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Large-scale continental tectonics of back arc (extensional) and Andean-type (compressional) 
environments are investigated by using the thin viscous sheet model to calculate the deformation 
within continental lithosphere that is subjected to horizontal forces on its plate boundaries and 
to basal drag from the asthenospheric flow beneath. The shear tractions acting on the base of 
a deformable lithosphere are derived from a corner flow model that assumes a rigid subducting 
plate and a deformable overlying plate. Because the calculated shear tractions and the deformation 
within the overlying plate are interdependent, the corner flow and the thin viscous sheet models are 
solved simultaneously. We use a perturbation method to obtain analytical solutions for the velocity 
and strain rate fields within the overlying continental lithosphere. The solutions depend on the 
angle of subduction, the dimensionless thickness of the lithosphere, and the ratio of asthenospheric 
to lithospheric viscosities, which governs the viscous coupling between the asthenosphere and the 
lithosphere. Calculations are compared with observations from the Andes and the Aegean; our 
results explain some of the features of the deformation in these regions that have heretofore not 
been explained by other models. Our model predicts that in a compressional environment a 
broad region of uplifted topography will tend to develop above a more steeply dipping slab (30ø), 
rather than above a shallower slab (10ø-15ø); this is in accord with observations in the various 
segments of the central Andes. For an extensional environment, the model predicts that a zone 
of compression can develop near the trench and that extensional strain rate can increase with 
distance from the trench, as is observed in the Aegean. We also estimate the effective viscosities 
of -•102ø Pa s for the asthenosphere, -•2x 1021 Pa s for the Aegean lithosphere, and -•1022 Pa s 
for the Andean lithosphere. 

INTRODUCTION 

Subducting plate boundaries are the most tectonically ac- 
tive regions on Earth. Though seismicity indicates that 
processes within sinking slabs are similar everywhere, the 
deformation of the overlying plate can vary greatly. The 
large-scale deformation can be either compressional, as in 
the Andes, or extensional, as in the Aegean or other back 
arc basins. Furthermore, the overriding plate in a back arc 
environment may exhibit large-scale extensional and com- 
pressional stress fields at short distances from one another. 
A narrow belt along the trench is subjected to compression, 
while further from the trench the plate extends either by 
interplate deformation or by the initiation of a spreading 
center. 

It has been long noticed that subduction plate boundaries 
can be classified into two types according to their tectonic 
stress field: extensional (back arc) and compressional [e.g., 
Wilson and Burke, 1972; Uyeda and Kanamori, 1979]. Some 
of the explanations of the first-order deformation are the 
convergence rate between the overriding and the subducting 
plates [Hyndman, 1972], age of the subducting plate [Molnar 
and Atwater, 1978], and the geometry of the subduction 
zones [e.g., Uyeda and Kanamori, 1979]. Investigations of 
global mantle flow suggest that global plate motion strongly 
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influences the type of deformation above subduction zones 
[e.g., Hager et al., 1983]. 

A common explanation for mountain building processes 
above subduction zones is strong mechanical coupling be- 
tween upper and lower plates where the subduction is 
very shallow (Chilean-type subduction) [e.g. Uyeda and 
Kanamori, 1979]. However, the widest Andean plateau is lo- 
cated above a relatively steeply dipping slab [Stauder, 1975; 
Barazangi and Isacks, 1976], where the contact between the 
subducting and overriding plates is limited to a narrow zone 
near the trench. Isacks [1988] explains the formation of the 
Andes as a result of horizontal shortening preceded by a 
thermal weakening event. He suggests that the horizontal 
extent of the various segments of the Andes are independent 
of the present-day geometry and represent the subduction 
geometry during the weakening event. 

The Aegean deformation is characterized by compression 
near the trench, minor extension in the southern Aegean, 
and intensive extension in the northern Aegean [McKenzie, 
1978; Jackson and McKenzie, 1988]. So far there is no sin- 
gle model that explains the observed Aegean deibrmation. 
McKenzie [1978] used a corner flow model, where the sub- 
ducting and overlying plates are rigid, to explain the com- 
pression near the trench; but because the overriding plate 
was assumed to be rigid he was unable to explain the distri- 
bution of the extension. Sonder and England [1989] used a 
thin viscous sheet model with temperature dependent rheol- 
ogy overlying an inviscid asthenosphere to explain the spa- 
tial distribution of the extension, but this model does not 
produce compression near the trench. 
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We present here a simple model that can encompass the 
first- and second-order large-scale deformation above sub- 
duction zones. Continental lithosphere overlying a subduc- 
tion zone can be treated as a continuum deforming over a ge- 
ological time period. This assumption enables us to solve for 
the deformation as a boundary value problem. The bound- 
ary conditions, which determine the first-order deformation, 
are taken from the well-constrained global plate velocity 
models [e.g., Minster and Jordan, 1978; Chase, 1978]. Since 
plate tectonics is a kinematic theory, we cannot explain the 
cause of the first-order deformation, but it enables us to 
describe the deformation quantitatively. Shear traction act- 
ing on the base of the lithosphere is an additional boundary 
condition that is calculated from a corner flow model for the 

asthenosphere below the lithosphere and which causes the 
second-order deformation of the lithosphere. This bound- 
ary value formulation gives us a quantitative description of 
the deformation above subduction zones that includes the 

most important mechanisms: global plate motion and local 
interaction between the lithosphere and the asthenosphere. 

THE MODEL 

Our model (Figure 1) is a combination of two previous 
models: a thin viscous sheet model of the lithosphere [Eng- 
land and McKenzie, 1982] and a model that treats the flow 
in the asthenosphere near a subducting plate as a corner 
flow [McKenzie, 1969, 1978]. These models are modified and 
combined to provide a physical representation of a subduc- 
tion zone. The model assumes that the apex of the astheno- 
spheric wedge and the edge of lithosphere are at the same 
horizontal position, which we identify with the trench. This 
explicitly ignores the region that lies between the trench and 
the tip of the asthenospheric wedge (stippled in Figure 1). 

The shape of subduction zones makes it reasonable to ne- 
glect variations in the along-stike direction. We use the thin 
viscous sheet model because it appears to describe conti- 
nental lithospheric deformation quantitatively [England and 
McKenzie, 1982; Houseman and England, 1986; Sonder et 
al., 1986]. The advantage of the thin sheet approximation 
is that velocities and stresses are vertically averaged, which 
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Fig. 1. Schematic diagram of the model showing the geometry 
and the parameters that influence the deformation of a continental 
lithosphere above subduction zone. D is the width of the zone of 
deformation; r/l, the lithospheric viscosity; r/a, the asthenospheric 
viscosity; Txz(x), the basal drag; 80, the angle of subduction; u•, 
the subduction velocity; and ut, the trench velocity. The dashed 
lines represent the lateral and vertical extent of the model. 

eliminates the vertical dimension from the mathematical for- 

mulation. Thus, the mathematical formulation of the two- 
dimensional flow reduces the boundary value problem to one 
dimension only. Another modification of the model is con- 
sideration of shear traction on the base of the lithosphere, 
similar to the plane stress model of Bird and Baumgard- 
her [1984]. However, when shear tractions are present, the 
thin sheet solutions, which are vertically averaged, are less 
accurate; the order of accuracy, which is evaluated in the 
appendix, depends on the wavelength of the dominant shear 
traction and the thickness of the lithosphere. 

Corner flow models have been used to describe astheno- 

sphere flow in subduction zones. Some models treat the 
asthenosphere as a Newtonian fluid [e.g., McKenzie, 1969, 
1978; Sleep and ToksSz, 1971; Stevenson and Turner, 1977], 
while others calculate corner flow for a nonlinear rheology as 
well [Tovish et al., 1978]. All of these models use the classi- 
cal corner flow models of Moffat [1964] and Batchelor [1967], 
where the flow is bounded by two rigid plates. Observations 
from subduction zones show that both bounding plates are 
deforming. Seismicity indicates limited deformation within 
the subducting oceanic lithosphere, but the overriding conti- 
nental lithosphere is often extensively deformed. Therefore, 
we assume that the corner flow is bounded by an inclined 
rigid plate and deformable overlying plate. Mathematically, 
the corner flow model is applicable to an infinite wedge. 
Since the physical problem has finite dimensions, we limit 
our region of interest to the wedge that lies beneath the 
deformed part of the overlying plate and above the entire 
length of the subducting slab (Figure 1). 

For calculating the deformation of the lithosphere, we 
need the shear traction at the base of the lithosphere that 
results from flow in the asthenospheric wedge. The basal 
shear traction determines the deformation of the overlying 
plate; in turn, the shear traction depends on the deforma- 
tion. Thus, the corner flow and. the thin viscous sheet mod- 
els are solved simultaneously for velocity and stress fields 
within the lithosphere and the asthenosphere below. 

Model of Two-Dimensional Thin Viscous Sheet 
With Basal Shear Traction 

We follow most of the thin viscous sheet assumptions de- 
scribed in detail by England and McKenzie [1982] and Eng- 
land et al. [1985]. First, we assume that the continental 
lithosphere behaves as an incompressible viscous fluid de- 
forming by steady state creep over geological time periods. 
The force balance equation for two-dimensional flow with 
zero Reynolds number is 

•rij,j : pgai (1) 

where erij is the (i, j) component of the stress tensor, p is the 
density, g is the acceleration due to gravity, and a = (0, 1). 
The deviatoric stress tensor is 

rij = crij + 5ijp (2) 

1 •rkk). where p is the pressure (p = -• 
The thin sheet approximation assumes that the horizontal 

gradients of the stresses are negligible with respect to the 
vertical gradients. We use this approximation and integrate 
the vertical component of (1) with respect to depth from the 
top of the thin sheet (z = zt) downward; thus 
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rr** -- - j•• •" pgdz' (3) 
Then, using (2) we integrate the horizontal component of 
(1) with respect to depth from the the bottom (z - zb) to 
top of the layer (z: zt). In addition, we assume that the 
upper surface is traction free and that the bottom surface is 
at a constant depth and is subjected to shear traction; thus 

O• (rxx - p)dz + T}z - 0 (4) 
b 

where T}z is the shear traction acting on the base of the 
layer. We use the vertical component of (2) and the incom- 
pressibility condition (r• : -rzz) to eliminate p in (4); 
thus 

2L • _ _L •zz • - • - •z ( • ) 
where L is the thickness of the layer (L - zt - zb), • is 
the vertically averaged deviatoric stress, and Fzz is the ver- 
tically averaged vertical stress that can be evaluated from 
the density structure of the lithosphere. We adopt a New- 
tonian rheology for the thin sheet, which therefore has the 
constitutive relation 

•ij -- 2rl•ij (6) 

where • is the viscosity and •ij is a component of the verti- 
cally averaged strain rate tensor which is defined by 

1 

- + (7) 
where ui is a component of the vertically averaged velocity 
vector. 

We substitute (6) and (7) into (5) and assume local iso- 
static compensation on the base of the lithosphere. We also 
assume that the lithosphere consists of a crust of thickness 
$ and density pc overlying a mantle of density pr•. In nondi- 
mensional variables, we get 

d2u d(82) d 
4Lr•-•x 2 - A• T;z (8) dx 

where x, u, and V are now the nondimensional length, ve- 
locity, and viscosity, respectively. The characteristic length 
scale D is the width of the zone of deformation (Figure 1); 
velocity scale us is the subduction velocity; and the viscos- 
ity is scaled to the lithospheric viscosity r/t. This defines the 
time scale as D/us. L and S are the dimensionless thickness 
of the lithosphere and the crust, respectively. T•z is the di- 
mensionless shear traction acting on the base of the layer, 
and Ar is 

Ar--gpcD2 (1- P--L) (9) 2qtus pr• 

It is similar to the Argand number of England and McKen- 
zie [1982], which measures the contribution of the buoyancy 
forces arising from lateral variations of crustal thickness. 
The difference between the two Ar definitions arises from 

a different choice of the characteristic length scale (we use 
the width of the zone of deformation (D) and England and 
McKenzie [1982] use the lithospheric thickness (L)). In or- 
der to simplify the equation and to limit the number of de- 
grees of freedom in our calculations, we assume no varia- 
tions in crustal thickness and omit the buoyancy force term. 

Thus, the governing equation reduces to 

4 L r• d 2 u = - T•az (10) 
dx 2 

By using the thin sheet approximation, the boundary value 
problem is reduced to a second-order ordinary differential 
equation that requires two boundary conditions. Since the 
plate tectonic framework provides constraints on the veloci- 
ties rather than stresses of plates, kinematic boundary con- 
ditions are most convenient. There are two velocities that 

must be considered: the convergent velocity between two 
adjacent (rigid) plates on both sides of the trench and the 
velocity of trench migration relative to the rigid part of the 
overlying plate [Karig, 1971; Forsyth and Uyeda, 1975]. 

We choose the width of the zone of deformation D (Fig- 
ure 1) as the characteristic length scale and use dimen- 
sionless coordinates (x), where the wedge tip is the origin 
(x - 0). The region in which the continental lithosphere 
is deformed is our region of interest (0 < x < 1). Farther 
away (x > 1), the continental lithosphere is not deforming 
and moves as a rigid plate with respect to the wedge tip. 
The velocity of the rigid plate relative to the wedge tip (ut) 
is the sum of the relative plate motion and trench migra- 
tion velocities. We use the subduction velocity (us) as the 
characteristic velocity. Hence, the dimensionless boundary 
conditions that result from our frame of reference are (1) 
zero velocity at the wedge tip u(0) = 0 (the edge of the 
continental lithosphere is always at the wedge tip (trench), 
so no holes open up) and (2) fixed velocity of the overlying 
plate far from the trench u(1) = uo (uo = u•/us) where u0 
is the relative plate motion plus trench migration. 

Corner Flow With a Deformable Bounding Plate 

We follow the formulation of Fenner [1975]. For incom- 
pressible two-dimensional flow, a stream function in polar 
coordinates gives 

1 

ttO -- --•,r 
(11) 

where (u•, uo) are the velocity components in polar coordi- 
nates (r, 0). There is a singularity at the origin which will 
be considered later. For steady, homogeneous, slow Newto- 
nian flows, the equation of motion reduces to the biharmonic 
equation 

V4•) --0 (12) 

We seek a separable solution [Moffat, 1964; Fenner, 1975] of 
the form 

•p -- rnTn(O) (13) 

where n may be any real power of r [0 _< r _< 1] but for our 
purposes it is sufficient to use integer values only, and Tn(O) 
is given in terms of four arbitrary constants A, B, C and D. 

For n -- 0 or n - 2, 

To(O) - T2(0) - A cos 20 + B sin 20 + CO + D (14) 

for n -- 1, 

T1 (0) -- A cos 0 + B sin 0 + CO cos 0 + DO sin 0 (15) 
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and for any other value of n, 

Tn (0) = A cos nO + B sin nO + C cos(n - 2)0 
+Dsin(n - 2)0 (16) 

In general, an infinite series of terms of the form of (13) is 
required to satisfy all the boundary conditions. Thus, 

½ -- Z KnrnTn(O) (17) 

where the Kn are constants chosen to satisfy the boundary 
conditions. 

As discussed previously, the coordinate system is fixed 
with respect to the wedge tip. The subducting oceanic plate 
is assumed to be rigid, and it subducts at a constant veloc- 
ity (ur = 1 ; uo = 0) which is scaled to the subduction 
velocity us. The overlying plate is fixed at the wedge tip 
u(0) -0 but may deform elsewhere. In the case of Newto- 
nian flow, we can separate the boundary value problem into 
two simpler problems as described in Figure 2. We solve the 
two problems separately and add the results to get the so- 
lution for the corner flow with a rigid subducting plate and 
an overlying deformable plate. 

Problem I (Figure 2b). This is the classical corner flow 
problem for two rigid plates. The overlying plate is fixed 
and the inclined plate moves downward at constant velocity 
us. The solution for this problem is given by Moffat [1964], 
Batchelor [1967], and McKenzie [1969]. We represent the 
solution in the form of McKenzie [1969]: 

(0o - 0) sin 0o sin 0 - 0o0 sin(0o - 0) 
½(r, 0) -- r 002 - sin 2 0o (18) 

where 0o is the angle of subduction (0 < 0o _< •r/2). 
Problem 2 (Figure 2c). This is the boundary value prob- 

lem for corner flow with a fixed inclined plate and a de- 
formable overlying plate. The solution must satisfy the fol- 
lowing boundary conditions: 
At0=0 

½,r =0 (19a) 

l•b,• -- f(r) (19b) 

At 0 = 0o 

=o (20a) 

!½,o --0 (20) 
where f(r) is the velocity within the overlying plate. We 

represent f(r) as a power series: 

f(r)- •-]•anr n (21) 
n:l 

where an is the dimensionless velocity coefficient that is 
scaled to the subduction velocity us. 

Substituting (17) and (21) into the boundary condition 
(19b), we find that the stream function has the following 
form: 

½(r, 0) -- Z an-1 n n:2 T• (0) r Tn (0) (22) 
where an-1 are given by the velocity boundary conditions. 
T•(0), the first derivative of T(0) evaluated at 0 - 0, can 
be found by using the other boundary conditions (equations 
(19a), (20a), and (20b)). 

Calculation of the basal shear traction. Combining the so- 
lutions of (18) and (22), we get a stream function expression 
that satisfies all the boundary conditions: 

½(r, 0) -- Z an-1 n (o) (0) + 
(0o - 0) sin 0o sin 0 - 0o0 sin(0o - 0) 

002 -- sin 2 0o 
(23) 

From this, the shear traction on the base of the lithosphere 
can be derived easily. For Newtonian fluids the shear stress 
is 

r•o(r,O)--rl (-•,• + 1•, + •E2•,oo) (24) 
The shear stress at 0 = 0 (note that Tn(0) = 0 because 
•,• = 0) which acts on the base of the lithosphere is 

OZ(OO) _J F an_l•n(Oo)r n--2 r•o (r, 0) - r/ r (25) 

u r = f(r) ; u 0 = 0 
no slip 

u r = f(r) ; u 0 = 0 

(o) (b) (c) 

Fig. 2. (a) A schematic diagram showing the velocity boundary conditions for the corner flow model with a 
deformable overlying plate and a rigid subducting plate. (b) and (c) In case of a Newtonian fluid, the flow in the 
wedge can be separated into two simple corner flow models. 
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where a and • are functions of the angle of subduction that 
are given by 

a(0o) -- 2(00 cos0o - sin0o) (264) 
002 -- sin 2 0o 

T•' (0) (26b) 
T•' (0) and T}' (0) are the first and second derivatives of T• (0) 

at 0=0. 

To evaluate •(0o), we solve (14), (15), and (16) using 
the following identities which are derived from the boundary 
conditions (equations (194), and (20)): T•(0) : T,•(0o): 
T•(0o) -- O. This enables us to evaluate three of the four 
arbitrary constants in (14), (15), and (16). By substitut- 
ing the first and second derivatives of T,•(O) into (26b), we 
eliminate the fourth arbitrary constant and get an expres- 
sion that depends only on the angle of subduction. The 
solutions are 

0o - sin 0o cos 0o 

•1 (00) -- 2 sin2 0o - 002 (27) 
200 cos 200 - sin 200 

•2 (0o) -- 1 - cos 20o - 0o sin 20o 
For n > 2, 

•(0o) - (4 - 4n)[(n - 2)sin nOo cos(n - 2)00 - 
(2n 2 - 4n)[1 - cos n0o cos(n - 2)00] - 

n sin(n - 2)00 cos nOo] 
(2n 2 - 4n + 4) sin nOo sin(n - 2)0o 

(28) 

(29) 

Using the same characteristic parameters as in the thin 
viscous sheet model, the nondimensional shear traction on 
the base of the lithosphere becomes 

O•(00) -Jr- an+l•n+2(Oo)ff: n (30) r;z - 

where "7 is the ratio of wedge viscosity to the overlying plate 
(thin sheet) viscosity. In the physical world "7 is the ratio 
between asthenospheric viscosity (•a) and lithospheric vis- 
cosity (•): 

"7 -- -- (31) 

The magnitude of the viscosity ratio determines the magni- 
tude of the viscous forces in the asthenosphere, which are 
transmitted to the base of the lithosphere as shear traction. 

The shear traction on the base of the lithosphere (equa- 
tion (30)) is the sum of tractions from two processes. The 
first is the subduction of a rigid plate, and the other is the 
deformation of the overriding lithosphere. The shear trac- 
tion arising from subduction contains a singularity at the 
origin. We assume that the lithosphere has a finite strength 
and that it yields under large shear stresses; thus, we limit 
the large traction near the origin (0 < x < Xl) to a finite 
value. The modified shear tractionsthat removes the singu- 
larity is 

I ] O•(00) q- an+l•n+2(00)3C n (32) - 

where 

x Xl<X<l 

and Xl is small (Xl _< 0.1). In the solutions below, we specify 
a value of Xl. In practice, the position of of Xl is presumably 
determined by the yield strength of the lithosphere. 

MODEL SOLUTIONS: INTERACTION BETWEEN THE THIN 

SHEET AND THE CORNER FLOW MODELS 

In the thin viscous sheet model the deformation and ve- 

locity field within the lithosphere depends on basal drag 
(equation (10)). In turn, the shear traction on the base 
of the lithosphere from the corner flow model depends on 
the velocity field within the lithosphere (equation (32)). By 
substituting (32) into (10), we get an ordinary differential 
equation with one unknown: the velocity field in the deform- 
ing overlying plate. In this study we consider only simple 
models that allow analytical solutions. The simplest are 
those containing a Newtonian lithosphere with zero Argand 
number. The governing equation, in this case, is 

dx 2 =- •-• q- an+l•n+2ff: n (33) 

where u is the velocity field of the lithosphere that is rep- 
resented as a power series (u - y• a,•x'•), L is the dimen- 
sionless thickness of the lithosphere, a and fin are the shear 
traction coefficients which are functions of the angle of sub- 
duction (equations (264), (27), (28), and (29)), and "7 is the 
viscosity ratio (equation (31)). The boundary conditions are 
zero velocity at the wedge tip (u(0) - 0), a finite velocity of 
the rigid plate far from the trench (u(1) - u0), and a con- 
stant subduction velocity which is used to scale the other 
velocities (u• - 1). 

We use a perturbation method to solve the equations for 

the velocity and the strain rate fields with 4-•z. as the small 
parameter. We have few constraints on the viscosity ratio 
("7) and on the dimensionless thickness of the lithosphere 
(L). However, by using the single ratio • as the small 
parameter, we reduce the number of free parameters and 
hence the uncertainties somewhat. Generally, the thickness 
of the lithosphere is in the range 50-100 km, and the width 
of the zone of deformation (the characteristic length scale 
D) is in the range of 400-1000 km. Thus, a typical value for 
the dimensionless thickness of lithosphere above subduction 

zones is L-0 •. The viscosity ratio is very small ("7 << 1-35); 
1 

hence, the range of the small parameter is 0 _< • <_ •. 
The solution without perturbation corresponds to a litho- 

sphere that overlies an inviscid asthenosphere ("7 - 0). The 
governing equation (33) reduces to 

d2 u 
=0 (34) dx 2 

We use the boundary conditions from above (u(0) - 0; 
u(1) - u0) to get 

u - uox (35a) 

du 
-- uo (35b) 

dx 
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This solution represents homogeneous or uniform deforma- 
tion and describes the deformation of the lithosphere with- 
out any influence from the asthenosphere below. Extension 
occurs when u0 > 0, with positive horizontal and negative 
vertical strain rates. Compression occurs when u0 < 0, with 
negative horizontal and positive vertical strain rates. 

Since the boundary conditions are already satisfied, any 
perturbation should satisfy zero velocities at both ends of 
the deformed lithosphere (•(0) - •(1) - 0). The unper- 
turbed solution (u - uox) causes constant shear traction on 
the base of the lithosphere in the direction opposite to the 
motion of the lithosphere. The only nonzero coefficient of 
the lithospheric velocity is a• - u0, and the shear traction 
due to this term is u0/•2 (equation (33)). The governing 
equation for the first-order perturbation is 

d2• 
dx 2 

where a/•:(x) represents traction from the subduction of 
a rigid plate and u0/•2 represents traction from viscous 
resistance to the uniform deformation of the lithosphere. 
We solve (36) with the zero-velocity boundary conditions 
(5(0) = 5(1) = 0). The solution for the velocity field is 

U--UoX+Uo/•2 (•)[•(1-x)]- 

(?) 2-• + x(løg x• 2) a • •+x(logx- 2) 2 

(37) 

and for the strain rate field is 

du 

x x-x a(•LL ) •+1øgx•- 2 (38) 
l+logx-• x• <x<l 

This first-order perturbation of the deformation is due to 
the subduction of the rigid plate and the viscous resistance 
to the uniform deformation. The second-order perturbation 
arises from viscous resistance to the first-order velocity per- 
turbation. Since the perturbed velocities are small (of the 
order of (•)), the second-order perturbation of the defor- 
mation is very small (of the order of (•)2), and we therefore 
will neglect it. 

The total deformation (equations (37) and (38)) is a result 
of three simultaneous processes: uniform deformation due 
to horizontal force acting on the plate boundaries, viscous 
resistance to the uniform deformation, and traction resulting 
from subduction of a rigid plate. The horizontal force acting 
on the plate boundaries dominates the nature of the defor- 
mation. Large-scale compression occurs when the trench 
moves toward the rigid lithosphere (u0 < 0), and large-scale 
extension occurs when the trench moves away from the rigid 
lithosphere (u0 > 0) (Figure 1). Local variations in the mag- 
nitude of the deformation may result from shear tractions 
acting on the base of the lithosphere. If those tractions are 
large enough, the nature of the deformation can change lo- 
cally from compressional to extensional or vice versa. 

We demonstrate the case of large-scale compression (• < 
0) by using a solution with a particular set of parameters 
and boundary conditions (00 - 45 ø; • -0.2; u0 - -0.4) 
(Figure 3a). The unperturbed solution is a uniform com- 

Combined Solufion' Compression 
1 2 5 

O o = 45ø ; ?'/4L = 0.2 
oo 

ß ø• • • 1 I >, -0.1 - - 
o -0.2 

, > -0.4 
-0..5 

0.0 0.4 O.8 

O o = 45 ø ; ?'/4L = 0.2 
0.5 

• 0.0 

'- -0.5 - ---"'-' - - - 
. 

'5 -1.0 .' 

cs -1.5 

-2..0 • • I • 
0.0 0.4 0.8 

Distance from the wedge tip 

Fig. 3a. Cumulative solutions of velocity and strain rate fields for large-scale compressional environments (00 - 
45ø; 4•LL -- 0.2; u0 -- --0.4). For the uniform deformation solution (solid line) we add the first-order perturbation 
of magnitude 4-•L' First the deformation resulting from viscous resistance to the uniform deformation is added 
to the uniform deformation (dashed line). Second, the deformation resulting from subduction of a rigid plate is 
added to the uniform and the resistance deformation (dotted curve). 
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Fig. 3b. Velocity and strain rate solutions for large-scale compressional environments (00 = 45ø; 4•LL = 0.2; u0 -- 
--0.4) showing the sensitivity of the solutions to variations in (top) 4•LL and (bottom) 00. The velocities are scaled 
by the velocity at the far field (Ul = [u(1)[), and the strain rates are scaled by the strain rate at the wedge tip 

= I½(O)1). 

pressional strain rate (solid line). The addition of the drag 
arising from resistance to uniform compression (dashed line) 
decreases the compressional strain rate near the wedge tip 
and increases it farther away. The contribution of the drag 
from subduction increases the compressional strain rate near 
the wedge tip and reduces it farther away (dotted curve), 
which is opposite to the effect of the drag from resistance to 
uniform compression. When the magnitude of the velocity 
boundary condition is sufficiently small (-0.5 < uo < 0), 
the subduction term is dominant near the wedge tip, but 
farther away the two terms tend to cancel each other. Thus, 
most of the deforming lithosphere is subjected to a moderate 
compression, except the region near the wedge tip where the 
compression is more intense. The solution also depends on 
the choice of the parameters 0o and 42•. When 0o is fixed, the 
deviation of the total deformation from that with uniform 

compression increases with • (Figure 3b, top). When • 
is fixed, the deviation of the total deformation departs more 
from uniform compression as 0o decreases (shallower angle 
of subduction) (Figure 3b, bottom). For increasing values of 
-% shallower angle of subduction, the strain rate field 4L' or a 
decays faster with distance from the wedge tip. For large 
values of 4•, or for a shallow subduction, the zone of com- 
pressional strain rate exists only in a finite zone next to the 
wedge tip, while a zone of an extensional strain rate exists 
farther away. Thus, the broad zone of moderate compres- 
sion that exists with low values of 4•L, or with steep angle 
of subduction, will tend to get narrower if • is increased 
or the angle of subduction is decreased. 

We use the same analysis to demonstrate the effect of 
shear traction on large-scale extension (u0 > 0) by choos- 
ing 00 -- 60 ø, 4• - 0.2, and u0 - 0.9 (Figure 4a). In large 
scale extension the resistance and the subductions terms add 

and amplify the local deformation. For increasing values of 
• shallower angle of subduction, the strain rates decay 4L ' or a 

faster from the far field toward the wedge tip (Figure 4b). 
For large values of 4•, or for a shallower subduction, a zone 
of compressional strain rate may exist near the wedge tip, 
while most of the lithosphere is subjected to extension. 

For both large-scale compression and extension, the sum 
of the shear tractions acting on the base of the lithosphere is 
directed toward the wedge tip. Since variations in 00 influ- 
ence mostly the magnitude and only slightly the distribution 
of the shear tractions (equation (36)), the sensitivity of the 
solutions for variations in •0 is similar to that for variations 

in 4•. For increasing values of 4•, or for a shallower an- 
gle of subduction, the total tractions acting on the base of 
the lithosphere increase and are directed toward the wedge 
tip. As a result, the region near the wedge tip is subjected 
to more compression (or less extension), and the region far 
from the wedge tip is subjected to more extension (or less 
compression). 

The analytical solutions of the simple models discussed 
above give insight into deformation above subduction zones. 
They allow us to identify the important processes that affect 
deformation. The deformation of the lithosphere is domi- 
nated by horizontal force acting on its plate boundary and 
is affected by basal shear traction. The major contributors 
to shear traction are the subduction of a rigid plate and the 
viscous resistance of the asthenosphere to the uniform de- 
formation. The identification of the various sources of shear 

traction is useful for calculations with nonlinear rheology, in 
which the different processes may not be so easily separated. 

DISCUSSION 

We now apply this simple model to two situations: com- 
pressional (the Andes) and extensional (the Aegean). Our 
aim is to find parameters for which the model may produce 
geologically interesting results. We shall see that the model 
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Fig. 4a. Cumulative solutions of velocity and strain rate fields for large-scale extensional environments (00 = 
60 ø ; 4•LL --0.2 ; u0--0.9) as in Figure3a. 

explains some of the features of the deformation in both ar- 
eas that have not been explained by previous models. We 
are not, however, trying to demonstrate that every feature 
observed in the Aegean or the Andes is predicted by our 
calculations. 

The solutions for the velocity and strain rate fields (equa- 
tions (37) and (38)) depend on characteristic parameters 
and on the velocity boundary condition that must be spec- 
ified a priori. The trench velocity (ut) and the subduction 
velocity (us) are found from global and local plate motion 

models. The subduction velocity (us) is the characteristic 
velocity used for scaling; thus, the dimensionless velocity 
boundary condition is u0 = ut/us. The shear traction co- 
efficients c•(00) and •n(00) depend on the angle of subduc- 
tion which can be inferred from the distribution of seismic 

events. Benloft zone geometries do not always show the 
straight subducting slabs that we use in our model, but we 
estimate an angle for the best fit straight slab to within 
+5 ø. The dimensionless thickness of the lithosphere (L) can 
be evaluated from the real thickness (50-100 kin) divided 
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Fig. 4b. Velocity and strain rate solutions for large-scale extensional environments (00 -- 45ø; 4-•LL -- 0.2; u0 -- 
--0.4) showing the sensitivity of the solutions to variations in (top) 4•LL and (bottom) 00. The velocities are scaled 
by the velocity at the far field (Ul -- ]u(1)]), and the strain rates are scaled by the strain rate at the far field 
(El = 16(1)1). 
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by the characteristic length scale (400-1000 km). A typical 
value for L above subduction zones is •; therefore our thin 
sheet approximation should be accurate to 5-10% (see the 
appendix). 

The last parameter to evaluate is the viscosity ratio (if), 
which is poorly constrained. Estimates of asthenospheric 
viscosity from postglacial rebound have assumed a linear 
rheology and have obtained an average viscosity of •-1021 
Pa s [Cathies, 1975; Peltier and Andrews, 1976]. However, 
the uppermost asthenosphere may have a lower effective vis- 
cosity of--4x1019 Pa s [Walcott, 1973; Cathles, 1975]. Esti- 
mates of lithospheric viscosity have even fewer constraints. 
The effective viscosity of oceanic and continental (shield) 
lithosphere has been estimated to be 1023-1024 Pa s from the 
flexural response to long-term loads [Walcott, 1970]; how- 
ever, the viscosity of young continental crust is poorly deter- 
mined. The effective viscosity of actively deforming regions 
may be estimated from a knowledge of their strain rates 
and of the likely range of vertically averaged stresses act- 
ing upon them. England and Houseman [1986] estimate the 
viscosity of the Asian lithosphere to be about 0.5-1.0x1(• 4 
Pa s, while England [1986] argues that the average viscosity 
of the lithosphere might need to be as low as 102• Pa s for 
extensional regions to deform as rapidly as they do. The 
above viscosity estimates suggest that the ratio of astheno- 
spheric to lithospheric viscosity is 4 x 10 -• • "/• 0.10 and 
that 10 -4 • 4•LL • 0.25. The results illustrated in Figures 
3 and 4 show that the influence of basal shear stresses on 

the tectonics of the overriding plate is appreciable only if 
_v_ • 0.01, so a large part of the range of possible values of 4L 

_v_ is unlikely to produce geologically interesting effects. 4L 

In each of the cases illustrated in Figures 3 and 4, the 
influence of the circulation in the asthenospheric wedge is 
to make the strain rate in the lithosphere near the tip of the 
wedge more compressional and to make strain rates far from 
the tip more extensional. In the next two sections we look at 
the tectonics of two regions, the Andes and the Aegean, to 
see if they show styles of deformation consistent with basal 
shear tractions applied by flow in the asthenosphere and to 
attempt to bound the value of • in these regions. 

The Andes: Compressional Tectonics 

The formation of the Andes mountain belt is associated 

with the subduction of the Nazca plate beneath western 
South America. Indeed, this type of tectonic environment of 
mountain belt above a subduction zone is frequently called 
an Andean-type margin [Dewey and Bird, 1970]. The to- 
pography of the central Andes (5ø-34øS) can be divided 
into three segments which coincide with the segmentation 
of the subducting Nazca plate (Figure 5). The central seg- 
ment (15ø-27øS), where the angle of subduction is relatively 
steep (30 ø) [Stauder, 1975; Barazangi and Isacks, 1976], is 
characterized by the broad Altiplano Plateau (B-B' in Fig- 
ure 5b). The plateau relief is moderate with an elevation of 
3.5-4.5 km above sea level and a width of about 800 km. 

The northern segment (5ø-15øS) (A-A' in Figure 5b) and 
the southern segment (27ø-34øS) (C-C' in Figure 5b) where 
the angle of subduction is very shallow (10ø-15øS) [Stauder, 
1975; Barazangi and Isacks, 1976] are characterized by a 
narrower zone of elevated topography. The average eleva- 
tion of the Andes at these segments is greater than 3.0 km 

-8O -75 -7O -65 
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Fig. 54. Seismic activity in the Andes in the years 1977-1987 
(Mw • 5.0; radius is proportional to Mw). (Mw is determined 
from digital seismograms of the Global Digital Seismic Network 
(GDSN), using the centroid moment tensor (CMT) method de- 
scribed by Dziewonski et al. [1981] and Dziewonski ..and Wood- 
house [1983].) 

above sea level, with peaks that reach more than 6.0 km, 
and the width of the mountain belt is in the range of 200- 
400 km. The high topography of the region is supported 
by thick crust with an average thickness of 60 km [James, 
1971], and possibly by thermally thinned lithosphere under- 
lain by low-density asthenosphere [Froidevaux and Isacks, 
1984]. The seismic deformation within the Andes belt is 
concentrated along the eastern and western flanks of the 
mountain belt, beneath areas of low topographic elevation 
[Sudrez et al., 1983; Isacks, 1988] (also see the centroid mo- 
ment tensor (CMT) solutions in Figure 54). Fault plane so- 
lutions show mostly thrust faulting with the P axis oriented 
approximately perpendicular to the mountain chain. $udrez 
et al. [1983] estimate the seismic strain rate of the eastern 
part of the northern and central segments as 2 x 10 -16 s -1 
(6.3 x 10 -9 yr-1). Extension (normal faulting) observed in 
the high Andes is attributed to buoyancy forces due to high 
mountains and their crustal root [Dalmayrac and Molnar, 
1981]. 

We take the characteristic length scale (D) as 800 km, the 
distance across the Altiplano in the central segment, which is 
the distance from the tip of the asthenospheric wedge (about 
50 km inland from the coastline, Figure 54) to the eastern 
slope of the Andes (B-B' in Figure 5b). The angle of sub- 
duction (O0) is 30 ø for the central segment and 10ø-15 ø for 
the northern and southern segments. The thickness of the 
lithosphere is estimated as 80 km [Smalley and Isacks, 1987; 
Isacks, 1988]. Thus for the central segment the dimension- 
less thickness is L -• •, which implies that our approximate 
solution is accurate to 5-10%. However, in the northern and 
southern segments the width of the deformed area is much 

1 Since our model narrower (--400 km) and as a result L -- õ. 
solution assumes L • 1, this may limit the accuracy of the 
results (see the appendix). Using the values discussed above 



10,340 WDOWlNSKI ET AL.' DEFORMATION ABOVE SUBDUCTION ZONES 

A 
Peru Trench 

•: = 2x10-• S-1 

I <---- 4-00 km --> I 

I 

Brazilian Shield 

topography 
VE = 10.1 

TABLE 1. Values of Parameters Used in Calculations 

for the Andes and the Aegean 

Description Andes Aegean 

D length scale, km 800 600 
t)0 angle of subduction 10ø-30 ø 35 ø 
u8 subduction velocity 90-98 30-80 
ut trench velocity (-10)-(-2) 20-70 
7 viscosity ratio, •a/•Z 0-0.02 0-0.1 
L dimensionless thickness 0.1 0.1 

_7_ the small parameter 0.0-0.05 0.0-0.25 4L 

Chile Trench 

•; = 2x10-•S S-• 

I <-- 800 km 

• Altiplano 

! 

Brazilian Shield 

topography 
VE = 10'1 

c 
Chile Trench 

I 

Brazilian Shield 

topography 
I <-- 400 km --> I VE = 10:1 

Fig. 5b. Schematic cross sections the Andes, in E-W direction; 
A-A' is across the northern segment; B-B' is across the central 
segment; and C-C' is across the southern segment. The strain 
rate • is from $darez et al. [1983]. 

for the viscosity ratio (10 -4 < 3' < 0.05), the range of the 
small parameter we use is 0 _• 4• _• •. The subduction 
velocity (us) is usually taken as the convergence velocity be- 
tween the Nazca and the South American plates, about 100 
mm yr -1 [Chase, 1978; Minster and Jordan, 1978]. How- 
ever, the velocity between the trench and the rigid plate 
(ut) is poorly known. Estimates for the trench velocity fall 
in the range 2-10 mm yr -1 [$udrez et al., 1983; Isacks, 1988; 
Roeder, 1988]. We assume that the South American plate 
is moving westward at 100 mm yr -1 with respect to the 
Nazca plate and that the trench is moving eastward in ve- 
locity ut with respect to South America. Thus, the velocity 
of the Nazca plate with respect to the trench, which is the 
subduction velocity (u•), is the difference between the two 
velocities (u•- 100- ut). 

Because we arbitrarily impose a width on our deforming 
zone (Figure 1) we have essentially fixed the scale of the 
strain rate once we have chosen the velocity of the trench 
(u•). According to our choice of parameters (Table 1), the 
lithospheric strain rate is scaled to the order of 10 -16 s -1. 
We cannot, therefore, use estimates of strain rates in the 
Andes [e.g., $udrez et al., 1983] to estimate the values of 

Velocities in mm yr -1 

our calculations. However, the observations of tectonic style 
do impose one important constraint: there is horizontal 
compression to the east of the Andes, and therefore any 
shear traction acting on the base of the lithosphere must not 
outweigh the overall compression applied by the boundary 
conditions. 

In the configuration of our calculations (Figure 3b) the 
sign of the strain rate at great distance from the wedge tip 
depends on the small parameters (4•) and upon the dip 
of the subducting slab (00). Figure 6 shows the range of 
values of 4• and 00 that yield net compression far from 
the wedge tip for ut in the range 2-15 mm yr -1. Thus we 
conclude that the basal shear tractions owing to circulation 
in the asthenospheric wedge beneath the central segment 
of the Andes (00 - 30 ø) will not result in net extension in 
the overriding plate provided that 0 < 4• < 0.025 for the 
estimated values of ut (2-10 mm yr-1). 

The major features of deformation in the Andes that are 
not reproduced by our analysis are the low rate of seismic 
activity in the western Andes and low (probably mainly ex- 
tensional) strain rate in the high Andes. Although, our anal- 
ysis omits buoyancy forces (equation (10)), we can suggest 
the role that buoyancy might play from the following simple 
argument based on (8). The influence of the buoyancy alone 
may be expressed as 

d2u Ar d(S 2) 
= (39) dx 2 4L dx 
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Fig. 6. Range of 4•LL and t)0 for which extensional strain rate oc- 
curs in the overriding plate (D -- 800 km, and ut is varied between 
2 and 15 mm yr-1). The lines separate parameter ranges in which 
extension (E) occurs far from the wedge tip in the overriding plate 
from parameter ranges in which the overriding plate is always in 
compression (C). 
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Fig. 7. An E-W topography section through the Andes from 
72øW to 60øW obtained by averaging the topography in a swath 
of a latitude 4 ø wide, centered on 20øS. 

This is (8) neglecting basal tractions. Thus, if we specify the 
form of the crustal thickness variations, we may estimate 
the contribution to the strain rate field from the buoyancy 
forces and add it to the strain rate field we have calculated 

by neglecting buoyancy. This approach does not, of course, 
explain the form of the topography which could only be 
determined by a full, time-dependent solution that is beyond 
the scope of this paper. 

From (39) the form of the strain rate due to buoyancy 
forces is 

du Ar 

d-• = 4L (S2 - Sø•) (40) 

The quantity (S 2 - $0 •) may be estimated from a knowledge 
of the topography by assuming Airy isostatic equilibrium 
and values for the density of crust and mantle and of the 
crustal thickness S0 for zero surface height. Figure 7 shows 
this quantity for an E-W transect through the Andes from 
72øW to 60øW obtained by averaging the topography in a 
swath of a latitude 4 ø wide, centered on 20øS. 

Figure 8 illustrates, schematically, the result of superim- 
posing a strain rate due to the buoyancy of the Andean 
topography (8a) upon the strain rates due to the boundary 
value problem discussed here (8b). If the maximum exten- 
sional strain rates owing to buoyancy are of the same or- 
der as those due to the boundary conditions, the combined 
strain rate field (8c) shows much reduced compression near 
the trench, extension in the Andes, and compression to the 
west of the Andes. This is in qualitative agreement with the 
observed strain rate field. 

The Effect of the Angle of $ubduction on the Deformation 

In the different segments of the central Andes, different 
angles of subduction correlate with the width of the zone of- 
deformation in the overlying plate [$tauder, 1975; Barazangi 
and Isacks, 1976]. The foregoing discussion covered only the 
central segment where the uplifted plateau is very broad. 
Another characteristic feature of the deformation illustrated 

in Figure 3 is that the shear traction on the base of the litho- 
sphere exerts a control on the width of the zone of appre- 
ciable compressional deformation (Figure 3b). If 4• is fixed, 
then the width of the zone of compression is determined 
by the dip of the subduction zone. To illustrate this point, 
we use the following set of parameters and boundary con- 
ditions that matches the observations the best (4• - 0.02; 
ut - -10 mm yr-i; u8 - 90 mm yr -1) and vary the angle 
of subduction (t)0). Figure 9 illustrates the solutions of the 
model where the free parameter is the angle of subduction. 
It shows that above a shallow-dipping slab the strain rate 
field decays faster than above a steep-dipping slab. For a 30 ø 
dipping slab, the zone of compression and uplift extends over 
the entire 800 km. However, for 10 ø and 15 ø dipping slabs, 
the zones of compression extend only 450 and 550 km from 
the wedge tip, respectively. According to our model, the 
horizontal extent of uplifted topography, which is supported 
by compressional stresses, depends on the angle of subduc- 
tion. A wide zone of uplifted topography (plateau) tends 
to develop above a relatively steeply dipping slab, whereas 
a narrower zone (mountain chain) would develop above a 
more shallowly dipping slab. 

The overall compression is caused by horizontal forces 
that push the Brazilian Shield toward the trench where the 
Nazca plate is subducting. The subduction of a rigid plate, 
as well as the compression of the lithosphere, produces an 
asthenospheric flow in the wedge underneath the Andes, 
which shears the base of the lithosphere toward the tip of 
the wedge. This increases the compression near the trench 
and decreases it farther away. For shallow subduction, the 
magnitudes of the shear tractions acting on the base of the 
lithosphere are larger, causing more lithospheric material to 
move toward the wedge tip. A zone of intense compression 
tends to develop next to the wedge tip, which reduces the 
compression (and may in some cases cause extension) farther 
from the wedge tip. Thus, the width of the zone of compres- 
sion is narrower for the case of shallow subduction. These 

results are in agreement with the observations of the three 
segments of the central Andes. In the central segment, where 

288 ø 

(0) b 

-b 

500 ø 288 ø 500 ø 288 ø 500 ø 

Longitude 
Fig. 8. A schematic illustration of the contribution of buoyancy forces on the overall deformation in the Andes 
showing (a) strain rate due to buoyancy estimated from the topography (Figure 7) by assuming Airy isostatic 
equilibrium (scaled to a), (b) strain rate due to boundary value problem (scaled to b), and (c) summed strain rate 
for various ratios of a and b. The buoyancy forces tend to decrease the compression in the western and the high 
Andes. If the buoyancy forces are sutficiently large (a _• b/2), extensional strain rate will occur in the high Andes. 
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Fig. 9. Solutions for the boundary conditions for the Andes with various values of angle of subduction (4•LL = 0.02 
and ut = --10 mm yr-1). The velocities are scaled by the velocity at the far field (Ul = ]u(1)]), and the strain 
rates are scaled by the strain rate at the wedge tip (go = I•(0)1). The uniform deformation solution (solid line) is 
independent of angle of subduction. The zone of compression for re0 = 30 ø (central segment) extends to the entire 
800 km; however, for re0 = 10 ø and 15 ø (southern and northern segments) the zone of compression extends only 
450-550 km. Buoyancy forces are not included in the calculations; see Figure 8. 

the Nazca plate dips at 30 ø, the uplifted topography, which 
is supported by compressional stresses, is the widest. In the 
northern and southern segments, where the subduction is 
shallo;ver (10ø-15ø), the uplifted topography is restricted to 
a narrower zone. 

Many studies [e.g., Hamilton, 1969; Burchfiel and Davis, 
1975] suggest that the Mesozoic Cordilleran orogenic belt 
of the western United States is an older and deeply eroded 
Andean-type mountain belt. Bird [1984 ,1988] argues that 
the formation of the Mesozoic Rocky Mountains results from 
a shearing of the western North America plate by the hor- 
izontally subducted Farallon plate. However, the observa- 
tions from the Andes show that the widest mountain struc- 

ture develops above a thick asthenospheric wedge that is 
bounded by a relatively steep-dipping slab (30 ø) and not 
above the near-horizontal slab. Therefore, we suggest that, 
if the western United States indeed deformed during the 
Mesozoic similar to the present-day deformation of the An- 
des, the cause was horizontal shortening resulting from the 
motion of the North American plate toward the trench off- 
shore the Pacific coast above an asthenospheric wedge. In 
such a case, the Farallon plate may well have been subducted 
at a relatively steep angle (•30 ø) and not horizontally as 
suggested by Bird [1984, 1988]. 

The Aegean: Extensional Tectonics 

The subduction of the African plate under the Eurasian 
plate along the Hellenic arc is the most-studied example of 
large-scale extension of continental lithosphere above a sub- 
duction zone. The extensive seismicity of the Aegean (Fig- 
ure 10a) indicates that most of the area extends by normal 
and strike-slip faulting except for a narrow belt of compres- 
sional thrust faults along the arc. The extension began at 
13 Ma [Le Pichon and Angelier, 1979] or possibly at 5 Ma 
[Jackson and McKenzie, 1988] and has reached up to 65% 
[Le Pichon and Angelier, 1981]. The Aegean extension is 
predominantly directed N-S, subparallel to the direction of 
convergence between Africa and Eurasia. Most of the seis- 
mic extension is concentrated in an area of 500 x 500 km 2 

in the northern Aegean, while the southern Aegean, which 
contains the thinnest crust, is relatively inactive [McKen- 
zie, 1978; Jackson and McKenzie, 1988] (also see the cen- 
troid moment tensor (CMT) solutions in Figure 10a). Jack- 

son and McKenzie [1988] calculate an average seismic strain 
rate of 4 x 10 -15 s -1 in the N-S direction for the north- 

ern Aegean (400-600 km from the wedge tip); however, Ek- 
strSra and England [1989] suggest the above value may be 
too large by about a factor of 3. Given the uncertainties, 
we use the above values as upper and lower bounds for the 
strain rate 1.5 x 10 -15 S --1 • • • 4.0 x 10 -15 8 --1 (4.7 x 10 -8 
yr -1 ( • ( 1.25 x 10 -7 yr-1). The zone of compression has 
an arc shape and extends up to 100 km from the trench. 
Figure 10b shows a schematic cross section of the Aegean in 
a N-S direction that illustrates the available observations. 

We take the characteristic length scale (D) as 600 km, the 
distance from the tip of the asthenospheric wedge (approxi- 
mately underneath Crete, Figure 10a) to the undeformed 
continental lithosphere (approximately northern Greece). 
From the geometry of the Benioff zone we choose an an- 
gle of subduction (00)of 35 ø [Papazachos, 1973; McKenzie, 
1978]. The dimensionless thickness of the lithosphere (L) is 
poorly known; we estimate L-• ½60' Our solution depends 
principally on the ratio 4-7E•, which is the small parameter in 

20 2,5 50 

4O 

55 

Fig. 10a. Seismic activity in the Aegean in the years 1977-1987 
(Mw • 5.0; radius is proportional to Mw) (determination of Mw 
is as explained in Figure 5a). 
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Fig. 10b. Schematic section across the Aegean, in N-S direction. 
The seismic strain rate d from Jackson and McKenzie [1988] and 
Ekstrb'm and England [1988]. 

1 

the perturbation; we use 0 < • < •. The velocity between 
the trench and the rigid plate (m) and subduction veloc- 
ity (u•) are also poorly known. Estimates for the trench 
velocity are in the range 20-70 mm yr -1 [McKenzie, 1978; 
Le Pichon and Angelier 1981; Jackson and McKenzie, 1988; 
EkstrSm and England, 1989]. Estimates for the subduction 
velocity follow directly from ut, once the relative velocity 
between Africa and Eurasia is known. Global plate veloc- 
ity models indicate convergence rate of t0 mm yr -1 [Chase, 
1978; Minster and Jordan, 1978]. We assume that Africa 
is moving t0 mm yr -1 northward with respect to Eurasia, 
and the trench is migrating southward with velocity m, also 
with respect to Eurasia. Thus, the velocity of Africa with 
respect to the trench, which is the subduction velocity (u•), 
is the sum of the two velocities (u.• - u, + t0 mm yr -1). 

With 00 fixed, the strain rate is determined by the value 
of • and the velocity boundary condition (u0 - ut/u•). 
Figure l t shows contours of extensional strain rate at a dis- 
tance of 500 km from the trench calculated for different val- 

ues of • and ut with the values of D, L, and 00 given in 
Table 1. It can be seen that a strain rate comparable with 
those measured seismically can be obtained for a fairly wide 
range of ut. When • is very small, then the strain rate 
is simply (ut/D) throughout the deforming region. An ad- 
ditional constraint is implied by the existence of a narrow 
zone of compression near the trench. If the origin of this 
lies in the asthenospheric flow, then Figures tt and 12 show 
that • is in the range (0.08 < • < 0.15) in order for there 
to be a narrow (_<tOO km) zone of compression. 

Estimate of the Viscosities 

The nondimensional formulation of our model enables us 

to solve for the velocity and strain rate fields without the 
need to evaluate the viscosities of the asthenosphere and the 
lithosphere, which are poorly constrained. By using the di- 
mensionless parameters and physical constraints on the state 
of stress at the base of the lithosphere, we can estimate these 
viscosities. An estimated upper bound for the basal drag is 
of the order of a few hundred bars [Hager and O'Connell, 
1979, 1981]. If we multiply the nondimensional shear trac- 
tion (equation (32)) by the characteristic parameters, we 
can set the upper limit of the asthenosphere viscosity to 

the order of •t02ø Pa s. Since our simple models assume 
homogeneous Newtonian viscosity, and do not consider lat- 
eral and vertical changes in the viscosity, we would expect 
that our estimate may be higher than the viscosity of the 
upper asthenosphere, but lower than that of the uppermost 
asthenosphere. Indeed, our viscosity estimate is lower by an 
order of magnitude than estimates of asthenosphere viscos- 
ity (102• Pa s) derived from postglacial rebound [Cathies, 
1975; Peltier and Andrews, 1976], but higher by a factor 
of 2 than estimates of the viscosity of the uppermost as- 
thenosphere (4 x 1019 Pa s) [Walcott, 1973; Cathles, 1975]. 
Because the simple models assume homogeneous Newtonian 
viscosity, lateral and vertical changes in the viscosity are av- 
eraged into an effective viscosity that is used in the models. 
We use our estimate of the asthenosphere viscosity (1020 
Pa s) to estimate the lithospheric viscosity by using the ra- 
,tio 4•. If we take L -- •, the viscosity ratio between as- 
thenospheric and lithospheric viscosities is ? - 1/25 for the 
Aegean and ? - 1/140 for the Andes. Thus, the lithospheric 
viscosity is •2x 1021 Pa s in the Aegean and •'•t022 Pa s in 
the Andes. 

A different approach to estimating the effective viscosi- 
ties is from consideration of buoyancy forces that affect the 
lithosphere. In the Andes, the observed topography allows 
the magnitude of the buoyancy forces to be estimated (equa- 
tion (8)). If the buoyancy forces affect the Andean deforma- 
tion, where strain rates are of the order of t0 -•6 s -• and 
the variations of crustal thickness are of the order of 10-30 

km, we estimate the effective viscosity as t-3xt022 Pa s. 
Similarly, if the Aegean is strained at a few times 10 -15 s -1 
in response to buoyancy forces of a few times 1012 N m -1 
[Le Pichon, 1983; England, 1986], then the effective viscosity 
of the Aegean lithosphere must be about 1022 Pa s. 

Our estimate of the effective viscosities is obtained from 

two indcpcndcnt mcthods which give similar results. Com- 
paring the two lithospheric viscosities shows that the Aegean 
lithosphere is less viscous than the Andean lithosphere. This 
result agrees with calculations of the strength of continen- 
tal lithosphere [Sonder and England, 1986], which indicate 
a weaker and less viscous lithosphere in the Aegean than for 
lithosphere subjected to compression such as in Tibet or the 
Andes. 

0.25 

0.20 
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0.00 
20 

"'. '- ' . du 2.0 

..... 5.5 

4.0 

50 40 50 60 70 

trench velocity mm/yr (ut) 

Fig. 11. Contours of extensional strain rate (x10 -15 s -1) at a 
distance of 500 km from the wedge tip for different values of _7_ 4L 

and ut (D : 600 km and 00 = 35ø). The range (1.5 x 10 -15 
s -1 to 4.0 x 10 -15 s -1) corresponds to the range of strain rate 
in the northern Aegean estimated from seismic studies (see text). 
The hatched region indicates the range of 4•LL and ut for which a 
narrow zone (_<100 km) of compression is found near the wedge 
tip (see Figure 12). 
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Fig. 12. Solutions for the boundary conditions for the Aegean with various values of 4•LL (D -- 600 km, 80 -- 35 ø 
and ut -- 35 mm yr -1). The velocities are scaled by the velocity at the far field (ul - ]u(1)]), and the strain rates 
are scaled by the strain rate at the far field (g• -]g(1)l ). A narrow zone (_•100 km) of compression occurs when 
-% is in the range 0 08-0.15. 4L ' 

Limitations of the Model 

The continuum models presented above are highly sim- 
plified. They investigate only the influence of basal drag 
resulting from asthenosphere flow within a subduction zone 
on the overlying continental lithosphere that is subjected 
to horizontal forces applied at the plate boundary. This 
simple model yields analytical solutions which give insight 
into the physical processes of lithospheric deformation above 
subduction zones, but it neglects other processes that may 
be important. First, we assumed that the lithosphere and 
the asthenosphere behave as linear viscous fluids over long 
periods of time. Experimental and theoretical studies of 
rock deformation [e.g., Ashby and Verrall, 1977] indicate 
that silicates under the temperature and pressure conditions 
of the lithosphere and upper mantle may deform by power 
law creep. Indeed, models that consider nonlinear rheol- 
ogy for the lithosphere [e.g., England and McKenzie, 1982; 
Houseman and England, 1986] and for the asthenosphere 
[e.g., Tovish et al., 1978] may describe the deformation bet- 
ter than linear rheology models. Nevertheless, our use of a 
linear model, which allows the separation of various effects 
(Figure 3), has identified the important effects and provides 
a basis for investigations of more complex models. 

Second, the long shape of subduction zones was used to 
assume two-dimensional flow in the model. When the model 

is applied to the Andes, the two-dimensional assumption 
holds nicely. However, the small radius and the relatively 
high curvature of the Hellenic arc suggest that the two- 
dimensional assumption is less valid for the Aegean. Thus, 
future models should include a three-dimensional distribu- 

tion of the flow. Finally, we considered a homogeneous litho- 
sphere and ignored any body forces due to density differ- 
ences, such as between the crust and the mantle. Similarly, 
we did not consider buoyancy forces in the asthenospheric 
wedge, which may influence the corner flow used in the cal- 
culations. Gravitational forces due to thinning or thickening 
of the crust are neglected and should be included in future 
models. 

Continuum models of large-scale continental deformation 
that use the standard thin viscous sheet formulation [e.g., 
England et al., 1985; Houseman and England, 1986] suggest 
that the length scale is determined by the rheology of the 
lithosphere in conjunction with the length of the plate or 
that it is determined by the interaction of continuing de- 

formation with lithospheric buoyancy forces. In our two- 
dimensional models there is no characteristic plate width 
to determine the length scale. In addition we omitted the 
nonlinear rheology and the buoyancy forces which can de- 
termine a horizontal length. Therefore in this study, hor- 
izontal length scale is not determined by the deformation, 
but is specified a priori. 

CONCLUSIONS 

The continuum models presented above combine the thin 
viscous sheet and the corner flow models. The continen- 

tal lithosphere is described by a two-dimensional thin sheet 
mode] that considers basal drag resulting from the viscous 
asthenosphere flow underneath. A corner flow mode] with 
a deforming overlying plate and a rigid subducting plate is 
used to calculate the shear traction that acts on the base 

of the lithosphere above a subduction zone. The two mod- 
els are solved simultaneously for the velocity and strain rate 
fie]ds within the overlying continental lithosphere by using a 
perturbation method. The simple form of the mode] allows 
analytical solutions which give us insight into the physical 
processes within a subduction zone. 

We apply the models to the Andes and the Aegean, which 
represent compressional and extensional tectonic environ- 
ments above subduction zones. For the Andes, the mode] 
predicts that a wide region of uplifted topography devel- 
ops above a steeply dipping slab and a narrower mountain 
belt develops above a shallowly dipping slab, as observed 
from the various segments of the central Andes. For the 
Aegean, the mode] predicts extension in most of the area 
and a narrow zone of compression near the trench, as ob- 
served. Comparison between the mode] and the state of 
stress in the lithosphere enables us to estimate the effective 
viscosities of the lithosphere and the asthenosphere. The 
range of asthenospheric viscosity required to produce the 
observed features is a few times 1020 Pa s. The lithospheric 
viscosity is estimated as a few times 102• Pa s in the Aegean 
and a few times 1022 Pa s in the Andes. 

For both regions, the calculated strain rates are in agree- 
ment with the observed strain rate derived from seismicity 
and geological considerations. Our mode] explains some of 
the features of the deformation in the Andes and the Aegean 
that have heretofore not been explained by other models. In 
particular, our results predict a relation between the width 
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of the Andes and the dip of the subducting slab in South 
America. At present, there are no observations to compare 
with the velocity field calculated by our models. However, 
the calculated velocities may be tested in the near future 
with highly accurate geodetic measurements. 

APPENDIX: THE ACCURACY OF THE THIN SHEET 

APPROXIMATION WITH BASAL DRAG 

One of the assumptions used in the standard thin viscous 
sheet model is that the top and base of the lithosphere are 
traction free [England and McKenzie, 1982; Houseman and 
England, 1986]. When shear traction is added to the base of 
the lithosphere, the assumption of zero vertical shear strain 
rates (dxz = dyz = 0) and zero vertical shear stress (7-x• = 
7-y• - 0) is less accurate. If we continue to follow the thin 
sheet approximation (as we do in the text) we neglect the 
shear stresses in the horizontal component of (1) and in the 
rest of our calculations. The purpose of this appendix is to 
evaluate the accuracy of the thin sheet approximation by 
comparing the thin viscous sheet solutions with appropriate 
two-dimensional calculations. 

We assume that the shear traction (T•z) that acts on 
the base of the lithosphere propagates into the lithosphere. 
Hence, the shear stress (7-•) has the following form: 

7-•z(X, z) -- -T•z(X)f(z) (A1) 

where f(z) is an arbitrary function and the negative sign 
comes from the direction of the normal at the base of the 

lithosphere which, in our coordinate system, is pointing up- 
wards. We choose to represent f(z) as a power series: 

f(Z) = ao q- alZ q- a2z 2 q- a3z 3 q- . . . (A2) 

Since 0 < z < L and L << 1 (L is the ratio between the 
thickness and the length scale of the lithosphere, L .•0.1- 
0.01), we can linearize (A2). We use two boundary condi- 
tions, free surface at the top of the lithosphere (z = L) and 
the value of the shear traction at the base (z = 0), to get 

[ z ] 7-x•(x, z)- -T•z(x) 1- • + O(z 2) (A3) 
We follow the same calculations as in the model section, but 
without the use of the thin sheet approximation. The exact 
expression for the pressure is 

p -- 7-• + 7- .... dz - pgdz (A4) 

Substituting (A3) and (A4)into the horizontal component 
of the force balance equation (1), we get 

27' .... q- 7- .... = --Txz(3•),xx -- z q- •-• q- O(z 3) (a5) 
As in the thin sheet calculations, we integrate over the thick- 
ness to get 

dx 

where Y• is the average stress over the thickness of the 
lithosphere. In the case of linear rheology we can use the 
constitutive relations to get 

d 4L•1 - Tx (3•) - Txz(3•) q- O(L 4) (A7) 

where • is the horizontal velocity averaged over the thick- 
ness. The integral form of the velocity is 

- + 
(AS) 

We calculated a full two-dimensional flow with two inde- 

pendent methods (stream function and propagator matrix) 
to evaluate an exact expression for the averaged horizon- 
tal velocity. For a flow that is deforming by periodic shear 
traction at the base of the lithosphere, the exact solution is 

_ I (•) [ 2kLcoshkL u - 4-•--• - kL + sinh kL cosh kL sin kx] (A9) 
where k is the wave number of the shear traction distur- 

bance. The difference between the approximate solution of 
the thin viscous sheet model and the exact solution is 

2kL cosh kL 

A(L) - kL + sinh kL cosh kL (A10) 

For L -• 0 the factor A goes to 1. In case of lithosphere 
with L - • that is deformed by a shear traction with a 
longwave length (k - 2•), the value of the factor is A(•) - 
1.0539. That means that the thin sheet approximation is off 
by about 5%. If we rewrite (A9) as a power series, we get 

_ I (•) [ k2L • 29kaLa+O(L6)]sink x u- 4-L--• - 1 q 6 360 
(All) 

The first two terms of the power series arc identical to the 
linearized solution of (A8) when T•(x)= sin kx. 
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