated Metro line (Siles
et al., 2015).

3.3. Small Baseline Subset (SBAS)

The SBAS algorithm uses distributed scatterers (Fig. 8) and sin-
gular value decomposition to connect independent unwrapped
interferograms in time (Berardino et al., 2002; Lanari et al.,
2004). Small Temporal Baseline Subset (STBAS) is a modification
to the SBAS algorithm in which only interferograms with short
temporal baselines are used (Hong et al., 2010; Hong and
Wdowinski, 2014). The short temporal baselines are especially
needed for highly variable phenomena, such as monitoring water
level changes in wetlands, to minimize temporal decorrelation.
Due to their underlying conceptual similarities, both algorithms
are referred to as SBAS for the purposes of this paper.

SBAS combines multiple unwrapped interferograms to generate
a time series. The master and slave pairs for these interferograms
are selected using the average baseline parameters for the signal
of interest. For deformation analysis, baseline parameters can be
set to 25% of the critical baseline (�400 m), and �1 year for tempo-
ral baseline. In the case of the STBAS algorithm, the shortest
temporal baseline pairs are selected regardless of the spatial
separation. As shown in Fig. 9, these interferograms have to be
coregistered to a single image.

Unwrapped, coregistered interferograms include topography,
atmosphere and deformation signals. The topography signal is
included in all the interferograms, even though it is scaled by the
perpendicular baseline. Topography can be calculated by combin-
ing all the interferograms as follows (Berardino et al., 2002):

Dz ¼ 4pB?1

kRsinh
4pB?2

kRsinh
� � �4pB?N

kRsinh

� �
ð3:2Þ

where Dz is the topography relative to the reference point, B? is per-
pendicular baseline for each acquisition, R is range and h is antenna
look angle. After defining and removing topographic phase
contribution, the signal only contains atmospheric and deformation
signals. The resulting interferograms are converted into mean phase
velocities between time-adjacent acquisitions (Berardino et al.,
2002). Atmospheric filtering is done at the end of the processing
by extracting the signal with high spatial and low temporal correla-
tion using a spatio-temporal filter, as is the case for PSI (Ferretti
et al., 2000, 2001).

3.3.1. Application (Yan et al., 2009)
38 Envisat ASAR images acquired over Mexico City between

November 2002 and March 2007 were analyzed to obtain subsi-
dence rate using SBAS and Delft PSI techniques (Yan et al., 2009,
2012). Both methods achieve similar results with majority of the
points showing less than 2 cm/yr difference between SBAS and
PSI results. The deformation rate obtained by SBAS is shown in
Fig. 10, with 5 cm/yr wrapping, reaching a maximum of �38 cm/
yr. Yan et al. (2012) note difficulties in spatial unwrapping of some
interferograms for the SBAS algorithm. Incoherent areas are
masked out and shown as white in Fig. 10. They further note that
the non-linear portion of the deformation were not captured using
PSI, due to the linear model assumption (Yan et al., 2009, 2012).



Fig. 13. Maps with residual velocities representing the different results obtained by
the four methods. The method name in rows (green) is subtracted from columns
(black). For example first box shows the result of PSI subtracted from StaMPS. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Line of sight deformation rates for GPS, PSI and SqueeSAR in mm/yr.

MRRA MOCS MPAA UPEC

GPS �242 �156 �193 �84
PSI �254 �165 �208 �85
SqueeSAR �263 �190 �222 �87

B. Osmanoğlu et al. / ISPRS Journal of Photogrammetry and Remote Sensing 115 (2016) 90–102 99
3.4. SqueeSARTM

The SqueeSAR is advertised as the second generation PSInSARTM

by it’s developer, TRE (Ferretti et al., 2009a–c, 2011). The main dif-
ference of SqueeSAR from it’s predecessor is the combination of
persistent and distributed scatterers for the time series analysis.
In other words, while PSI was focusing on solely persistent scatter-
ers, SqueeSAR combines information from both distributed and
persistent scatterers (Rocca et al., 2013). Combination of persistent
and distributed scatterers is achieved by constructing a multi-
master network, and defining a new distance metric, to find the
correct grouping of points in the same spatial neighborhood in a
stack of interferograms. The distance metric used in SqueeSAR is
Fig. 14. Comparison of SqueeSAR, PSI and GPS timeserie
the Kolmogorov–Smirnov (KS) test (Ferretti et al., 2009b; Parizzi
and Brcic, 2011). The non-parametric KS test uses the maximum
value of absolute difference between two cumulative distribution
functions (CDF) as it’s metric (Parizzi and Brcic, 2011). The KS test
used in the SqueeSAR uses amplitude values from a stack of inter-
ferograms to calculate the probability density function and CDF.
Pixels are then combined with their neighboring pixels with simi-
lar CDF (or with low KS distance), creating neighborhoods.

3.4.1. The Quasi-PS technique (QPS)
Quasi-PS utilizes partially coherent targets in order to increase

the spatial density of the observations. However, instead of the sin-
gle master stack used in most persistent scatterer algorithms, it
uses a multi-master network to limit the baseline decorrelation.
Furthermore this allows for incorporation of temporally coherent
scatterers (Quasi-PS), allowing for increased coverage in non-
urban areas. Another difference from the regular PSI algorithms
is that spatial filtering can also be applied to improve the phase
response of the distributed scatterers. Unlike SqueeSAR, QPS does
not use a statistical similarity measure to group the distributed
scatterers (Luo et al., 2012).

3.4.1.1. Application (Hernández-Espriú et al., 2014). SqueeSAR was
used to analyze the subsidence in Mexico City using Envisat data
between 2003 and 2010. The annual subsidence rate was calcu-
lated by averaging the total subsidence rate over the entire time
span. The maximum subsidence rate was found to be 343 mm/yr
in line-of-sight direction (Fig. 11, Hernández-Espriú et al., 2014).

3.5. Comparison of the methods

In order to evaluate the similarities and differences between the
four methods, we compared their results in the common study
area that was first used by Osmanoglu et al. (2011b) by plotting
all four solutions in one figure (Fig. 12). The four methods yielded
s. The locations of GPS stations are shown in Fig. 5.



Table 2
Comparison of InSAR time series methods (Modified from Lu and Dzurisin, 2014).

Method Phase Element Parameters Network Solver Scatterer

CPT Wrapped Arc Dh, Dv Multi-master Conjugate gradient method Point, distributed
Delft PSI Wrapped Arc Dh, Dv Single master Periodogram Point
IPTA Wrapped Arc Dh, Dv Single master Periodogram Point
PSInSARTM Wrapped Arc Dh, Dv Single master Periodogram Point
PSP Wrapped Arc Dh, Dv Single master Minimum cost flow Point
QPS Wrapped Arc Dh, Dv Multi-master Periodogram Point, distributed
SBAS Unwrapped Point h, v Multi-master Least squares Distributed
SPN Wrapped Arc Dh, Dv Multi-master Periodogram Point, distributed
SqueeSARTM Wrapped Neighborhood Dh, Dv Multi-master Least squares Point, distributed
StaMPS Wrapped Arc Dh, Dv Multi-master Minimum cost flow Point, distributed
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a very similar subsidence pattern of high subsidence in the right-
hand-side of the smaller study area with overall similar rates.
The differences between the solutions were obtained by calculat-
ing residual velocity maps showing the differences between sets
of two solutions (Fig. 13). This analysis yielded that maximum dif-
ferences lie in the range of ±30 mm/yr, which is �8% of the maxi-
mum subsidence rate. Smallest differences were obtained between
the SBAS and SqueeSAR methods and largest between the StaMPS
method with respect to all other. It is important to note that some
differences in the velocities may arise from the use of different
datasets in term of number observations and their time span.

A comparison of GPS timeseries, SqueeSAR and PSI timeseries
are shown in Fig. 14. The SqueeSAR timeseries solves for accelera-
tion, while the PSI result only accounts for linear motion. However
it is clear from Fig. 14 that the subsidence in Mexico City is linear
between 2003 and 2008. The GPS rates are converted to line-
of-sight using satellite incidence and track heading angles
(Osmanoglu et al., 2011b). All timeseries are offset in y-axis to
match the SqueeSAR start day of March 7th, 2003. The rates for
the given timeseries are shown in Table 1.

As a result of their distinct methods and features, each of the
time series unwrapping algorithms is best matched to a particular
set of conditions. For instance, PSI uses ‘‘persistent scatterers” in
the observation area that are much smaller than the actual pixel
resolution of the radar instrument. The scatterers are thus not
affected by baseline decorrelation, and interferograms with very
long baselines can be used to construct the time series. The abun-
dance of permanent scatterers in urban areas makes PSI a useful
technique for monitoring surface motion in urbanized areas
(Colesanti et al., 2003; Bell et al., 2008; Bürgmann et al., 2006;
Osmanoglu et al., 2011b). In contrast, SBAS and StaMPS unwrap-
ping methods utilize mainly ‘‘distributed scatterers”; these can
be affected by baseline decorrelation, but are more numerous in
non-urban areas (Hooper, 2006; Gourmelen et al., 2007, 2010).
Combining both permanent and distributed scatterers, SqueeSAR
is a newer method for creating time series analyses, and has
applications in a variety of study areas. A summary of the methods
mentioned in this paper can be found in Table 2.

4. Conclusions and future trends

In this paper, four different results describing the Mexico City
ground subsidence have been compared, which were achieved by
different scientists using different techniques. The high subsidence
rate of Mexico City provides a strong interferometric signal.
Because the signal is very strong it is hardly suppressed by long-
wavelength orbital errors, or the atmospheric phase screen. How-
ever, the high subsidence rate also increases the fringe rate
observed in interferograms making it challenging to unwrap. All
four algorithms obtain similar subsidence rates, and deformation
patterns. The variations in deformation rates can be due to differ-
ent assumptions in different algorithms, as well as the difference in
the time period studied at each case. PSI, SBAS and SqueeSAR
achieve similar rates over the study area, while the StaMPS
approach shows a lower rate. Mexico City subsidence is highly lin-
ear through time, and therefore the rate differences are more likely
to be the result of algorithmic differences rather than reflecting
actual ground subsidence variations. It is also interesting that none
of the methods were able to obtain deformation rates for the
North-Eastern part of the study areas, around lake Nabor Carrillo.
This area is home to agricultural farmlands and natural vegetation,
which do not provide persistent scatterers. Furthermore due to
farming activities (vegetation growth, harvesting, etc.) the signal
is not reliable in the longer time scales. Extracting information
from such areas remain a challenge, and might be solved with
methods using shorter time frames, such as STBAS or algorithms
focusing on partially (quasi) coherent targets. Until recently time
series analysis and phase unwrapping have generally been treated
as two separate areas of study, presumably because it is difficult to
simultaneously solve all three dimensions observed with InSAR:
the two spatial domains (termed azimuth and range) and time.
In theory, however, an unwrapping algorithm could solve for signal
ambiguity in all three dimensions, with significant advantages in
terms of computing speed and robust analysis. Indeed, the time
series analysis methods described in this paper can be considered
unwrapping algorithms, with the added function of the atmo-
spheric and spatial filtering operations that are included in some
time series analysis algorithms.

Three-dimensional unwrapping algorithms have not been used
until recently because of two main issues: (1) there are no efficient
methods for solving phase ambiguity in three or more dimensions,
unlike the case of two-dimensions, where unwrapping methods
are based on network theory (Chen and Zebker, 2000, 2001,
2002); (2) larger datasets prohibit so-called ‘‘brute-force inver-
sion” approaches. Path-following unwrapping methods unwrap
the dataset pixel-by-pixel, making them well adapted for
parallelization for improved speed, and limiting required memory
to a relatively small amount. The disadvantage of path-following
unwrapping is path dependence, as the algorithms can potentially
diverge from the global minimum misfit solution by following a
faulty ‘‘bad” path. Fortunately recent advances in the field provide
solutions for unwrapping of sparsely distributed points in 3-D with
certain assumptions (Shanker and Zebker, 2010; Hooper, 2010;
Costantini et al., 2012). The future of InSAR relies on accurate
unwrapping of 3-D data sets, as much as it relies on the continua-
tion of InSAR capable satellites.
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