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Abstract Geothermal areas are long recognized to be susceptible to remote earthquake triggering,
probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic
injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here
we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to
assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal
field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal
field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore
pressure between fractures inside the geothermal field through flushing geothermal precipitations and
sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake
swarms, and they are found to occur outside or on the periphery of the geothermal production field.
Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network,
and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.

1. Introduction

Earthquake remote triggering has been observed for decades, especially in geothermal and volcanic areas,
such as Yellowstone [Hill et al., 1993; Husen et al., 2004], Long Valley [Brodsky and Prejean, 2005; Aiken and Peng,
2014], Geysers [Hill et al., 1993; Gomberg and Davis, 1996; Prejean et al., 2004], Salton Sea [Gomberg et al., 2001;
Hough and Kanamori, 2002], and Coso [Hill et al., 1993; Prejean et al., 2004; Peng et al., 2010; Aiken and Peng,
2014]. These areas are susceptible to remote triggering, probably because they lie within tectonically active
regions and active geothermal fluid or magma is present. In general, there are two kinds of physical models
for explaining remote triggering: (1) preexisting faults that are critically loaded before the remote main shocks
are brought to failure by dynamic stress [Gomberg et al., 1997] and (2) interaction between active fluid and
dynamic stress results in pore pressure change and fluid transport, which changes effective normal stress
locally [Hill et al., 1993; Brodsky and Prejean, 2005]. Between these two kinds of models, the first one has been
regarded as the primary explanation, and the fluid-related triggering models are the secondary mechanisms.
Thus, remote triggering has become a tool to diagnose whether the stress state in an area reaches the critical
state [van der Elst et al., 2013; Taira et al., 2009].

In operational geothermal fields, anthropogenic activities of injecting and extracting fluid can perturb the
stress state and affect the distribution of fluids within a porous medium, as shown by induced seismicity
and rotation of stress orientations [Martínez-Garzón et al., 2013]. Although the extent of these effects is still
unknown, the in-situ conditions responding to remote earthquakes within the geothermal fields may be differ-
ent from the surrounding areas without geothermal production. However, previous remote triggering studies
in geothermal areas did not distinguish the actual operational geothermal fields from adjacent fault zones.

As one of the largest geothermal fields in the United States, the Coso geothermal field (CGF) has been in
operation since 1987 with a net capacity of 270 MW [Sass and Priest, 2002]. It lies within the seismically active
southern Walker Lane belt, which accommodates the relative motion between the Sierra Nevada block and
the Basin and Range Province (Figure 1a). The Coso area sits under the transtensional stress regime with major
strike-slip faults and small normal faults [Reasenberg et al., 1980]. The Coso area has been reported to have
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Figure 1. Tectonics and location of the Coso geothermal field (CGF). Circles in the two maps outline the location of the CGF. (a) Tectonic map showing the
background seismicity (yellow dots) between 1981 and 2011 and the surface traces of the faults (black lines). Purple box encloses our entire study area, including
the CGF and its vicinity. Most of the faults shown here are strike-slip, including the Little Lake Fault Zone ( LLFZ) and the Airport Lake Fault Zone (ALFZ). The red
beach ball represents the 1992 Landers earthquake. (b) Lateral extent of the CGF (black circle), as defined by the locations of the active injection and extraction
wells (black triangles) for the geothermal operation and the observed land subsidence. Locations of the wells are obtained from the California Oil, Gas, and
Geothermal Resources (DOGGR). Background is the subsidence between September 1993 and May 1996 from InSAR data, modified from Plate 1(c) in Fialko and
Simons [2000].

triggering response following M > 7.0 earthquakes including the 1992 Landers earthquake [Hill et al., 1993],
the 2002 Denali earthquake [Prejean et al., 2004], the 2005 Mendocino earthquake [Aiken and Peng, 2014], the
2010 Baja California earthquake [Aiken and Peng, 2014], and the 2010 Chile earthquake [Peng et al., 2010]. In
particular, the 1992 Landers earthquake triggered the most wide-spreading seismicity in Coso, at a spatial
scale of hundreds of kilometers. To investigate the effects on stress state and subsurface fluid distribution
within the geothermal reservoir, we revisit the triggering response in the Coso area (56 × 67 km2, box in
Figure 1a) following the Landers earthquake and conduct a fine-scale study of remote trigging to compare
the triggering response within the Coso geothermal field (Figure 1) to that in its surrounding areas.

2. Methods

We use a relocation catalog for events between 1981 and 2011 in the Coso area [Zhang and Lin, 2014], which
was obtained by using a new regional three-dimensional velocity model and differential travel times from
waveform cross-correlation. The new absolute location uncertainties are 120 m in horizontal and 300 m in
depth, while the relative location errors are smaller with 11 m in horizontal and 22 m in depth. In our study
area, a total of 19 stations were operating between 1981 and 2011. In 1992, when the Landers earthquake
occurred, 11 stations were available in our study area, and three of them were located within 15 km of the
geothermal field. Over 94% of the relocated events were recorded by eight or more stations. We then calculate
the magnitude of completeness Mc for the entire study area and the geothermal field. Following the method
of the maximum curvature [Wiemer and Wyss, 2000], we compute Mc as the magnitude with the maximum

ZHANG ET AL. ABSENCE OF REMOTE TRIGGERING 727



Geophysical Research Letters 10.1002/2016GL071964

derivative of the Gutenberg-Richter frequency-magnitude curve without adding other smoothing
parameters. We estimate the completeness magnitude Mc of this catalog to be 1.3 for the entire study area
and 1.0 for the CGF (Figure S1 in the supporting information). Therefore, we use M = 1.3 as the threshold
magnitude for the following analyses to ensure completeness within the entire study area.

Before analyzing the spatiotemporal distribution of the seismicity remotely triggered by the Landers earth-
quake, we decluster the full catalog to remove local aftershock sequences following the Reasenberg method
[Reasenberg, 1985]. For each earthquake, the method first models its spatial and temporal extent based on the
source dimension of the main shock and the Omori’s law. Each event is then cross-correlated with other events
to form clusters when they are proximate to each other in location and time. The cluster grows with more
cross-correlated events. Events within a single cluster are dependent on each other and thus are regarded as
an aftershock-related sequence. The largest event in each cluster is considered as the main shock and kept
in the final declustered catalog. An example of declustering in Rose Valley (subarea 3) shows that the after-
shock sequence of an Mw 4.1 main shock in February 1992 is removed, whereas the increased seismicity after
the Landers earthquake is much less affected, suggesting that the increase is not a coincident aftershock
sequence after some local earthquakes (Figure S2 in the supporting information).

We calculate the seismicity rate change for 30 days after the Landers earthquake relative to the background
seismicity from 1987 to 1993 using the 𝛽-statistic [Matthews and Reasenberg, 1988; Reasenberg and Simpson,
1992; Kilb et al., 2000; Hill and Prejean, 2007], which compares the difference between the observed and
expected seismicity in 30 days, normalized by standard deviation of the expected seismicity. It can be
expressed as [Matthews and Reasenberg, 1988; Hill and Prejean, 2007]

𝛽(na, nb, ta, tb) =
na − E(na, nb)√

var(na, nb)
(1)

where na and nb are the numbers of earthquakes in the time period of ta and tb, respectively. E(na, nb) is the
expected number of earthquakes in ta based on the sample of background seismicity rate in tb. var(na, nb)
denotes the variance of the number of earthquakes in ta based on the sample of the background seismicity
rate in tb. The study area is gridded with blocks of 5 × 6 km2, which are chosen to ensure relatively uniform
seismicity in different blocks. Figure 2a shows the seismicity rate change for a 30 day time window. (The rate
changes for 10 and 100 day windows are shown in Figure S3 in the supporting information.)

We also search for earthquake swarms and analyze their temporal migration for evidence of fluid-related
pore-pressure propagation. We define swarms as sequences clustering in space and time but without clear
main shocks. We search for swarms in our study area from the 1981-2011 relocated catalog [Zhang and Lin,
2014] following the method of Zhang and Shearer [2016]. The method first searches for the closest neighbor-
ing earthquakes in space and time for each earthquake, and clusters are identified when the number of closest
neighbors is significantly more than the number of background events in larger space and time windows.
A total of 156 clusters including 6415 events are identified in the Coso area. These clusters are then divided
into swarm-like sequences and main shock-aftershock sequences by two measures: the timing of the largest
event tm normalized by the mean value of the occurrence time and the skewness of the moment release
with time 𝜇. The skewness value is defined as [Roland and McGuire, 2009; Chen and Shearer, 2011; Zhang and
Shearer, 2016]

𝜇 =
∑N

i=1

(
ti − t∗

)3
Mi

𝜎3
(2)

where t∗ is the centroid occurrence time, Mi is the moment release, and 𝜎 is the standard deviation of cen-
tral moment. A set of experimental cutoff values is applied to categorize clusters. Clusters with tm ≥ 0.5 and
𝜇 ≤ 6 are classified as swarm-like sequences, and clusters with tm < 0.5 and 𝜇 > 6 are classified as main
shock-aftershock sequences.

We then analyze the space-time behavior of swarm sequences by fitting with two types of migration models,
linear and diffusion migration. A linear migration, in which migrating distance, r, is linearly proportional to
time t, often suggests a driving mechanism of aseismic slip [Chen and Shearer, 2011], whereas the migration
front in the diffusion model follows r =

√
4𝜋Dt, where D is the hydraulic diffusivity [Shapiro et al., 1997]. We

determine which model is more favorable for each swarm sequence by comparing the residuals. Because
these two models fit the migration front, the furthest migrating distance at each discretized time, it is possible

ZHANG ET AL. ABSENCE OF REMOTE TRIGGERING 728



Geophysical Research Letters 10.1002/2016GL071964

Figure 2. (a) Spatial distribution of the declustered seismicity (green circles) within 30 days following the Landers earthquake and the 𝛽-statistic of the seismicity
rate change (colored grids), calculated relative to the background period 1987–1993. Based on the distribution of the background seismicity between 1981 and
2011 (grey dots), we assigned the Coso geothermal field (CGF) as subarea 1 and divided the adjacent area into six subareas, including the Coso Range (CR), Rose
Valley (RV), Centennial Flat (CF), Wilson Canyon Fault (WCF), and Airport Lake Fault Zone (ALFZ). We masked out those grid blocks with too sparse background
seismicity between 1987 and 1993. (b) Number of events per day in the seven subareas between 1991 and 1993. The 3 year time window was chosen to keep the
detection criteria identical before and after the Landers earthquake. Red dots represent microearthquakes with 1.3 ≤ Mw < 4.0 in the declustered catalog and
green dots for Mw ≥ 4.0. Blue vertical lines mark the onset of the 1992 Landers earthquake.

that residuals in both models are large due to scattered data, in which cases we make the time-distance plot
and visually check if any model is applicable. If neither model can explain the time-distance relationship, we
regard the sequence without clear migration.

3. Results
3.1. Statistical Analysis of Seismicity Rate Change
The 𝛽 values larger than 2 or smaller than −2 indicate significantly higher or lower seismicity rates than the
background [Reasenberg and Simpson, 1992; Hill and Prejean, 2007]. The areas outside the geothermal field
show high 𝛽 values (up to 6), indicating wide-spreading triggering within 30 days (Figure 2a), consistent with
the previous study [Hill et al., 1993]. This increase can also be observed in other time windows (e.g., 10 days,
Figure S3 in the supporting information) and becomes less significant after 100 days following the Landers
earthquake (Figure S3 in the supporting information). However, we also observe an absence of seismicity
rate change inside the geothermal field. During the time windows from 10 to 100 days after the Landers
earthquake, the maximum and minimum 𝛽 values in the CGF are 1.81 and −1, respectively, which fall in the
typical statistical range of background seismicity and means that there is no significant increase or decrease
of seismicity rate inside the geothermal field. The different 𝛽 values within and outside the CGF suggest that
the active geothermal field and its surrounding areas respond differently to seismic waves from the distant
Landers earthquake.
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In order to compare the spatiotemporal variation of the seismicity at consistent spatial scales, we assign the
geothermal field as subarea 1 and divide the adjacent area into six subareas of similar sizes (black boxes in
Figure 2a) based on the distribution of the background seismicity from 1981 to 2011. Figure 2b shows the time
series for all the seven subareas between 1991 and 1993. We observe an abrupt increase in the seismicity rates
after the Landers earthquake for all the six subareas outside the CGF. In contrast, the geothermal field itself
appears unaffected by the Landers earthquake, which is consistent with our 𝛽 statistic analysis above. We also
calculate the Poissonian probability that the observed seismicity in the 30-day window following the Landers
earthquake is indeed a dynamically triggered response. When the probability is less than 0.05, we reject the
null hypothesis that the increased seismicity is a random occurrence. With 95% of confidence, our results
indicate that the increased seismicity outside the geothermal field cannot be random occurrences (Table S1
in the supporting information). Although some smaller events may be missing from the regional catalog, they
would not change the observation that inside and outside the geothermal field seismicity responded to the
large remote earthquake differently based on the same detection criteria. In addition, the different triggering
responses inside and outside the geothermal field are not artifact of the declustering process because the
difference can also be observed from the raw catalog (Figure S4 in the supporting information).

3.2. Study of Pore-Pressure-Driven Swarms
Our results confirm that areas in the vicinity of but outside the producing geothermal field are susceptible
to remote triggering. Here, however, we have clearly established the absence of remote triggering inside the
CGF production area. Before we attempt to estimate the stress state, we first test the second kind of remote
triggering model. Among the numerous fluid-related triggering models, the fracture unclogging model can
be uniquely applied to geothermal fields in that the geothermal mineral precipitation and sediments lead
to clogged fractures, which results in differential pore pressure within fracture network [Brodsky et al., 2003;
Brodsky and Prejean, 2005]. This fracture unclogging model has also been used as one of the explanations to
the absence of remote triggering in Japan [Harrington and Brodsky, 2006]. We hypothesize that the continuous
injection and extraction of geothermal fluid within the reservoir can disturb the clogged fracture and flush
the blockages from fractures, which prevents the formation of differential pore pressure, while the fractures
in natural settings remain clogged.

Since pore-pressure-driven migrating swarms suggest the presence of pore pressure gradient within subsur-
face fractures, the analysis of swarms can help test our hypothesis. A total of 71 swarms including 28 swarms
with at least 20 events are found in our study area (Figure 3a). Swarms driven by pore pressure diffusion
are only observed within tens of kilometers away from the CGF, but not inside the CGF (Figure 3a). These
pore-pressure-driven swarms show a median hydraulic diffusivity of 0.5 m2/s (Figure 3b), which falls in the
range of typical hydraulic diffusivity values, 10−10 −104 m2/s [Manga and Wang, 2007]. Four swarms are found
at the edge of the CGF but without a clear migration pattern. The result is consistent with our hypothesis that
pore pressure gradient exists within the clogged fractures outside the CGF. Hence, the correlation of remote
triggering and pore-pressure-driven swarms suggests that differential fluid pore pressure could play an active
role in controlling remote triggering in geothermal areas. Note that the absence of remote triggering might
be also explained by the stress state model if the dynamic stress associated with the geothermal production
is known. Our results also suggest that the geothermal operation has altered the subsurface fracture network
within the CGF.

3.3. Background Seismicity Rate Analysis
Since areas of elevated background seismicity are commonly assumed to be close to critical stress state [Hill
and Prejean, 2015], we further study the background seismicity rate inside and outside the CGF. We divide the
background seismicity into a shallow layer (<3 km) that is associated with the geothermal operation process
and a deeper layer confined between 3 and 15 km depth. Within the CGF, the seismicity rate in the deeper
layer decreases following the onset of the geothermal operation in 1987 and remains low afterward (Figure 4).
In contrast, the seismicity rate in the shallow layer keeps growing with the geothermal production and can be
considered as induced seismicity, which has been proposed to result from reservoir contraction, thermoelastic
and poroelastic effects [Segall and Fitzgerald, 1998]. While we observe that the CGF seismicity rates in the
shallow and deeper layers diverge after the onset of the production, the stacked seismicity rate outside the
CGF shows similar oscillation patterns for the shallow and deeper layers within the 30 year window. Without
direct anthropogenic disturbance, the absence of remote triggering and the decreased background seismicity
rate in the deeper layer within the CGF may indicate that the stress state is away from failure, probably due to
reservoir unloading, reduced pore pressure, and/or increased precipitation, which may have implications for
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Figure 3. Spatial distribution and migration patterns of swarms. (a) Map of three types of earthquake swarms analyzed from the 1981–2011 relocation catalog.
Each swarm contains more than 20 events. The swarms showing migration with hydraulic diffusion are denoted by blue circles. Squares and crosses denote
swarms with linear migration and no obvious migration, respectively. The red and blue background colors are the same as in Figure 2. (b) Stacked time-distance
plot of 14 swarms fitting to diffusion migration (blue circles in Figure 3a). The events in one swarm are denoted by the same color. The time is normalized by ti ,
the maximum time for each swarm. The distance is normalized by

√
4𝜋Di (Di is the hydraulic diffusivity for each swarm) and then normalized by

√
ti . The dashed

line shows the migration front with the median diffusivity of 0.5 m2/s.

induced seismic hazard because large earthquakes are more prone to occur in the crystalline basement than
the sedimentary layer [Walsh and Zoback, 2015; Zhang et al., 2013]. Note that we observe both an absence of
remote triggering and an increase of background seismicity within the shallow producing layer. We cannot,
however, infer the average stress state in this layer without some knowledge of the dynamic stress associated
with geothermal production that results in the elevated induced seismicity rates.

3.4. Case Studies of More Main Shocks and the Salton Sea Geothermal Field
In order to check if the Landers earthquake is a special case for the remote triggering in the Coso area, we
study the triggering responses to other remote large earthquakes. We search 22 main shocks from 1981
to 2011 with Ms ≥ 7.0 and epicentral distance ≥100 km in the International Seismological Centre (ISC)
catalog. Also, their expected Peak Ground Velocity (PGV) values are required to exceed 0.05 cm/s, which are
calculated from PGV = 2𝜋∕T × 10Ms−1.66log10A−2, where T is the surface wave period, Ms is the surface wave
magnitude, and A is the distance from the main shock to our study area [Lay and Wallace, 1995] (Figure S5a
in the supporting information). We estimate the declustered seismicity rate change in the 30 days before and
after each main shock using the 𝛽 statistic. Among the 22 main shocks, the Landers earthquake shows the
most significantly wide-spreading remote triggering in the Coso area (Figure S5b in the supporting informa-
tion), probably because the Landers earthquake ruptured in a northern direction toward the Coso area. The
stacked 𝛽 value map of the other 21 main shocks suggests that there is no statistically significant seismicity
rate change inside the CGF, while the observed seismicity rate increase occurs outside the CGF (Figure S5c in
the supporting information).
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Figure 4. Background seismicity distribution within and outside the geothermal field. Solid lines denote seismicity
rate within the geothermal field and dashed lines denote stacked rate of six subareas outside the geothermal field.
Percentage of earthquake number (%N) is the number of earthquakes every 2 years for the time period of 1981 to
2011 normalized by the maximum seismicity rate, which are 111 and 546 for the CGF and six subareas outside the
geothermal field, respectively. The reduction in the number of deeper earthquakes occurred in 1987 when the
production operation began.

Similar to the CGF, the Salton Sea Geothermal Field (SSGF) located on the southeast shore of the Salton
Sea in California is also characterized by transtensional tectonic regime with highly active seismicity,
strong subsidence, and long-term geothermal fluid loss (Figure S6 in the supporting information) [Brothers
et al., 2009; Brodsky and Lajoie, 2013]. Here we use a relocated earthquake catalog [Lin, 2013] to examine the
remote triggering in the Salton Sea area, which has been shown to respond to the 1999 Mw 7.1 Hector Mine
earthquake [Hough and Kanamori, 2002; Gomberg et al., 2001]. We conduct similar analyses of seismicity rate
change as for the Coso area and show the 𝛽 statistic and 1 year time series in Figure S7 in the supporting infor-
mation. We observe increased seismicity within 5 km north and south of the SSGF, indicated by large 𝛽 values
(∼6) within 4 days after the Hector Mine earthquake. However, the seismicity inside the SSGF did not show
an abrupt increase. The remotely triggered earthquake sequence identified by a previous study [Hough and
Kanamori, 2002] also falls outside the geothermal field. Therefore, the observed absence of remote triggering
within CGF does not appear to be a special case.

4. Conclusions

In summary, we have studied the fine-scale remote triggering in two geothermal fields, the Coso Geothermal
Field and the Salton Sea Geothermal Field, and their vicinities to assess the anthropogenic effect on the stress
state and subsurface fracture network. We find that the geothermal production areas are less susceptible
to remote triggering than the surrounding areas, which can be explained by reduced differential pore pres-
sure resulting from fracture unclogging/flushing by geothermal operations (fluid extraction and injection).
While the fault strength in the crystalline basement beneath the geothermal reservoir is increased, we can-
not evaluate the stress state of the geothermal reservoir solely from remote triggering considering the effect
of fracture unclogging. The effects of anthropogenic activities on fracture network and pore fluid pressure
should be evaluated when diagnosing the stress state through remote triggering in anthropogenic settings.
Although our observations show less susceptibility to remote triggering within the two geothermal fields,
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tectonic stress will continue to accumulate to balance the decreased pore pressure. In addition, changes in
injection volume or hydrological system may also alter the fracture network.
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