
TECTONICS, VOL. 11, NO. 2, PAGES 303-315, APRIL 1992 

ISOSTATIC REBOUND DUE TO 
TECTONIC DENUDATION: A 
VISCOUS FLOW MODEL OF A 
LAYERED LITHOSPHERE 

Shimon Wdowinski x and Gary J. Axen 
Department of Earth and Planetary Sciences, Harvard 
University, Cambridge, Massachusetts 

Abstract. A four-layer model of the upper 150 km of 
the Earth is used to calculate the viscous response of 
continental crust and the underlying mantle to tectonic 
denudation. The model comprises a strong upper crustal 
layer, a weak lower crustal layer, a very strong mantle 
lithosphere layer, and a weak mantle asthenosphere layer, 
which is in accord with experimental constraints on 
strength-depth profiles for continental lithosphere. The 
strength of each layer is represented by its effective 
viscosity. Flow in the crust and mantle is driven by 
buoyancy forces, which arise from the unloading of an 
allochthon along a detachment fault by a series of 
instantaneous displacements (earthquakes or rapid creep 
events). Numerical solutions, obtained by using a finite 
element technique, predict footwall uplift, Moho 
deflection, and surface topography that are consistent 
with observations from the Basin and Range province of 
the western United States. The calculated curvature of 

the footwall uplift is also similar to that observed and is 
sensitive to the geometry of the detachment fault. Such 
bending need not be elastically controlled; hence the 
curvatures of footwall domes do not clearly place limits 
on the effective elastic thickness of the extending crust. 
The upward deflection of the Moho and the surface 
topography are sensitive to the viscosity structure and 
enable us to bound the range of the various viscosities. 
By matching observations from the Basin and Range 
province, which indicate no Moho deflection and low 
magnitude of surface topography (_•3-5 km), we estimate 
the upper crustal, lower crustal, and mantle lithospheric 
viscosities in the ranges 102x-1023 Pa s, 10x9-102• Pa s, 
and 10•-10 •3 Pa s, respectively. 

INTRODUCTION 

Movement on gently dipping normal faults 
(detachments) is an important means of accommodating 
continental crustal extension [Anderson, 1971; 
Armstrong, 1972; Wernicke, 1981; Wernicke and 
Burchfiel, 1982]. Such faults commonly unroof midcrustal 
levels, and the resulting buoyancy forces in the 
lithosphere cause isostatic adjustment by uplift of the 
footwall (Figure 1). The response of the lithosphere to 
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this unloading provides important constraints on the 
mechanical behavior of continental lithosphere during 
extension. 

Spencer [1982, 1984] and Howard et al. [1982a] 
proposed that isostatic rebound and doming of 
Cordilleran metamorphic core complexes occurred due to 
tectonic denudation of the crystalline cores by 
detachment faults that bound them. Spencer [1982] 
suggested that the large ratio of amplitude to diameter 
(~ 0.1) of the uplifted domes indicates nonelastic 
behavior. By assuming Airy compensation, Spencer 
[1984] modeled uplifts resulting from various strain 
distributions in the upper plate of detachment faults, 
reproducing observed geometries of metamorphic core 
complexes in the southern Basin and Range province. 

Buck [1988] modeled the case in which crustal strength 
is bounded by a simple elastic-plastic failure envelope 
and extension of an elastic-plastic crustal layer above an 
inviscid layer is accommodated by steep normal faulting 
of the upper layer coupled with rapid flow of the inviscid 
layer. He showed, for areas of high crustal curvature 
where bending stresses in the elastic-plastic layer exceed 
the strength of crustal rocks, that the effective elastic 
thickness of the crust decreases to a fraction of a 
kilometer from the 5 km initial thickness assumed. 

Block and Royden [1990] and King and Ellis [1990] 
modeled flexure due to extension of an elastic plate 
overlying an inviscid fluid. Block and Royden [1990] 
considered the case of detachment faulting and lateral 
removal of upper crustal material, and King and Ellis 
[1990] modeled steep normal faulting of the elastic layer. 
Both concluded that for elastic parameters 
experimentally derived for upper crustal rocks the 
effective elastic thickness of the upper crust must be in 
the range 0.5-4 km in order to produce curvatures 
similar to those observed in the Basin and Range 
province. To keep the upper crust in the elastic 
deformation field, King and Ellis [1990] used an effective 
Young's modulus that is lower than experimentally 
determined values by a factor of ~60. 

Wernicke and Axen [1988] proposed combined elastic 
and nonelastic behavior of the lithosphere during 
extension, arguing for significant elastic strength in the 
extending lithosphere, which supports locally 
uncompensated topographic loads of the Basin and 
Range province [e.g., Eaton et al., 1978]. They suggested 
that a maximum topographic load is reached, after which 
nonelastic responses dominate the deformation. 

Block and Royden [1990] and Wernicke [1990] 
considered the elevations of metamorphic core complexes 
relative to their unextended surroundings. Both 
concluded that if core complexes are locally isostatically 
supported then the compensating fluid is of crustal 
density and not of mantle density. 

The observations and models discussed above suggest 
that isostatic rebound of tectonically denuded terrains 
proceeds steadily through nonelastic processes over 
geologically measurable times () 10,000 years), once the 
elastic strength of the extending lithosphere is exceeded. 
Ductile shear zones (mylonite zones), tens to thousands 
of meters thick are ubiquitous in metamorphic core 
complexes. These shear zones record significant ductile 
flow in the footwalls of detachments. Such nonelastic 
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Fig. 1. Geometries of flexures and domes related to tectonic denudation. (a) Present-day and 
restored cross section through the breakaway zone of the Castle Cliff detachment in the Beaver 
Dam Mountains, Utah, at the west edge of the Colorado Plateau, showing the flexure there [after 
Wernicke and Axen, 1988]. The section is parallel to transport direction. The westernmost 
exposed footwall (at point A) restores to a paleodepth of 7 km (A'), indicating tectonic 
redistribution of at least that thickness of upper crust. About 200 of rotation of the detachment 
has occurred due to postdenudation uplift. (b) Structure contour map of the Whipple 
detachment fault (a metamorphic core complex dome) in the Whipple Mountains, California 
[after Frost, 1981]. Contours are labeled in hundreds of feet. There is about 1.2 km of relief (4000 
feet) on the dome across roughly 20 km of exposure of the core. (c) Cross section of the 
Chemehuevi detachment system in the Chemehuevi Mountains, California [after John, 1987]. 
Section is parallel to the transport direction. The detachment is domed about I km across 15 km 
of exposure, but has been uplifted more than that amount. Upended blocks ("stranded 
allochthon") left behind by the migrating allochthon are up to 13 km thick measured 
perpendicular to the Tertiary strata [Howard et al., 1982b]. This is a minimum initial depth to 
the detachment. Both Chemehuevi and Whipple detachment faults are rooted to the northeast, 
beneath the unrotated Hualapai Mountains and adjacent ranges that merge with the Colorado 
Plateau. Therefore Figures lb and lc represent only the top of much larger domical fault surfaces 
[e.g., Howard et al., 1987, Figure 3]. Units are Ts¾, Tertiary sediments and volcanic rocks; Mz, 
Mesozoic strata; Kg, Creteceous intrusive rocks; Pz, Paleozoic strata; pC, Precambrian crystaline 
rocks; and pCrn, mylonitized Precambrian crystalline rocks. 
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processes apparently dominate much of the deformation 
history of metamorphic core complexes. Here we 
investigate a nonelastic response of the lithosphere to 
tectonic denudation above a detachment fault by 
modeling the upper 150 km of the Earth as four layers of 
different viscosities. Each layer in the model corresponds 
to a thermally and/or compositionally defined layer in 
the Earth. 

THE MODEL 

Areas that have experienced tectonic denudation, such 
as Cordilleran metamorphic core complexes, show 
significant extension of upper crustal rocks above the 
detachment surface. Controversy over the distribution of 
extension in the lower crust and mantle lithosphere 
centers on whether upper crustal extension is 
accommodated by extension of the lower crust and 
mantle lithosphere directly below core complexes ("in 
situ") [e.g., Miller et al. 1983], or whether low-angle 
normal faults connect regions of upper crustal extension 
with regions of lower crustal or mantle lithospheric 
extension that are laterally removed [e.g., Wernicke, 
1985; Jones, 1987]. In situ mantle lithospheric extension 
results in net subsidence of the area that would be a 

metamorphic core complex, in stark contrast to the 
observation of relatively high-standing core complexes 
domes [e.g., Block and Royden, 1990]. We assume that 
no in situ extension occurs in deeper levels of the 
lithosphere; the crust and mantle respond only to 
unloading due to lateral removal of an allochthon in the 
upper crust. 

The above assumption reduces the denudation problem 
to a relaxation problem, but not to a simple one, because 
the duration of the unloading (106-107 years) coincides 
with the time scale of lithospheric relaxation (10•-106 
years). As a result, the relaxation problem must be 
treated within the framework of the unloading process. 
We approach it by assuming that unloading occurs by a 
series of instantaneous small displacements of the 
allochthon that mimic deformation by earthquakes or 
rapid creep events in the brittle upper crust and that 
relaxation occurs between displacement events. The short 
time intervals (103-104 years) between the displacement 
events do not allow the crust and the mantle to reach a 

full relaxation during the duration of the unloading. 
We consider a region of continental crust overlying 

mantle, with upper crustal extension accommodated by 
displacement of an allochthon along a detachment fault 
(Figure 2). The allochthon is assumed to move 
horizontally by a series of small instantaneous 
displacements. Geological studies indicate that 
allochthon displacements can reach a horizontal distance 
on the order of 50 km in a time scale of 2-10 m.y. [e.g., 
Reynolds and Spencer, 1985; Davis and Lister, 1988; 
Wernicke et al., 1989]. Detachment faults apparently dip 
gently (0ø-30 ø) in the middle crust, as evidenced by 
seismic profiles [e.g., Allmendinger et al., 1986] and the 
lack of large metamorphic gradients for tens of kilometers 
in the direction of transport in the footwall of 
detachments [Crittenden et al., 1980]. In the upper crust 
the faults may steepen toward the breakaway fault 
[Howard et al., 1982a] or be gently dipping at depths of 
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Fig. 2. Schematic diagram of the model showing a 
three-layer lithosphere comprised of upper crust, lower 
crust, and mantle lithosphere, overlying the 
asthenosphere, with the upper crust extending by 
tectonic denudation. The allochthon (long dashed lines) 
moves from the breakaway at a constant velocity along 
the detachment fault. By assuming a laterally uniform 
thermal gradient, the transitions between the upper and 
lower crust (dotted line), and between the mantle 
lithosphere and asthenosphere (short dashed line), which 
are temperature dependent, become depth dependent as 
well. The transition between the lower crust and the 

mantle lithosphere (Moho) is a compositional boundary. 

only a few kilometers [Wernicke et al., 1985, 1989; Axen 
et al., 1990]. In the model, we consider simple 
detachment fault geometries, which are characterized by 
two parameters: the allochthon thickness (h0) and the 
detachment ramp angle (0), which is the dip of the 
segment of the detachment between the surface (the 
breakaway) and the horizontal midcrustal part 
(Figure 3). 

Crustal response to tectonic denudation extends over a 
region that is wider than the denuded terrain. However, 
at a sufficient distance from the breakaway (100-150 km) 
the crust and the mantle are assumed not to respond to 
the unloading. Reflection seismic profiles from the 
northern Basin and Range province (COCORP 40øN 
seismic-reflection transect) show that the Moho is fiat 
across regions with large gradients of upper crustal strain 
[Klemperer et al., 1986; Hauser et al., 1987], suggesting 
that the flow occurs mostly in the middle to lower crust. 
Thus we assume that the response to denudation decays 
with depth, and at a sufficient depth, 150 km or more, 
the mantle asthenosphere does not deform significantly. 

The amount of deformation within the crust and 

mantle depends on their strength. We use a four-layer 
model comprising a strong upper crustal layer, a weak 
lower crustal layer, a very strong mantle lithosphere 
layer, and a weak mantle asthenosphere layer, which is in 
accord with experimental constraints on strength-depth 
profiles for continental lithosphere [e.g., Brace and 
Kohlstedt, 1980]. Alternation between weak and strong 
layers tends to concentrate the deformation within the 
weak layers, especially within the lower crust, because of 
its proximity to the denuded region. By assuming a 
laterally uniform geothermal gradient, the transitions 
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between the upper and lower crust (dotted line in Figure 
2), and between the mantle lithosphere and 
asthenosphere (short dashed line in Figure 2), which are 
temperature dependent, become depth dependent as well. 
The transition between the lower crust and the mantle 

lithosphere (Moho) is a compositional boundary. 

Mathematical Formulation 

The continental crust and the mantle are assumed to 

behave over long time intervals as incompressible viscous 
fluids. As a first approximation, we neglect along-strike 
variations and use two-dimensional vertical plane strain 
calculations. We use the plane strain formulation of 
Wdowinski and O'Connell [1990], which accounts for 
viscous and buoyancy forces. The governing equations are 
basically the Navier-Stokes equations (without inertial 
terms) that depend on the dimensionless Grashof number 

Gr = gpøxø2 (1) 
r/ouo 

where g is the acceleration due to gravity, and x0, u0, r/0, 
and p0 are the characteristic length, velocity, viscosity, 
and density, respectively. The Grashof number is the 
ratio of buoyancy forces to viscous forces and determines 
the ability of a viscous fluid to respond to buoyancy 
forces [Turner, 1973]. It has a similar effect to that of the 
Argand number [England and McKenzie, 1982] in thin 
viscous sheet calculations. In this study, we keep g, x0, 
u0, and p0 constant, and as a result Gr is a function only 
of the characteristic viscosity (r/0). As Gr-• 0, 
corresponding to very high characteristic viscosity, the 
viscous fluid deforms very slowly (low velocities) in 
response to a given buoyancy force. As the Grashof 
number increases, corresponding to lower viscosity, the 
deformation due to the same buoyancy force is faster 

(higher flow velocities) and for Gr• cx> (very 
low-viscosity), the deformation is very fast. The 
characteristic parameters (Table 1) yield values of the 
Grashof number in the range 1-1000. 

Parameter Ranges 

There are four types of parameters that are needed to 
be specified a priori: the thicknesses, the viscosities, and 
the densities of the the four layers (upper crust, lower 
crust, mantle lithosphere, and mantle asthenosphere) and 
the allochthon geometry (Figure 3). In order to reduce 
the number of free parameters, we choose to keep some of 
them constant throughout all calculations. Our free 
parameters are the viscosity structure of the four layers 
and the allochthon geometry. The upper and lower crust 
are assumed to be 20 km thick, the mantle lithosphere is 
assumed to be 40 km thick, and the portion of the 
mantle asthenosphere that is considered in the model is 
70 km thick (Table 2; notice that the paremeters in 
Table 2 are nondimensionilized). The allochthon 

TABLE 1. Values of the Characteristic Parameters That 
Are Used to Evaluate the Grashof Number in the 

Calculations 

Parameter Value 

g gravitational acceleration 10 m s -2 
x0 characteristic length 100 km 
u0 characteristic velocity 10 mm yr -• 
p0 characteristic density 3220 kg m -a 
r/0 characteristic viscosity 102•-1024 Pa s 

Gr Grashof number 0.1-1000 
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TABLE 2. Values of the Dimensionless Parameters Used 
in the Calculations. 

Parameter Value 

Buoyancy forces are dominated by the upper surface 
topography, which changes during the allochthon 
displacement. Hence small density variations (< 5%) 
lower in the crust are negligible and are omitted from the 
model. 

Sue upper crust thickness 0.2 
Sic lower crustal thickness 0.2 
Sml mantle lithosphere thickness 0.4 
h0 allochthon thickness 0.15 
0 detachment ramp angle 15ø-450 

r/u½ upper crust viscosity 1 
r/l½ lower crust viscosity 1-10 -3 
r/ml mantle lithosphere viscosity 1-10 
r/ma mantle asthenosphere viscosity 1-10 -3 
pc crustal density 0.8 
Pm mantle density 1.0 

geometry is defined by its thickness, which is assumed to 
be 15 km, and by the detachment ramp angle, which 
ranges from 15ø to 45ø. 

The model is most sensitive to the upper crustal 
viscosity, which determines downward propagation of the 
deformation due to the unloading. If the upper crustal 
viscosity is very high (r/he -• •), the upper crust will not 
deform in response to the unloading, and, consequently, 
no deformation will occur below the upper crust. Lower 
values of upper crustal viscosity allow deformation in the 
upper crust, which leads to deformation in the lower crust 
and mantle. We choose the upper crustal viscosity as the 
characteristic viscosity (r/0) and hence need to specify 
only the viscosity ratios, which represent the relative 
strengths of the layers. We are aware of no estimates of 
the effective viscosity of the upper crust, but by assuming 
that the upper crustal effective viscosity is lower than 
that of oceanic lithosphere and higher than that of the 
asthenosphere, we can bound a range of possible values. 
The effective viscosity of oceanic lithosphere has been 
estimated to be 1023-10 24 Pa s from the flexural response 
to long-term loads [Walcott, 1970]. The effective viscosity 
of the asthenosphere has been estimated from studies of 
postglacial rebound to be ~1021 Pa s [Cathies, 1975; 
Peltier and Andrews, 1976]. The above estimates bound 
the characteristic viscosity to be in the range 1021-1024 
Pa s (Table 1). The dimensionless lower crustal viscosity 
(r•½) and mantle asthenospheric viscosity (r/ma) are 
chosen to be in the range 1-10 -3 , because the lower crust 
and the mantle asthenosphere are weaker than the upper 
crust (Table 2). The dimensionless mantle lithospheric 
viscosity (r/ml), which is assumed to be stronger than the 
upper crust, is chosen to be in the range 1-10. For 
comparison, in a study of a necking instability in the 
Basin and Range, Zuber et al. [1986] assumed that the 
lower crust is 100 times weaker than the upper crust, the 
mantle lithosphere is twice as strong as the upper crust, 
and the mantle asthenosphere is 50 times weaker than 
the upper crust. 

We consider a simple case of a buoyant crust overlying 
a denser mantle; the crustal density (pc) is assumed to be 
20% less than the mantle density (pro) (2670 kg m -3 
versus 3320 kg m -3 [Block and Royden, 1991]). 

Boundary Conditions 

In this study, we investigate the crustal and mantle 
response to tectonic denudation caused by extension of 
the upper crust; the lower crust and the mantle are 
assumed to deform only in response to the unloading in 
the upper crust. In addition, we assume that tectonic 
denudation is a local phenomenon and that at a sufficient 
distance from the breakaway (100-150 km), the crust and 
the mantle do not respond to the unloading. Thus we 
impose a condition of no slip along the vertical and the 
bottom boundaries (Figure 3). 

Although the Earth's surface is a traction-free 
boundary, the detachment surface beneath the 
allochthon, which is excluded from our calculations, is 
subjected to tractions. We impose the allochthon load, as 
a normal stress k. oundary condition along the detachment 
fault. The normal stress (•rzz(x, t) = pcgh(x, t)) is 
proportional to the height of the allochthon (h), where 
the height of the allochthon is a function of horizontal 
position (x) and time (t) (see below). This implicitly 
assumes negligible flexural strength for the allochthon. 
The allochthon is assumed to move by a series of 
instantaneous displacements (earthquakes or creep 
events), without displacing the detachment surface. This 
is in accord with our assumption that below the 
detachment surface the crust and the mantle respond 
only to the unloading, without experiencing in situ 
extension. Thus along the detachment surface we impose 
zero horizontal velocity and a condition on the normal 
stress (azz), which allows this surface to move vertically 
and to sustain tractions. Elsewhere along the upper 
boundary we impose traction-free boundary conditions. 

Method of Solution 

We use a finite element technique with eight-noded 
quadrilateral isoparametric elements to solve numerically 
for the velocity field. In addition, a penalty function 
formulation is used to replace the pressure term for 
incompressibile fluid and solved by a selective reduced 
integration technique [Zienkiewicz, 1977]. We conducted 
various numerical experiments with 200-800 elements and 
100-400 time steps to ensure that the solutions are grid- 
and time-step independent. As well, various patch tests 
have been conducted to ensure that the code is free of 

zero-energy and propagating spurious modes 
[Zienkiewicz, 1988]. Because the governing equation is 
time-independent, we solve for the velocity field at 
successive time steps. At the initial stage the allochthon 
has not been displaced, the buoyancy forces are zero, and 
there is no flow within the lithosphere. The allochthon is 
assumed to move by a series of instantaneous 
displacements. We introduce the unloading by changing 
the vertical stress boundary conditions (az•(x, t)), which 
would arise from horizontal displacement of the 
allochthon, along the detachment surface. The stress 
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boundary condition at any given time and horizontal 
position (•rzz(x, t)) is calculated by assuming a constant 
horizontal displacement rate of the allochthon and 
conservation of the allochthon mass. These assumptions 
correspond to the end member case of an internally 
unextended allochthon. Mathematically, the stress is 
calculated by assuming that the two dotted regions in 
Figure 3 are equal in area; the area of the dotted 
rectangle (d x h0) and the height of the dotted triangle 
(d x tan 0) determine the length of the triangle 
(2h0/tan 0) (or of the trapezoid in later stages of the 
denudation). The velocity field within the crust and the 
mantle, due to the unloading, is calculated for each time 
step. In order to calculate the element grid of the next 
time step, we assume constant velocity between two 
successive time steps. This assumption is valid for small 
time steps in which the time increment between steps is 
smaller than 50,000 years. We use 200-400 time steps to 
calculate the lithospheric and asthenospheric response to 
a denudational event occurring during 2-6 Ma. 

RESULTS 

Figure 4 shows the velocity field that is generated 
within the crust and mantle in response to tectonic 
denudation. The general flow pattern is upwelling 
beneath the breakaway and downwelling between the 
breakaway and the side boundaries. This results from the 
no-slip boundary conditions along the side and bottom 
boundaries, which enforce the subsidence of the upper 
surface near the side boundaries in order to conserve the 

uplifted mass near the breakaway. The magnitude of the 
flow velocity depends on the lateral extent of the 
denuded region and on the Grashof number (Gr), which 
determines the ability of the viscous fluid to respond to 
buoyancy forces. The velocity of the flow decreases with 
depth where the velocity gradient is dependent on the 
vertical viscosity structure. A very high viscosity layer 
(almost rigid), which reduces or may even halt the 
downward propagation of the deformation, can decrease 
significantly the flow in that layer and below it. In 

1.o 50 km 

2.00 

, , (b) 50 km 

Fig. 4. The flow field within the crust and mantle in response to tectonic denudation. The 
velocity scale is given by the arrow below the lower left corner, which is scaled to the 
characteristic velocity (u0). (a) Velocity field for a constant viscosity (Gr = 500, 
Tuc -- Tic -- Trnl -- Trna -- 1). The mantle participates in the overall flow. (b) Velocity field for a 
more realistic viscosity structure ((Gr = 500, Tu½ = 1; Tic ---- 0.01; Tml -- 2; Tma -- 0.01). The flow 
is concentrated within the crust and forms a low-viscosity channel flow. 
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contrast, a low-viscosity layer, which accommodates most 
of the deformation, tends to amplify the flow in the layer; 
the magnitude of the flow increases with lower viscosity 
values. 

For depth-invariant viscosity (Figure 4a), the vertical 
velocity gradient is small and the mantle participates in 
the overall flow. For a possibly more realistic viscosity 
structure, where the lower crustal and mantle 
asthenospheric viscosities are 2 orders of magnitude less 
than the upper crustal and mantle lithospheric viscosities 
(Figure 4b), the flow field is confined to the crust, with 
negligible flow in the mantle. By generating a channel 
flow in the low-viscosity lower crust, rather than by 
deforming the strong mantle lithosphere, the lower crust 
moves more effectively into the denuded area. Similarly, 
if the mantle lithosphere is almost rigid (very high 
viscosity) the unloading affects only the crust. The 
low-viscosity of the mantle asthenosphere has no 
influence on the flow, because most of the flow is 
concentrated within the crust, and the very strong mantle 
lithosphere does not transmit deviatoric stress downward. 

d-0 km 

50 km 

d = 50 km 

, , 50 krn 

Fig. 5. Simulation of geometrical relations between rock 
units (with u0 = 1.0, Gr = 500, 
•uc •- 1, •lc -- 0.01, •ml •- 2, •ma •- 0.01). (a) At the 
initial stage, the undeformed horizontal markers are 2.5 
km apart. (b) After 50 km of allochthon displacement, 
during 5 m.y. (calculated in 250 time steps). The short 
dashed line indicates the original shape of the 
detachment. The markers are deformed and show 

footwall uplift, Moho deflection, and surface topography. 
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Fig. 6. Simulation of geometrical relations in the crust 
for various detachment geometries after 50 km of 
allochthon displacement. The time-stepping procedure is 
the same as for Figure 5, with u0 = 1.0, Gr = 500, 
r/,c = 1, r/to = 0.01, r/,t = 2, r/,a = 0.01. The 
detachment ramp dips (a) at 15 ø, (b) at 30 ø, and (c) at 
45 ø . See text for discussion. 

We try to simulate observed geometrical relations 
between various rock units (Figure 1) by tracing the 
shapes of marker that initially are horizontal (Figure 5a). 
Figure 5b shows an example of these markers after being 
deformed in response to 50 km of allochthon 
displacement during 5 m.y. (calculated in 250 time 
steps). The isostatic rebound in response to the 
unloading causes crustal uplift beneath the denuded 
allochthon and subsidence of the upper and the 
detachment surfaces in order to conserve the uplifted 
mass. Horizontal markers that were initially located 
beneath the allochthon (at depth of 15 km) are uplifted 
to the surface and form a dome-shaped structure similar 
to that of metamorphic core complex domes (Figure 1). 
Although the two-dimensional formulation indicates a 
cylindrical structure, the term dome is used because of 
the similarity to the observed metamorphic domes. The 
dome geometry is determined by the allochthon thickness 
(h0) and the horizontal displacement (d); the allochthon 
thickness determines the amplitude of the dome, and the 
displacement determines the diameter (wavelength) of 
the dome. There are three important geometrical 
features that are produced by th• model: flexure and 
footwall uplift near the breakaway, Moho deflection, and 
surface topography. 

Figure 6 shows that for a given viscosity structure, 
various curvatures of the uplifted footwall are produced 
with various detachment geometries. Furthermore, for a 
given detachment geometry the curvature of the uplifted 
footwall changes little for a large range of the other 
parameters (Figures 7 and 8). Thus the geometry of the 
flexure is sensitive to the detachment geometry but 
relatively insensitive to the strength of the various layers. 
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Fig. 7. Calculations of Moho deflection as a function of 
the dimensionless lower crustal viscosity (r/to) with other 
parameters held constant (u0 = 1.0, Gr = 500, 
%c- 1; •]ml: 2; •]ma: 0.01). The time stepping 
procedure is the same as for Figure 5. (a) r/l½ = 1.0, (b) 
•/1½ = 0.1, (c) • = 0.01, and (d) •/• = 0.1 and •]ml: 20. 
Moho uplift is measured between the highest and lowest 
point on the Moho. See text for discussion. 

deflection is very low (< 1 km), and below that value the 
amplitude is practically zero. 

Our model assumes that the crust and the mantle 

behave over long periods of time as viscous fluids. Any 
topographic relief that is not dynamically supported will 
decay with a sufficient amount of time. However, during 
the finite period of time of a denudation event the crust 
and mantle cannot fully relax, allowing some relief to 
exist. The short-wavelength (up to about 20 km) relief 
follows the shape of the denuded allochthon. The 
long-wavelength relief (50-100 km) is supported by the 
flow field that is induced by the denuded allochthon and 
has a dome shape that is centered around the 
topographic low next to the detachment at the surface. 
This may cause the metamorphic core and nearby areas 
to have higher elevations than their surroundings (Figure 
6). Detachment geometry determines the short 
wavelength surface relief, but can also affect long 
wavelength relief, because it determines the size and the 
distribution of buoyancy forces; in terms of the model it 
determines the magnitude and distribution of the stress 
boundary conditions. For a given detachment geometry, 
the magnitude of the relief depends mostly on the 
Grashof number (Gr), which determines the relaxation 
time of the upper crust. However, the relief can vary 
significantly during the early stages of a denudation 
event, when the wavelength of the relief is too short to 

50 krn 00 km 
, , •- -• 

100 max. relief = 7 km 

30 km 

I,- -• (b) 

The results compare favorably with several footwall 
uplifts in the Basin and Range province in terms of 
amplitude, curvature, and wavelength of the synformal 
part near the breakaway (Figure la and Wernicke and 
Axen [1988, Figures 2 and 3]). 

In contrast, the Moho deflection and the topography 
are sensitive to the viscosity structure and to the Grashof 
number, which enables us to place bounds on some of 
these parameters. The upward deflection of the Moho is 
caused by an upwelling flow within the mantle, beneath 
the breakaway. As shown in Figure 4, the magnitude of 
flow in the mantle is controlled by the lower crustal and 
mantle lithospheric viscosities. When the lower crustal 
viscosity is the same as the upper crustal and mantle 
lithospheric viscosities, the mantle participates in the 
overall flow, and the Moho is deflected upward (Figure 
7a). The amplitude of the deflection decreases as the 
lower crustal viscosity decreases (Figures 7b and 7c), or 
as the mantle lithospheric viscosity increases (Figure 7d). 
For both detachment geometry and Grashof number held 
constant, the amplitude of Moho deflection is determined 
by the ratio between the lower crustal and the mantle 
lithospheric viscosities. When this ratio is lower than 
0.01 (for Gr in the range 100-1000) the amplitude of the 

200 max. relief = 4 km 

3O kin 

•_ _. (•) 

Ccr = 500 max. relief = 2 km 

2 Ma after 30 km 

denudation ceased I<- ->l 

Ccr = 500 max. relief < !km 

Fig. 8. Calculations of surface relief as a function of the 
Grashof number (Gr) after 30 km of allochthon 
displacement, during 3 m.y. (calculated in 300 time 
steps); the other parameters are held constant (u0 - 1.0, 
r/he = 1; r/l½ = 0.01; r/ml = 2; r/ma = 0.01). (a) Gr = 100, 
(b) Gr = 200, (c) Gr: 500, and (d) no surface relief, 2 
Ma after the denudation ceased (with Gr = 500). 
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have any significant effect on the viscous forces. In later 
stages, when the wavelength of the denuded region is 
longer, the relief is determined by the Grashof number. 
Figure 8 shows examples of surface topography after 30 
km of allochthon displacement, as a function of the 
Grashof number (calculated in the same way as Figure 5). 
For Gr = 100 the maximum relief reaches 4 km (Figure 
8a), whereas for Gr = 500 the maximum relief is lower 
and reaches only 2 km (Figure 8c). After denudation 
ceases, the modeled lithosphere can fully relax (in 1-2 
m.y.), flattening the surface relief but preserving the 
geometry of the uplifted footwall dome (Figure 8d). 

DISCUSSION 

Several aspects of this model agree well with 
geometries observed in areas where large-magnitude 
upper crustal extension has been concentrated on 
low-angle normal faults. The model reproduces the 
curvature and uplift observed in detachment terrains 
(e.g., Figure 6) without elastic flexure of the crust. 
Therefore elastic behavior need not have played an 
important role in the formation of such uplifts, as 
postulated by Wernicke and Axen [1988]. This agrees 
well with elastic flexure models that require the bulk of 
the crust in such areas (all but a fraction of a kilometer) 
to have behaved nonelastically in order to reconcile the 
magnitudes of fiber stresses with the strength of crustal 
materials [Buck, 1988; Block and Royden, 1990, King 
and Ellis, 1990]. 

The topographic relief produced by our model would 
be ephemeral if the crust were truly viscous. However, 
the upper crust clearly has a substantial elastic thickness 
even when in extension, as indicated by normal-fault 
earthquake foci to depths of 10-15 km [e.g., Jackson, 
1987] and by locally uncompensated topography [e.g., 
Eaton et al., 1978]. Effective elastic thickness deduced 
from the curvature of footwall domes (i.e., the part of 
flexed crust in which strength is greater than fiber 
stresses) does not represent the the thickness of the 
upper crust that elastically supports such topographic 
loads [e.g., Wernicke and Axen, 1988]. Because the 
boundary between upper and lower crust is principally a 
thermal one, viscously upwelling lower crust is in effect 
transferred to the upper crust if cooling is rapid relative 
to uplift. In that case the thickness of the upper crustal 
layer that stores the elastic stress re]eased in earthquakes 
(our high-viscosity upper crust) need not be substantially 
changed and may support topographic relief produced 
through nonelastic mechanisms. 

Such an effect may be represented by the western edge 
of the Colorado Plateau, where a topographic high of 
0.3-1.0 km above the regional plateau elevations is 
parallel to the breakaway zone [Wernicke, 1985]. Locally 
this relief is spatia]ly coincident with a large-scale fold, 
but elsewhere uplift was accommodated largely by 
subvertical faults [Moore, 1972; Wernicke and Axen, 
1988]. These faults are large enough (to ~ 4 km offset) 
that they probably penetrated through the entire strong 
upper crustal layer. Such breakaway-side-down shear is 
consistent with the strain path predicted by our mode] 
(Figure 9; see discussion below and Axen and Wernicke 
[19911). 
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Fig. 9. Finite strain in the footwall of the detachment. 
(a) Before deformation each square is 2.5 x 2.5 km 2. (b) 
After 30 km of allochthon displacement, during 3 m.y. 
(calculated in 300 time steps) the squares are deformed. 
Notice that near the breakaway the surface squares have 
experienced breakaway-side-down simple shear along 
vertical planes. 

The geometry of the synform near the breakaway is 
largely a function of the geometry of the detachment fault 
there (see previous section and Figure 6). Curvature and 
final dip of initially horizontal markers in the breakaway 
synform increase with initial dip of the detachment ramp. 
This agrees with footwall geometries observed in the 
Mormon Mountains region below detachments that had 
different initial dips, and where initially subhorizontal 
layering is present [Axen et al., 1990]. 

In metamorphic core complexes it is generally 
impossible to recognize initially horizontal markers like 
those in Figure 6, making the strain pattern shown there 
difficult to apply directly. The dome typically is defined 
by mylonitic foliation that may have formed in a dipping 
shear zone. For example, the last mylonites probably 
form parallel to the base of the detachment ramp in the 
ductile midcrustal. Such initially dipping markers will 
record a different strain path than originally horizontal 
ones [e.g., Axen and Wernicke, 1991]. 

Seismic reflection profiles in the Basin and Range 
province show a relatively fiat, featureless Moho 
[Klemperer et al., 1986; Hauser et al., 1987]. This occurs 
in our model when the ratio of lower crustal to mantle 

lithospheric viscosities is less than 0.01, causing Moho 
uplift over a broad area in response to local unroofing. 
Although Moho uplift is minor in our models (0-7 km), 
this is mostly due to the modest amount of extension: 50 
km in 250 km length, or 20% extension. Much larger 
amounts of extension have been documented regionally 
(e.g., 200-500% in the Basin and Range province near 
Las Vegas, Nevada [Wernicke et al., 1988]). Flow in the 
middle to lower crust may be an important mechanism 
for coupling upper crustal extensional strain with uplift 
of the upper mantle. 

Relief on the Moho is also minimized by local 
shortening and thickening of lower and middle crust 
below denuded terrains (Figure 9). This is important in 
deeply eroded regions, where such a zone may be 
mistakenly interpreted as an evidence of continental 
orogeny. 

The model predicts geometrical relations such as 
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footwall uplift, Moho deflection and surface topography, 
which can be compared with the observations and used to 
bound the range of the free parameters. First we estimate 
the characteristic viscosity by evaluating the range of 
possible values of the Grashof number. Topographic relief 
created in our viscous flow model of the crust during a 
denudation event would decay rapidly after cessation of 
movement on the detachment (in 1-2 m.y.). 

In actively extending areas of the Basin and Range 
province, such as around Death Valley, the maximum 
relief is about 3 km, with regionally averaged topographic 
relief more typically in the range 1-1.5 km. Here we 
neglect effects of erosion and of the load due to density 
differences between basin fill and bedrock, which has the 
same effect as slightly increasing loads due to topographic 
relief. The sensitivity of the topography to the Grashof 
number determines Gr in the range 100-1000, which will 
support maximum topography of about 3 km throughout 
the entire time-stepping calculations, depending on the 
detachment geometry. In our formulation the Grashof 
number is a function only of the characteristic viscosity 
because all the other characteristic parameters are fixed. 
Thus Gr in the range 100-1000 yields an upper bound of 
1021-1022 Pa s for the characteristic viscosity, which is 
the effective viscosity of the upper crust. As shown in 
Figure 4, the lower crustal viscosity determines the lower 
crustal velocity field. By assuming that the velocity of 
flow in the lower crust cannot exceed more than 10 

cm/yr, which is 10 times faster than the unloading rate, 
we estimate the lower crustal viscosity to be 10-100 
times lower than the upper crustal viscosity. Thus our 
lower crustal viscosity estimate is 10•9-102• Pa s. Our 
estimate agrees with that of Kruse et el. [1991], who 
estimated the effective viscosity of the lower crust to be 
10•8-10 •ø Pa s in the Colorado Plateau adjacent to the 
Basin and Range province. For a shorter length scale of 
channel flow (150 km) the viscosity can be higher, about 
10 • Pa s [Kruse et el., 1991]. Figure 7 shows that no 
Moho deflection occurs when the ratio of lower crustal to 

mantle lithospheric viscosities is lower than 0.01; thus we 
estimate the viscosity of the mantle lithosphere to be in 
the range 10•-10 •a Pa s. We cannot estimate the mantle 
asthenospheric viscosity because our model is not 
sensitive to this parameter. The average strength of the 
lithosphere is predominantly determined by the strength 
of the very strong mantle lithosphere [England and 
McKenzie, 1982]. This suggests that the effective 
lithospheric viscosity should be 1021-10 •a Pa s. Indeed, 
England [1986] argued that the average viscosity of the 
lithosphere might need to be as low as 1022 Pa s for 
extensional regions to deform as rapidly as they do. 

The various models predict finite-strain geometries and 
strain histories that can be compared with field 
observations. For elastically controlled flexural failure 
models [e.g., Buck, 1988; King and Ellis, 1990] 
layer-parallel shortening and elongation are predicted for 
the concave and convex areas of flexures, respectively. 
This is complicated near the allochthon because the 
footwall there is first bent and then unbent, and 
discussion of ,*,he strain path followed by such an 
elastically flexing footwall is beyond the scope of this 
paper [see Axen and Wernicke, 1991]. Figure 9 shows a 
grid that is initially formed of 2.5 km by 2.5 km squares. 

After 30 km of allochthon displacement in 3 m.y., the 
grid has been deformed, and each quadrilateral 
represents the net local finite strain. Near the breakaway, 
the finite strain in the footwall is principally represented 
by breakaway-side-down subvertical simple shear. 
Breakaway-side-down faulting is almost ubiquitous along 
the western margin of the Colorado Plateau on faults 
from outcrop to map scale with displacements measured 
in millimeters to kilometers [e.g., Moore, 1972; Smith et 
el., 1987; Wernicke and Axen, 1988], and agrees well with 
the above result. Bartley et el. [1990] showed that the 
strain path followed by the footwall of the central Mojave 
metamorphic core complex is consistent with a flexural 
failure mechanism of uplift, akin to that modeled by 
Buck [1988]. However, ambiguities exist which also allow 
for an interpretation in which distributed subvertical 
simple shear accounts for the strain path [Axen and 
Wernicke, 1991]. For example, much of the footwall uplift 
there apparently occurred along subvertical 
hanging-walbside-up structures [Bartley et el., 1990], 
consistent with the latter interpretation. 

The finite strain of the denuded footwall near the 

allochthon (Figure 9) is somewhat difficult to apply due 
to the lack of appropriate strain markers there. For 
example, the unroofed grid elements directly adjacent to 
the allochthon (Figure 9b) are nearly square, implying 
little net finite strain. In fact, these elements have 
experienced (1) early hanging-wall-side-down subvertical 
simple shear as they passed out from under the base of 
the hanging wall ramp, then (2) hanging-wall-side-up 
subvertical simple shear, as they passed out from under 
the hanging wall. The earlier strain history (1) would 
likely be obliterated by subsequent mylonitization as the 
footwall is translated up the deeper (ductile) part of the 
ramp. Hence the strain markers most suitable for 
recording the the second strain event (2) would be 
initially dipping mylonites. See Axen and Wernicke 
[1991] for further discussion. 

LIMITATION OF THE MODEL 

This simple model ignores along-strike variations and 
assumes two-dimensional flow. However, the domal 
structure of denuded footwalls suggests that 
three-dimensional geometry and flow are important. It is 
possible that the transport-parallel warping of 
detachment surfaces (e.g., Figure la) is due to variations 
along strike in thickness of the allochthon, rather than 
later folding or an initially broadly corrugated fault 
surface. At present, a three-dimensional model is difficult 
to formulate because the geometry, boundary conditions, 
and various parameters (viscosity and density structure) 
are poorly constrained. Investigations of two-dimensional 
models can impose some constraints on the problem, 
which will help to constrain future investigations of more 
realistic three-dimensional models. 

Here we model the process of flow in the middle and 
lower crust acting in response to tectonic denudation, 
rather than attempt a formulation that represents the 
crust itself and the wide variety of deformation 
mechanisms that may be in play. The continental 
lithosphere deforms by various processes, such as, brittle 
failure, power-law creep, and cataclastic flow. Other 
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studies of continental deformation have assumed that the 

lithosphere behaves as perfectly plastic material [e.g., 
Tapponier and Molnar, 1976], as a viscoelastic material 
[e.g., Vilotte et al., 1986], or as a power law fluid [e.g., 
England and McKenzie, 1982]. In our calculations, we 
assume that the crust and the mantle behave over long 
period of time as Newtonian fluids, which significantly 
simplifies the model and the calculations. Kruse et al. 
[1991] show that linear viscous rheology satisfactorily 
approximates deformation by power law creep in the case 
of channelized flow, as modeled here for the weak lower 
crust. Therefore the linear viscous flow assumption need 
not necessarily correspond to any specific deformation 
mechanism in order to relate the rate and locus of 

deformation to the stresses derived from tectonic 

unroofing. The effective viscosities represent average 
strengths of each of the four layers, each of which 
deforms by the various mechanisms (e.g., brittle failure, 
creep, and cataclastic flow). 

Temperature variations, which are neglected in the 
model, mostly affect the strength of rocks. We have taken 
into account the first-order effect of the temperature by 
separating the upper 150 km of the Earth into strong and 
weak layers. Lateral temperature variations, which are 
second-order effects, may change the shape of the layers, 
or locally affect the strength of rocks, but should not 
change the general results. Calculations with more 
realistic and less simplistic constitutive relations will 
probably produce somewhat different results and should 
be approached in future studies. 

Although the model creates topography during the 
deformation event, the topography decays rapidly after 
cessation of movement on the detachment (in 1-2 m.y.). 
Long-lived topography in areas where rapid extension 
ceased 10 m.y. or more ago (e.g., Whipple Mountains, 
[Davis and Lister, 1988], Nopah and Resting Spring 
ranges [Wernicke et al., 1989] suggests that the crust has 
significant elastic strength and that this strength 
supports the topographic loads. In the real world, the 
viscous response of the lithosphere to the unloading is 
stress dependent. Thus during a denudation event, when 
the stresses are high, the deformation and the 
topography are dominated by the viscous behavior of the 
crust. After cessation of denudation the stresses decrease, 
and elastic behavior dominates the crustal deformation. 

Visco-elastic constitutive relations may be more suitable 
for the purpose of explaining topography. However, 
viscoelastic relations demand specifying additional free 
parameters which will complicate the model. 

In order to keep a simple time-stepping procedure, the 
allochthon and sedimentary basin loads were excluded 
from our calculations. We considered only the allochthon 
load and ignored any strength or deformation within the 
allochthon. In reality, deformation within the allochthon 
changes the load distribution, but this is not expected to 
be a first-order effect [cf. Spencer, 1984]. Internal 
extension of the hanging wall leeds to asymmetrical arch, 
with gentler dips on the hanging wall side. The 
allochthon is probably divided into two strength 
domains: the unextended part probably has strength 
similar to the bulk of the upper crust, and the extended 
part may account for little strength. Similarly, the effects 
of basin-fill loads need to be analyzed, although this is 

probably not a first-order effect (e.g., compare the results 
of Buck [1988] for experiments with and without 
sedimentation). Future models should address the 
strength as well as the load of the allochthon and 
sediments. 

In the model, extension is limited to the upper crust, 
whereas the lower crust and mantle deform only in 
response to the unloading. This is in accord with the 
small amount of the overall subsidence observed in 

metamorphic core complexes and contrasts with the 
much larger amounts of subsidence that would be 
expected if in situ mantle extension occurred [White and 
McKenzie, 1988]. We feel that the bulk of the data 
indicates that the locus of mantle lithospheric extension 
related to metamorphic core complex formation is 
laterally removed from the denuded terrains in the upper 
crust [e.g., Wernicke, 1985; Jones, 1987]. However, 
examples exist in which in situ mantle extension is 
indicated (e.g., the Rio Grande Rift [Olsen et al., 1979; 
Prodehl and Lipman, 1989]). Future modeling should 
consider this scenario also. 

In our model, as well as those of Buck [1988], Block 
and Royden [1990], and King and Ellis [1990], footwall 
uplift is accommodated entirely by bending. Although 
this may be the case in a number of places, it also 
appears that uplift can be accommodated along discrete 
zones of failure (such as steep faults), as was apparently 
the case in the North Virgin Mountains [e.g., Wernicke 
and Axen, 1988]. This implies that the mechanical 
spectrum of footwall response to tectonic denudation is 
broader than has been considered to date in continuum 

modeling. Such responses should be considered in future 
studies. 

CONCLUSIONS 

A four-layer model of the upper 150 km of the Earth is 
used to calculate the viscous response of continental crust 
and the underlying mantle to tectonic denudation. The 
model comprises a strong upper crustal layer, a weak 
lower crustal layer, a very strong mantle lithosphere 
layer, and a weak mantle asthenosphere layer, which is in 
accord with experimental constraints on strength-depth 
profiles for continental lithosphere. The strength of each 
layer is represented by its effective viscosity. The flow in 
the crust and mantle is driven by buoyancy forces, which 
arise from the unloading of an allochthon along a 
detachment fault by a series of instantaneous 
displacements (earthquakes or rapid creep events). 

Numerical solutions, obtained by using a finite element 
technique, predict footwall uplift, Moho deflection, and 
surface topography. The curvature of the footwall uplift 
is similar to that which has been observed in regions that 
experience tectonic denudation (e.g., the Basin and 
Range province), and is determined by the geometry of 
the detachment fault. The upward deflection of the Moho 
and the surface topography are sensitive to the viscosity 
structure and enable us to bound the range of the various 
viscosities. By matching observations from the Basin and 
Range province, which indicate little Moho deflection and 
low magnitude of surface topography (_<3-5 km), we 
estimate the upper crustal, lower crustal, and mantle 
lithospheric viscosities in the ranges 102•-1023 Pa s, 
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1019-10 •1 Pa s, and 10•1-1023 Pa s, respectively. 
Melosh [1990] showed that extension of an elastic layer 

overlying a viscous layer could result in initial 
detachment geometries similar to those modeled here: a 
steeper portion that transects the strong, upper crustal 
layer, and a fiat portion at depth where strength has 
decreased. Although our model does not include elastic 
strength of the upper crustal layer, it does account well 
for deformation that would be expected after the elastic 
limit of the upper crust has been reached. More 
comprehensive viscoelastic models seem to be required, 
in order to reproduce initial fault trajectories, 
deformation histories, and resulting topography. 

An important feature of any model of lithospheric 
behavior is that it be testable. The models presented 
here suggest strain histories and strain states in the 

upper crust that locally differ from those that would be 
produced, for example, by elastically controlled flexure, 
such as that proposed by Buck [1988] (see also Axen and 
Wernicke [1991]). Field studies in appropriately chosen 
areas should be able to provide these tests. 
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