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Abstract. We analyze time series of daily positions estimated from data collected by 10
continuously monitoring Global Positioning System (GPS) sites in southern California during the
19-month period between the June 28, 1992 (M,,=7.3), Landers and January 17, 1994 (M,,=6.7),
Northridge earthquakes. Each time series exhibits a linear tectonic signal and significant colored
noise. Spectral power at frequencies in the range 5 yr'! to 0.5 d”! is dominated by white noise or
possibly fractal white noise and is several orders of magnitude higher than what would be
expected from random walk noise (in this short-period range) attributed by others to geodetic
monument motions. Estimating a single slope for the time series' power spectra suggests fractal
white noise processes with spectral indices of about 0.4. Site velocity uncertainties assuming this
fractal white noise model are 2—4 times larger than uncertainties obtained assuming a purely white
noise model. A combination white noise plus flicker noise (spectral index of 1) model also fits
the data and suggests that the velocity uncertainties should be 3-6 times larger than for the white
noise model. We cannot adequately distinguish between these two noise models, nor can we rule
out the possibility of a random walk signal at the lowest frequencies; these questions await the
analysis of longer time seties. In any case, reducing the magnitude of low-frequency colored
noise is critical and appears to be best accomplished by building sites with deeply anchored and
braced monuments. Otherwise, rate uncertainties estimated from continuous GPS measurements
may not be improved significantly compared to those estimated from infrequent campaign-mode

measurements.

Introduction

Measurements of radio signals from the Global Positioning
System (GPS) satellites have been used for more than 10 years to
estimate crustal deformation. In the campaign GPS mode, a
network of stations is measured pefiodically, typically once or
twice a year over a time interval of several years. Station
positions are estimated for each measurement period with respect
to a consistent terrestrial reference frame. The precision of these
estimates is often assessed by their repeatability defined by the
weighted root-mean-square (RMS) scatter of individual
coordinate components (i.e., north, east, and vertical) about a
linear trend. Horizontal station velocitics are then determined
either by linear regression of individual coordinate components
or by simultaneous estimation of positions and velocities. In
estimating velocities, several assumptions are made which are
predicated by the noncontinuous nature of the observations.
First, the rate of change of position is linear in time, unless a site
was subjected to significant coseismic/postseismic displacements
{e.g., Bock et al., 1993; Genrich et al., 1996; Savage and Svarc,
1997]. Second, the position estimates are statistically
uncorrelated. Third, it is assumed that the offset between the
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antenna phase center and the geodetic mark (monument) is
perfectly known for each measurement period. This is often
difficult to achieve in practice since the GPS artenna is almost
always recentered and releveled over the mark for each
measurement period. These are precision operations prone to
errors that are often compounded when different operators and/or
hardware are used from one campaign to the next. Furthermore,
site-specific errors such as multipath [e.g., Counselman and
Gourevitch, 1981; Georgiadou and Kleusberg, 19881, signal
scattering [Elésegui et al., 1995; Jaldehag et al., 1996], and
antenna phase center variations [e.g., Schupler et al., 1994]
complicate this assumption. Finally, it is assumed that geodetic
monumentis are stable, i.e., they are firmly anchored to a
subsurface layer that is representative of the Earth's crust.

How do these assumptions apply to continuous GPS
measurements? Continuous GPS certainly minimizes antenna
setup errors since the antennas are permanently attached to the
Earth by some kind of monument, although replacements in
hardware and firmware may sometimes occur over the lifetime of
a project as improvements are made in GPS technology or when
equipment malfunctions. Site-specific errors such as multipath,
signal scattering, and antenna phase center variations are
important but may not be as critical since repeated observation
scenarios from day to day and averaging over a 24-hour
observation window, typical for continuous GPS arrays, tend to
reduce (but not eliminate) these problems [e.g., Genrich and
Bock, 1992]. Experience with other types of continuous geodetic
measurements indicates, however, that instability of geodetic
monuments [e.g., Karcz et al., 1976] introduces significant
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temporal correlations in the data. Expansive clays in near-surface
rocks can cause monument motions comparable to the
measurement precision of GPS, complicating the detection of
tectonic phenomenon. For example, at the Ida and Cecil Green
Pifion Flat Observatory (PFO), monument motions have been the
largest source of noise for continuously recording strain meters
and tiltmeters [Wyatt, 1982, 1989]. This is despite the stable
geological setting, a thin (< 10 m) layer of decomposed granite
overlying competent rock, with no alluvium, and despite the care
taken to emplace them. Wyarr et al. [1982] reviewed the
horizontal and vertical movements of these monuments,
measured by optical anchors. Motions are dominated by long-
period displacements of about 0.5 mm/yr, controlled primarily by
weathering. Smaller elastic deformations caused by precipitation
loading and tidal strains show the near surface to consist of weak
material. Upon thorough wetting of the surface layers, mineral
expansion lifts the surface by as much as 1 mm. During
dessication, the ground subsides, ultimately below its original
level. These vertical movements are accompanied by horizontal
ones of the same magnitude [Wyarz, 1989].

The power spectrum for monument displacements shows the
ground to undergo random-walk-like motion, b, with standard
deviations growing in proportion to the square root of time, ¢,
according to b=(1/2Pyt)'2 with Py the effective diffusion
constant. For even the best monumentation at PFO, emplaced in
apparently solid granite, Py=2.1x10"15 m? Hz, giving b = 0.18
mm in a year's time. In other terrain, benchmark instability is
likely to be larger as indicated by frequent two color geodimeter
(distance) measurements [Langbein et al., 1987; Langbein and
Johnson, 1995]. Time series of these distance measurements
exhibit power spectra that rise at low frequencies in proportion to
2 which is characteristic of random walk or Wiener-Lévy
processes. The random walk noise in these data ranges from 1.3
to 4.0 mm/yr®5 and is attributed to monument instability
[Langbein et al., 1990; Langbein and Johnson, 1997].

Johnson and Agnew [1995] performed simulations with
synthetic data to investigate the effect of random walk on the
estimation of station velocities by continuous geodetic
measurements. They conclude that to achieve better estimates of
station velocity from continuous GPS measurements compared to
campaign measurements, monument instability must be held to a
small fraction of the measurement system precision. One option
is to avoid geologically unsuitable locations, but that could well
eliminate broad areas of tectonic interest, e.g., the southernmost
section of the San Andreas fault which is overlain by thick
sediments or the entire Los Angeles basin. The other is to
develop ways in which ground monuments can be accurately
referenced to depths at which weathering effects can be neglected
fe.g., Wyatt et al., 1989]. The use of deeply (~10 m) anchored
and braced monuments with isolation from the top 3—4 m has
been shown to be effective in reducing monument motion
[Langbein et al., 1995].

The most extensive time series analysis of (quasi) continuous
GPS observations to date has been presented by King et al.
{1995] for a single 8-km baseline spanning the Hayward fault in
northern California for nearly a 3-year period from 1991 to 1994.
They did not detect a random walk signal in the estimated power
spectral density and autocorrelation functions of their single
relative position (“baseline”) time series, although they
recognized its shortness compared to longer continuous geodetic
time series may have made such a signal undetectable.

We analyze time series of daily position estimates for the 10
sites of the southern California Permanent GPS Geodetic Array
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(PGGA) described by Bock et al. [this issue] for the period
between the June 28, 1992 (Mw=7.3), Landers and January 17,
1994 (Mw=6.7), Northridge earthquakes (Figure 1). We exclude
the three months of post-Landers data at stations PIN1, PIN2, and
ROCH, which are shown by Wdowinski et al. [this issue] to have
a clear nonlinear postseismic signature. The PGGA data allow us
to better constrain the degree of temporal correlation in GPS
position data on a site by site basis and to obtain more realistic
estimates of velocities and their uncertainties at plate-boundary-
width scales. As with the analysis by King et al. [1995], we are
limited by the short duration of our time series. With 19 months
of data we can only begin to explore their low-frequency
character; more definitive results must rely on longer spans of
data. Nevertheless, the diversity of the array during this time
period allows us to evaluate several important factors in
designing and constructing a continuous GPS network, including
monument design and site selection.

Time Series Analysis

Weighted linear regression of daily GPS positions yields
estimates of slope and abscissa intercept. For interseismic
deformation, the estimation of slope is the important quantity; for
coseismic deformation, estimation of abscissa intercept is the
dominant parameter. In Appendix A we derive analytic
expressions for weighted linear regression to better quantify the
effective end-member stochastic models of white noise and
random walk noise processes. In the case of uncorrelated errors,
velocity uncertainty g, is proportional to the magnitude of white
noise awy, and inversely proportional to the total observation
interval T and the square root of the number of measurements N
according to (see equations (A21) and (A23))

(o_‘) _ awnN 12 (N— 1) -
UWNCT N2+ N

This is the basis for the familiar N/2increase in accuracy
sometimes assumed for continuous GPS measurements compared
to less frequent field measurements. The magnitude of the white
noise component is limited by the inherent GPS system
measurement error which may be as small as 1 mm or less
[Genrich and Bock, 1992].

In the case of random walk noise (RWN) (see equation A(30)),

2‘/—3_‘1WN
NZT N>>2 ()]

b
(O-f) RWN — % ()
That is, velocity uncertainty is proportional to the magnitude of
random walk noise b, and inversely proportional only to the
square root of the total time span 7. It is independent of the
number of observations. The presence of random walk motion in
continuous GPS measurements of magnitudes 1.3—4 mm/yr%3
seen in longer series of conventional geodetic measurements by
Langbein and Johnson [1997] would significantly degrade site
velocity uncertainties as can be seen by comparing (1) and (2).
Therefore, for the proper interpretation of crustal deformation
based on estimated site velocities, it is critical to analyze the
stochastic properties of GPS position time series.
Many physical phenomena approximate a power law process
x(t) with power spectrum of the form

S (@)= So(w/wg) ™ (3)

where @ is spatial or temporal frequency, Sy and @y are
normalizing constants, and K is the spectral index [Mandlebrot
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Figure 1. Demeaned and detrended filtered position time series for north, east, and vertical components of the 10
PGGA sites, divided into 3 groups. Group 1 has sites with full data spans between the Landers and Northridge
earthquakes (567 days), only coseismically displaced by the Landers earthquake; group 2 has sites both
coseismically and postseismically displaced; and group 3 has sites which began operations about 9 months before
Northridge earthquake. Listed for each time series is the weighted RMS scatter. All data to the left of the vertical
dashed lines for sites in group 2 (PIN1, PIN2, ROCH) have been omitted from the time series analysis as described

in the text.
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and Van Ness, 1968]. The larger kis in (3), the smoother is the
process and the more dominant are the lower frequencies.
Geophysical phenomena often approximate processes with
spectral index in the range 1< K <3 [e.g., Agnew, 1992; Davis et
al., 19947 and are termed “fractal random walk” [Mandlebrot and
Van Ness, 1968]. For classical Brownian motion (“‘random
walk™), k= 2. An example of a fractal random walk process is
“Kolmogorov turbulence” with x = 5/3 [Kolmogorov, 1941].
Processes with spectral index larger than 1 are nonstationary.
“Fractal white noise” is defined within the range -1< x <l
[Mandlebrot, 1983]. These processes are stationary or
independent of time. Classical white noise has a spectral index of
0 and flicker noise has a spectral index of 1. We will use the
term “colored noise” to refer to all noise processes other than
classical white noise.

In this section, we use three different approaches to analyze
PGGA time series for temporal correlations. First, we compute
autocorrelation functions, as employed by King et al. [1995] for
continuous GPS data. Next, we use a new approach applied
previously by Johnson and Agnew [1995] to synthetic data and
which assesses continuous time series for integer-valued spectral
indices, i.e., white noise, flicker noise, and classical random walk
noise. In this approach, the total measurement error is modeled
as a sum of white noise and colored noise (flicker noise or
random walk noise) sequences. A maximum likelihood
algorithm is used to estimate the magnitude of each type of error
according to Langbein and Johnson [1997]. Finally, we also
estimate the spectral index of each time series by a single linear
regression of its power spectrum.

Weighted Autocorrelation Analysis

A visual examination of the PGGA time series (Figure 1)
indicates that several series exhibit long-period temporal
correlations, in particular, site GOLD in the north component and
site PVEP in the east component. The error bars are larger in the
early part of all the series (except for the third group which have
shorter time series), and there are significant gaps in several of
the series, particularly in the first half of the time period
considered. Power spectrum algorithms generally require evenly
spaced and equally weighted continuous data. We begin our
analysis, therefore, in the time domain with computation of
autocorrelation and cross-correlation functions [Papoulis, 1965]
that are less restricted by these problems. The daily 1-¢ (formal)
error bars are used to compute weighted functions.

The first- and second-order moments of a stationary stochastic
process x(t) are, respectively, the mean

n=E{x(®} “)

and autocorrelation

R(7)=E{x() x(t + 7)} %)
with joint second moment or cross correlation

Ry(D) = E{x{t + 1) y(} )

where E denotes expected value and 7 denotes lag time. The

normalized autocorrelation function (also called the
autocovariance function) is defined by
R(7)

(1) = A5 N
Py R0)

where

R{0) = E{xX1)) = 0} 8)
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is the variance. The normalized autocorrelation at zero lag is
unity by definition. Likewise the cross-correlation function is
defined by )

E[x(t + 7) y(0]

&)
v RL0) R,(0)

For a white noise (WN) process w(t)

Pr(T) =

n=E{w(n}=0 (10
o ;7=0

Ryn(@) = { OWN :7>0 an
1 ;7=0

P ={o 1730 (12)

A random walk (RWN) process r(t), also known as a Wiener-
Lévy process or Brownian motion, is a nonstationary normal
process whose statistics are uniquely defined [ Papoulis, 1965] by
its mean

n=E{r(n}=0 13)

and variance
Rewn(0) = E{r())} = Ohyn =11 (14)

The associated autocorrelation function between epochs ¢; and ¢,
is

Yo 2ty
Rpwn({ta— 1) = )/tf ;,:gti = ymin (¢4, t,) (15)
and the (normal) probability density function is given by
2
fr) = exp|- =5 (16)
V20 20RwN

The scale factor ¥ indicates the magnitude of the random walk
process. A random walk process can be shown to be the
cumulative sum of independent, stationary normal increments
[Papoulis, 1965] or, equivalently, as the integral of white noise

!
o) = JO WD) d a7
such that the white noise process w(t) has zero mean and a flat
spectrum

Swniw)y =7y (18)

The power spectrum for the random walk process will rise at low
frequencies in inverse proportion to the square of the frequency
@.

We estimate the weighted autocorrelation function for a time
series of N points as follows:

1. Demean and detrend the time series x(¢) to obtain a new
series (1) .

2. Compute the weight coefficients

=/ #252 5 2
an,r—\/xn0n+r+xn+ 707 (19
where 0, and 0, are the formal standard deviations for the nth
and (n+ 7)th points in the series, respectively.

3. Compute the normalized coefficients

a T
Bpe= 51" (20)
o Oy 1
n=1
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4. Compute the estimated weighted autocorrelation function

. N=1
RA(1) = n§1 LEH5 S Tt 2n
5. Normalize the weighted autocorrelation function
R (1)
=32, p0)=1 22
PT) R0 p0) (22)

The normalized weighted cross-correlation functions are
determined in an analogous manner by the unbiased estimator

Ry(m)

pxy(T) = ———r—————Rx(O) R_v( 0

For finite data sets, as 7 increases, the overlap region decreases,
so the estimates (22) and (23) become increasingly unreliable
[e.g., Priestley, 1981].

We compute the weighted autocorrelation functions in north,
east, and vertical components for the PGGA time series (Figure
2). Because of the estimation problems described by Priestley
[1981] for large lag times, we follow the approach of King et al.
[1995] and keep the lag time to less than N/3. We use 7 < 150
days for stations operational for the entire 19-month period
(Figures 2a and 2b), and 7 < 75 days for stations operational for
less than a year (Figure 2¢). This shows an important limitation
to autocorrelation analysis: we are most interested in the very
long time lags (low frequencies), but the results in this range are
not useful and are not represented in Figure 2.

(23)

Analysis With Integer Spectral Indices

We apply a maximum likelihood estimator (MLE) described
by Langbein and Johnson [1997] to evaluate the time series for
linear combinations of white noise (k=0) and colored noise
sequences with integer spectral indices (k=1, k=2). We evaluate
three possible stochastic models: white noise (WN), a
combination of white noise and flicker noise (WN+FEN), and a
combination of white noise and random walk noise (WN+RWN).
Each individual noise process is represented by a single standard
deviation of normally distributed random variables. The
magnitudes of white noise and flicker noise have units of distance
(millimeters); for random walk noise the units are in terms of the
expected motion after 1 year (millimeters per square root year).
When the MLE algorithm cannot separate the two error sources
(because, for instance, the time series is too short or one of the
error sources is considerably larger than the other), then it will
return a zero estimate for (usually) the colored noise term. This
should not be taken to mean necessarily that there is no colored
noise but simply that the algorithm is not capable of
distinguishing it.

A measured station coordinate component can be modeled by
an initial value of the component x; (abscissa intercept) and
velocity r (assuming a linear accumulation of deformation) such
that

() =xg+ rt; + (1) 24)

or in matrix form
y@)=Ax(t) + (1) (25)

with

18,039
1 tl xl
A=l ]y 2] a0 26)
i tN xN

We assume that the error term is a linear combination of a
sequence of uncorrelated unit-variance random variables o and a
colored noise sequence 3 such that

() = ac(r) + b . B(2) 1))

Coefficients a and b, are the magnitude of white noise and
colored noise, respectively. The covariance matrix of x(z) is
given by

C()=E{e7() ()} =a? L+ b2 J () (28)

where I is the identity matrix and J, is the colored-noise
covariance matrix. Matrices I and J,. have dimension N, the
number of points in the time series. The subscript k denotes the
spectral index of the colored noise (i.e., k=1 for flicker noise, x
= 2 for random walk noise). The covariance matrices for white
noise, random walk noise, and flicker noise are given in
Appendix B.

Using the MLE algorithm, we estimate coefficients a and b
such that

CH=aa+52J () (29)

We have modified this algorithm to estimate simultaneously the
velocity r, intercept xg, coefficients (a, b,), amplitude and phase
of a yearly component signal, and an arbitrary number of offsets
in the time series. However, because these time series are so
short, we have chosen not to allow the MLE routines to fit for an
annual signal. When we did allow this as a test, the low-
frequency noise in several series was absorbed into the annual
term and the power law component returned zero estimates. It is
likely that there are annual signals in some of these series, but
with at most 19 months of data, it is too much to ask of the MLE
technique to fit for both this and the power law term. The
algorithm also estimates uncertainties for each parameter and
confidence intervals through use of the Fisher information matrix
which is related to the curvature of the MLE function at its
maximum.

For a well-designed geodetic monument and in the absence of
other site-specific errors, we would hope that b./a << 1; i.e., the
daily positions are temporally uncorrelated. When b, /a = I,
temporal correlations may not be visually evident in the time
series (especially for short series); they nevertheless can have a
significant detrimental effect on the uncertainties of site
velocities estimated from the position data [Johnson and Agnew,
1995]. As the colored noise component becomes more dominant
(by/a >> 1), the improvement in accuracy expected from
continuous position measurements compared to infrequent
measurements decreases dramatically [Johnson and Agnew,
1995].

Maximum likelihood estimates of the coefficients (a and b )
for all 30 PGGA time series are presented in Table 1 for the WN,
WN+FN, and WN+RWN models; the velocities r estimated
simultaneously with the coefficients are given in Table 2 for the
WN and WN+FN models only.

Analysis With Fractional Spectral Indices

Although sampled evenly, some of the PGGA time series
suffer from significant data gaps and are therefore not strictly
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Figure 2. Weighted autocovariance functions of PGGA daily position time series (north, east, and vertical
components) for the period between the Landers and Northridge earthquakes; the vertical scale denotes (unitless)
covariances within the range [-0.5, 0.5] for a time lag up to 150 days (for groups 1 and 2), and up to 75 days for
group 3. Grouping of sites is explained in Figure 1 caption.
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Table 2. ITRF93 Velocity Estimates

Site Code  Component WN WN+FN Ratio
Group 1
GOLD North -6.2%1.0 58154 S.4
East 24215 -241%56 37
Vertical 21+28 03+13.0 46
JPLM North 153£06 156+36 6.0
East -442+1.0 -445+6.1 6.1
Vertical 62+2.0 8.0x86 43
S103 North 23606 236%2.1 33
East -43.0+1.1 -427+£40 3.6
Vertical 13522 1201101 4.6
VNDP North 224+£09 227146 5.1
East -453+1.6 -457+66 4.1
Vertical -4.1+27 -58+94 35
Group 2
PIN1 North 11.9+0.8 126+38 4.8
East -285+15 -282%55 37
Vertical 7034 72+11.5 3.4
PIN2 North 122+£08 12031 39
East -289+16 -295+4.1 2.6
Vertical 45+32 3985 27
ROCH North 163+£07 163+£25 3.6
East 327+16  -33.0+73 4.6
Vertical 0926 * *
Group 3
HARV North 19220 196+92 4.6
East 477143 4544113 2.6
) Vertical -129+£56  -124%+16.8 3.0
MATH North 18.1%1.1 18223 2.1
East -39.1+£2.0 -393%53 2.7
Vertical 37136 32491 2.5
PVEP North 247+18 237157 32
East -57.8+3.5 -583+152 43
Vertical 6.5+73 10.7+27.3 37

Velocity estimates in units of miilimeters per year for white noise
(WN), and white noise plus flicker noise (WN+FN) models. All
uncertainties denote 95% confidence intervals. Ratio is WN+FN
uncertainties divided by WN uncertainties. Site groupings are
explained in Table 1.

*The maximum likelihood estimation algorithm failed to
distinguish the flicker noise coefficient.

continuous. The requirement of evenly spaced, continuous data
in power spectrum algorithms is primarily due to simplicity,
computational efficiency, and a reliance on the fast Fourier
transform. If one chooses to revert to the classical definition of
the periodogram

P = 5| FT@) (30)

where

N
FT (w) = 29, x(t) exp(-iot)) (31)
=i

for the data set
x(t); j=1,2,..., Ny

then the requirement for evenly spaced continuous data is
removed. We evaluated the power spectrum of the time series
using the redefined periodogram [Scargle, 1982]
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Equation (32) reduces to (30) when the points are evenly spaced.
The constant 7 is an offset that makes the power spectrum
independent of a constant time shift that may be applied to all
x(tj) [Scargle, 1982]. This definition of a power spectrum is
often referred to as an amplitude-squared spectrum and is
different from the more typical power spectral density defined
through the use of the Fourier transform.

Figure 3 shows the power spectra for the north, east, and
vertical components of the time series on log-log plots. Also
included are the theoretical spectra for the estimated WN+FN
noise model from the MLE technique, a theoretical random walk
spectrum with magnitude 1.5 mm/yr®3, and a single straight-line
fit to the log-log values of each spectrum. The theoretical curves
on these plots are in units of power spectral density. In order to
compare these to the amplitude spectra of the time series, we
have applied an approximate scaling factor to the amplitude
spectra. Because the time series are nearly equally spaced in
time, we believe this is good enough for a visual comparison.
Assuming that a time series is dominated by a single power-law
process (Equation (3)) then the spectral index x can be estimated
by fitting a straight line to the log-log values of the power
spectrum. The spectral index is then the slope of that fit.
Typically, the spectral index would be estimated by first finding
the range of frequencies where the spectrum is well approximated
by a single power law and then using an estimator to fit a straight
line to the data within this range. This would remove the effect
of the high-frequency end of the spectra where white noise (with
a flat spectrum) may dominate and would be less sensitive io any
outliers such as yearly, monthly, or daily peaks. However, owing
to the relative shortness of the PGGA time series, we used a least
squares fit to the whole power spectrum. Since the number of
points in the power spectra increase toward the high-frequency
end of the spectrum, a robust estimator would treat the low-
frequency data (where the power law process is likely to
dominate) as leverage points and apply less weight to them. This
would result in a lower estimate for x for a “red” spectra. The
(nonrobust) least squares estimator will place more weight on the
lower frequencies and will be more affected by possible seasonal
peaks such as the obvious annual cycles in the GOLD rnorth and
PVEP east components, resulting in a larger estimate for Kk
Overall, for the present time series, we feel that the least squares
estimator is more appropriate than a robust estimator. The
spectral index and its 95% confidence interval are plotted in the
top right hand corner of each plot in Figure 3.

Precision of Site Position Estimates

We now apply autocorrelation, integer spectral index, and
fractional spectral index analyses to evaluate the stochastic
properties of the PGGA time series and, thereby, the precision of
site position estimates. This is critical for extracting meaningful
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Figure 3. Fractional spectral analysis of the PGGA time series by site and coordinate component. Vertical axes
have units of square millimeter years. Shown is each plot are (1) the amplitude spectrum (irregular line), (2) the
least squares linear fit to the spectrum (solid straight line), (3) the estimated white noise plus flicker noise spectrum
(dashed line) and its uncertainty band (shaded region), and (4) the random walk spectrum with magnitude 1.5
mm/yr%5 (dotted line). The least squares estimate of the spectral index K and its uncertainty (95% confidence
interval) are shown in the top right corner of each panel.
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observations of tectonic processes including coseismic and
postseismic deformation [Wdowinski et al., this issue], and
interseismic deformation [Bock et al., this issue].

Autocorrelation Analysis

A visual examination of the autocorrelation functions suggests
the presence of significant correlations in the north component of
GOLD (Figure 2a) and north and east components of PVEP
(Figure 2¢). GOLD's north autocorrelation function exhibits
positive correlation for very short lag times and negative
correlation for longer lag times. PVEP exhibits temporal
correlation in both horizontal components; the north
autocorrelation decays linearly; the east component
autocorrelation decays with negative slope for 7 < 50 days and
then increases with positive slope. GOLD sits atop a 25 m steel
tower while PVEP is situated in soft rock and clay on a coastal
terrace [Bock et al., this issue]. Autocorrelations of sites HARV,
JPLM, MATH, PIN2, and ROCH exhibit no apparent temporal
correlations or perhaps marginal correlations (JPLM north, PIN2
north, and ROCH east). The sites with antenna changes (PIN1
and VNDP) and eccentricities (SIO3) exhibit subtle correlations
which may be artifacts of these changes.

If we ended our analysis at this point, we would arrive at the
same basic conclusion as King et al. [1995] for their more limited
data set, that there are no significant temporal correlations in the
continuous GPS time series, except in our case for sites GOLD
and PVEP. The weighted autocorrelation analysis tends to
support the view that the PGGA time series are primarily white
noise processes. Autocorrelation function analyses are not well
suited, however, to characterization of nonstationary random
processes [Davis et al., 1994). Therefore, if the PGGA time
series are nonstationary random walk processes, for example,
autocorrelation functions would not necessarily determine this.
King et al. [1995] indicated that the rapid decay in the
autocorrelation function for their continuous GPS data may have
been just an artifact of the shortness of their time series.

Integer Spectral Index Analysis

The integer spectral index analysis of the PGGA time series
(Table 1) indicates that (1) the white noise components are well
determined in all cases and are statistically equivalent for the
three models; (2) the magnitudes of the WN coefficients are
independent of the length of the corresponding time series and
are about 10-20% lower than the weighted RMS statistic; (3) the
magnitudes of WN coefficients are about 2-4 mm in the north
component, 4-5 mm in the east component, and 5-10 mm in the
vertical component; (4) the FN coefficients b are reasonably
well determined, although their uncertainties are about 4 times
larger than those for the WN coefficients; the algorithm fails to
return a scaling coefficient for the vertical component of ROCH;
and (5) the RWN coefficients b, are less well determined, with
their uncertainties about the same order of magnitude as the
estimates themselves; the algorithm fails to return a scaling
coefficient for 6 of the time series. The failure of the algorithm
to return scaling coefficients is the result of the shortness of the
series; the relative magnitudes of the white and colored noise
terms also play an important role.

We test whether either or both of the colored noise models,
WN+FN and WN+RWN, fit the data better than the WN model.
To do this we use the maximum log-likelihood-ratie test statistic
[Kendall and Stuart, 1979]

.. max likelihood 1
max likelihood 2
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= exp[(max—log-likelihood 1) — (max—-log-likelihood 2)]  (34)

The test statistic A and the maximum value of the log-likelihood
function for each model are given in Table 3 for both colored
noise models. We consider that model 1 (WN) best fits the time
series to be the null hypothesis and wish to test whether this
hypothesis can be rejected in favor of the alternative hypothesis
that model 2 (a colored noise model) better fits the data. To
determine the probability distribution of A under the null
hypothesis, we simulated 100 time series for each PGGA
component given the model parameters for the WN model and
then fit both this model and the colored noise models to the
synthetic data and tabulated all 100 values of A. In all cases, the
values of A were equal to 1.0 implying that the log-likelihood
values under both the null and alternative hypotheses are
identical. This means that the MLE routines do not fit the
synthetic data any better when the possibility of colored noise is
added to the null hypothesis model of WN. In other words, the
routines are not “fooled” into finding colored noise if none is
present. This is a very desirable property of the MLE technique
and means that the likelihood ratio test statistic is a powerful test
in rejecting this null hypothesis. We see in Table 3 that in all of
the determinate cases, the colored noise models provide a clearly
better fit than the WN model. From this we infer that the
probability of the nuill hypothesis (WN) being correct is
essentially zero, and we can reject it in favor of either of the
colored noise models: thus the MLE technique shows that a white
noise error model is not appropriate for the PGGA time series.

The maximum log-likelihood values for the WN+FN model
are larger in most cases than those for the WN+RWN model but
only by a small amount. To compare these two models against
one another, we take the null hypothesis to be the WN+RWN
model and the alternative hypothesis to be the WN+FN model.
Unfortunately, the PGGA time series between the Landers and
the Northridge earthquakes are not long enough to make such a
test useful. We do note, however, that the 95% confidence
intervals for the WN+RWN parameter estimates are often as
large as the values themselves, while the WN+FN estimates are
better determined. Further insight into the appropriate model will
have to await the analysis of longer time series.

Fractional Spectral Index Analysis

Fractional spectral analysis of the time series is summarized in
Figure 3. Shown in each panel are the power spectrum, the least
squares estimate of the spectral index x (again, assuming only a
single straight-line fit) and its 95% confidence interval. The
spectra show only a small tendency toward low values of x by
the high-frequency end of the spectrum, but at the same time we
reiterate that the relatively short length of the time series certainly
undersamples the lower frequencies.

In all cases, the spectral indices lie within the range [0.05,
0.55], although most values are well approximated by 0.4+0.2
(95% confidence level). The uncertainties are about 0.10 for the
longer series (Figures 3a and 3b), and 0.14 for the shorter series
(Figure 3c). For each station, they generally agree within one-
sigma for all three components. These observations suggest that
the dominant colored noise contribution for all stations can be
well described by a power law spectrum with spectral index of
about xk=0.4. The associated variance of the process after time T
is given by [Agnew, 1992]

O Ry (1) o= T706 35)

i.e., a decay for longer lag times. Whether this trend holds for all
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Table 3. Log-Likelihood Tests for Stochastic Models

18,045

Log-Likelihood A-statistic
WN+FN WN+RWN
Site Code Component WN WN+FN WN+RWN Versus WN Versus WN
Group 1
GOLD North 2191.70 2333.00 2340.10 0.00 0.00
East 1969.20 1976.20 1974.10 0.00 0.01
Vertical 1554.30 1565.60 1562.40 0.00 0.00
JPLM North 2207.50 2265.40 2260.70 0.00 0.00
East 1939.30 1964.60 1958.80 0.00 0.00
Vertical 1496.30 1514.70 1511.30 0.00 0.00
S103 North 1733.50 1740.10 1738.90 0.00 0.00
East 148420 1492.00 1492.80 0.00 0.00
Vertical 1212.40 1233.60 1234.80 0.00 0.00
VNDP North 1775.30 1796.80 1791.10 0.00 0.00
East 1468.80 1482.40 1483.90 0.00 0.00
Vertical 1272.10 1290.60 1294.90 0.00 0.00
Group 2
PIN1 North 1609.60 1636.20 1632.60 0.00 0.00
East 1387.70 1393.50 1392.20 0.00 0.01
Vertical 1113.30 1121.40 1120.50 0.00 0.00
PIN2 North 1502.50 1518.40 1517.50 0.00 0.00
East 1303.30 1303.70 * 0.67
Vertical 1080.70 1086.70 1088.10 0.00 0.00
ROCH North 1478.90 1480.50 * 020 *
East 1232.40 1253.90 1050.90 0.00 0.00
Vertical 1090.30 * * * *
Group 3
HARV North 997.59 1000.40 * 0.01 *
East 823.55 82723 828.52 0.00 0.01
Vertical 776.76 777.46 * 0.50 *
MATH North 1232.90 1233.50 1233.90 0.55 0.37
East 1068.10 1069.70 1068.80 0.20 0.50
Vertical 931.78 932.14 * 0.70 *
PVEP North 1035.50 1052.40 1054.60 0.00 0.00
East 888.53 910.28 909.42 0.00 0.00
Vertical 720.96 725.83 72438 0.01 0.00

Models are white noise (WN), white noise plus flicker noise (WN+FN), and white noise plus random walk noise (WN+RWN). The
larger the value, the more significant is the model. If the A-statistic is close to unity, the null hypothesis (WN) is accepted, otherwise it is
rejected in favor of a colored noise model. Site groupings are explained in Table 1.

*The maximum likelihood estimation algorithm failed to distinguish the colored noise coefficient.

large lag times (and therefore renders the process stationary)
cannot be determined from finite representations. Fortunately,
for time series derived from GPS or other types of geodetic
measurements, we are mostly concerned about the quantity and
quality of noise within the time span of actual or potential
measurements, i.e., seconds to decades. The issue of whether the
observed noise is stationary is therefore mostly of theoretical
interest. In the context of crustal deformation measurements we
are more concerned with accessing the precision of quantities
(i.e., site velocities) derived from our continuously sampled data.
Specifically, for these time intervals, we want to determine the
magnitude and character of time-correlated noise in relation to
the end-member models of WN and RWN. For this purpose we
have included in Figure 3 power spectral densities of the best
fitting WN+FN model (see Table 1 for a; and b; values) and a
RWN model with a scaling coefficient of b, = 1.5 mm/yi%5. On
the basis of earlier referenced work [e.g., Langbein and Johnson,
19971, we can regard this random walk process as a
representation of the level of site instability of a well-anchored
monument.

An inspection of the spectra yields three important
observations: (1) spectral power at higher frequencies is (not

surprisingly) several orders of magnitude higher than what can be
expected from monument instability; (2) spectral power for the
east and vertical components is consistently higher than
corresponding north component values; and (3) both the WN+FN
model and a fractal white noise (FWN) of spectral index about
0.4 fit the observations in the available frequency range. These
observations suggest that the power spectra at higher frequencies
(5 yr'l to 0.5 d°!) are dominated by white noise and possibly a
weakly time-correlated noise not related to monument instability.
As possible sources for the observed correlated noise, we can
safely disregard receiver noise as a major contributor, since it is
much lower in magnitude and likely uncorrelated over the time
intervals considered [e.g., Genrich and Bock, 1992]. Noise
sources that are common to all sites (orbit errors, reference
system orientation) have been essentially eliminated by filtering
out a common-mode bias from the time series [Bock et al., this
issue]. Not accounted for, however, are site-specific errors
correlated with site-to-satellite observation geometry, including
satellite sky coverage and track orientation. Contributors include
multipath, antenna phase center variations, and possibly signal
scattering. Satellite track orientation is the reason for different
spectral power levels among the three components. The elevated
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noise levels for the east and vertical components demonstrate (as
was observed by other investigators earlier [e.g., Dong and Bock,
1989] that these components are more affected by the
constellation geometry. Since day-to-day satellite constellations
are essentially identical at a time lag of 4 min and repeat once per
year (assuming no repositioning, major orbital changes, or
activation/deactivation of satellites), we expect noise from these
sources to be correlated for considerable periods. The generally
good agreement in the spectral index between all three
components is consistent with a common time-dependent source.
Another explanation for the correlated noise is related to
atmospheric effects. Although beyond the scope of this paper,
we note that analysis of time series of hourly atmospheric zenith
delay estimates (not position estimates) from 30 southern
California continuous GPS sites show similar low-frequency
characteristics in their power spectra for all sites.

If we extrapolate our observed power spectra to lower
frequencies, we can compute cross-over frequencies where the
measurement noise equals noise due to potential monument
instability. For random walk monument noise with by = 1.5
mm/yr%3 reported in other geodetic time series by Langbein and
Johnson [1997] these corner frequencies are about 1.0+0.5 yr’1
for the horizontal, and 0.3£0.2 yr'! for the vertical component
(see Langbein and Johnson {1997}, p. 602). To detect the
presence of a corner frequency at f; using spectral techniques
requires time series at least 5/f; in length, or about 5 and 17 years
for the values just given. If the PGGA time series do indeed
exhibit RWN of this magnitude, tectonic velocity resolution
would be controlled by monument instability rather than GPS-
specific measurement noise for observation spans beyond
something like 0.5 years. However, as indicated, we are unable
to detect significant random walk noise in any of the PGGA time
series because of the shortness of the time series and the
magnitude of the white noise component. It will take
considerably longer time series to better assess the colored noise
characteristics of the PGGA data.

Measurement of Interseismic Deformation

Interseismic deformation is inferred from site velocities
estimated by weighted linear regression (1-D) or simultaneous
adjustment (2-D or 3-D) of repeated GPS position measurements.
Site velocity estimation with WN and RWN models was
compared earlier by deriving analytic expressions (equations (1)
and (2)) which highlighted significant differences in velocity
uncertainties achievable within the range of these two end-
member processes. In light of the outcomes of the time series
analyses of the PGGA data, we are now ready to estimate
velocities and their uncertainties for each coordinate component.
We then compare velocity uncertainties obtainable for several
observation scenarios ranging from typical annual campaign
surveys to continuous GPS measurements. Finally, we provide
some suggestions for GPS site design.

Estimation of Site Velocities

Velocity estimates for each of the PGGA time series are given
in Table 2 for the WN and WN+FN models, with respect to the
International Terrestrial Reference Frame 1993 (ITRF93
[Boucher et al., 1994)), as described by Bock et al. [this issue].
An important observation is that the velocity estimates
themselves are not significantly affected by the assumed
measurement model. For the WN model, velocity uncertainties
are about 1-2 mm/yr horizontally and 3 mm/yr vertically, at the
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95% confidence level, for the seven sites operational over the
entire 19-month period, and about 2 times poorer for sites that
became operational about a year after the Landers earthquake
(Table 2). These uncertainties are consistent with equation (1)
for equally spaced continuous data. That is, under the white
noise assumption, velocity uncertainty is inversely proportional
to the total time interval and the square root of the number of
continuous measurements. We have demonstrated, however, that
the WN model poorly fits the data and that there is significant
colored noise in the time series which can be modeled either as
fractal white noise (FWN) or white noise plus flicker noise
(FN+WN).

There is no simple analytical expression (as for WN and
RWN, equations (1) and (2)) nor at least a known covariance
matrix (as for FN, equation (B3)) for estimating velocity
uncertainties under the FWN model. However, it is still possible
to get an approximate value for them. Part of the definition of a
continuous fractional Brownian process is that the increments
Ax(f) =x(t + 1) — x(¢#) have a Gaussian distribution (with a
standard deviation of 0,, and zero mean, see also equations
(11)—(15)). The same definition can be generalized to FWN
processes. Over the range 0<k<3, given the same o, , the
value for 0'% should be the same when the number of points in
the time series is just two. For the case of WN, ¢,,=av2 , and
for RWN, g, ,=bVAT . The uncertainty 64, can therefore be
estimated either from the time series directly or from the
WN+RWN estimates (Table 1). From simulated time series at a
given k, we find a relatively simple relationship between 0'% and
O Ay »
o= ——~23 "o

TON3FAT?

In Table 4 we show the appropriate scaling coefficients to be
applied to the white noise velocity uncertainties to properly
account for FWN, WN+FN, and WN+RWN, assuming that the
series are continuous (i.e., that there are no data gaps). Velocity
uncertainties for the WN-+FN model are about 3-6 times larger
than the uncertainties from the WN model (see Figure 4); for
FWN the uncertainties are about 2—4 times larger.

A powerful internal test of the estimated site velocities (Table
2) is provided by nearby sites PINI and PIN2 which are about 50
m apart; both are constructed with deeply anchored monuments.
According to both WN and WN+FN models, their velocities are
statistically equivalent (at the 95% confidence level) and agree to
about 0.5 mm/yr in the north component, 1.3 mm/yr in the east
component, and 3.3 mm/yr in the vertical component. To rule
out possible correlations between the position series for PIN1 and
PIN2, Figure 5 shows the cross-correlation functions between
their corresponding component time series. There appear to be
only marginally significant cross correlations (although this does
not completely rule them out). The baseline time series between
PIN1 and PIN2 (PIN1-PIN2) shown in Figure 6 is impervious to
any possible biases introduced by our regional filtering aigorithm
{Wdowinski et al., this issue]. In the baseline representation, the
WN model indicates zero relative horizontal velocity: -0.3£ 0.7
mm/yr in the north, 0.4+1.0 mm/yr in the east, and a vertical
velocity of -1.2 + 2.8 mm/yr (all uncertainties are 95%). This is
very consistent with the differenced individual site velocity
estimates (Table 2) in horizontal components but less so for the
vertical component. There is a small improvement in the white
noise coefficient (a) in the baseline representation which is not
surprising considering that most error sources are common-mode
due to the close proximity of these two sites.

(36)
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Table 4. White Noise Uncertainty Scale Factors

Uncertainty, mm/yr

Scale Factor

Site Code Component WN FWN FN RWN
Group 1
GOLD North 1.0 23 5.1 184
East 1.5 19 34 10.5
Vertical 2.8 29 43 124
JPLM North 0.6 24 52 15.6
East 1.0 24 5.6 24.1
Vertical 2.0 33 4.5 115
SI03 North 0.6 20 3.7 12.3
East 1.1 1.5 4.0 12.6
Vertical 22 25 49 17.7
VNDP North 0.9 2.6 58 12.8
East 1.6 33 45 13.8
Vertical 2.7 29 35 89
Group 2
PIN1 North 0.8 3.8 5.5 16.4
East 1.5 2.4 4.1 16.1
Vertical 34 2.6 3.8 10.1
PIN2 North 0.8 2.1 47 10.9
East 1.6 23 30 *
Vertical 32 12 3.1 15
ROCH North 0.7 2.5 39 *
East 1.6 2.8 54 14.3
Vertical 2.6 19 * *
Group 3
HARV North 2.0 23 46 *
East 43 1.6 2.5 59
Vertical 5.6 26 29 *
MATH North 1.1 1.8 19 34
East 2.0 27 23 47
Vertical 36 2.9 22 *
PVEP North 1.8 22 3.0 36
East 35 3.0 4.1 4.6
Vertical 73 2.0 35 44
Mean: 24406 40+1.1 11.4£53

Scale factors to be applied to white noise (WN) uncertainties (95% confidence) to take into
account fractal white noise (FWN), flicker noise (FN), and random walk noise (RWN), assuming
equally spaced, continuous time series. Site groupings are explained in Table 1.

The maximum likelihood estimation algorithm failed to distinguish the colored noise coefficient.

Another comparison is an external one. The velocities (Table
5 and Figure 7) of all sites are computed with respect to the
NUVEL1-A Pacific plate pole of rotation [DeMets et al., 1990,
1994 after transformation of the ITRF93 velocities to the NNR
NUVELI-A reference frame [Argus et al., 1991] using the
rotation angles of Boucher et al. [1994]. In Figure 4a we plot the
velocities of the PGGA sites with their 95% confidence ellipses
for the WN and WN+FN models; in Figure 4b we plot the
ellipses for the WN and FWN models. We have neglected the
cross correlations between the north and east components which
we know to be less than 0.1 from a preliminary simultaneous
adjustment of positions and velocities of the PGGA sites (this is
also indicated by their weighted cross-correlation functions). The
velocity of VNDP agrees with the one estimated by Feigl et al.
[1993] from an independent set of GPS and VLBI measurements
collected over nearly a decade prior to the Landers earthquake,
which indicates that the velocity of VNDP is within 1-2 mm/yr
of NUVEL-1A Pacific plate motion. This site is sufficiently
distant from the Landers earthquake epicenter so that its rate of
deformation is not expected to have been affected [Bock et al.,
this issue].

Neither of these comparisons can validate or invalidate any of
the possible colored noise models. Table 4 summarizes the

velocity uncertainties for the components of the PGGA data
under all four models investigated. There is clearly some amount
of correlated data in these time series; the difficult part is
constraining both the amount of this correlated noise and its
spectral index. We have presented evidence earlier which leads
us to reject the WN model and prefer the WN+FN model over the
WN+RW model. We are left with two possible models, WN+FN
and FWN, and we have no adequate statistical test by which to
make a choice between the two. Visually comparing the
amplitude spectra of the data in Figure 3 with the corresponding
spectral shapes for the WN+FN and FWN models is also
inconclusive. We thus have no way to choose between these last
two noise models. Therefore we present our final estimates for
the PGGA site velocities for both the FWN and WN+FN models,
with respect to the NUVEL-1A Pacific plate pole of rotation
(Table 5). The FWN velocity estimates are the same as the WN
estimates, but the WN uncertainties are inflated (see equation
(36)) according to the FWN spectral indices given in Table 4.

In Figure 7 we plot velocity uncertainties (10) for 0.5 to 10
years of continuous GPS measurements for the WN, WN+FN,
and WN+RWN models. The corresponding scaling coefficients
are averages of the horizontal component scaling coefficients
listed in Table 4. Although these coefficients are obtained from
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-116° -114°

Figure 4. Observed horizontal site velocities relative to the Pacific plate estimated from the PGGA data. The
velocities are estimated in the global ITRF93 reference frame, transformed to the NNR NUVEL-1A frame using the
known small rotations between ITRF93 and NNR NUVEL-1A [Boucher et al., 1994], and transferred to a fixed
Pacific plate frame according to NUVEL-1A. Shown in both panels are 95% confidence ellipses. (a) The light
arrows and thin ellipses are for the white noise (WN) model; the dark arrows and thick ellipses are for the white
noise plus flicker noise (WN+FN) model. (b) The light arrows and thin ellipses are for a WN model; the dark
arrows and thick ellipses are for the fractal white noise (FWN) model (see Table 4 for the scale factors applied for

each model).

less than 2 years of actual (PGGA) measurements, the figure may
provide a reasonable indication of what can be expected for site
velocity uncertainties obtainable from longer spans of continuous
GPS data under the three integer spectral index models.

Continuous Versus Campaign GPS

It is sometimes assumed that continuous GPS will provide
much more precise velocity estimates than campaign GPS
measurements over the same total time span, or equivalently that
continuous GPS will achieve a desired velocity uncertainty much
faster than infrequent campaign measurements. These
assumptions are based on incomplete knowledge concerning the
error characteristics of GPS position estimates, which can best be
assessed by analysis of continuous time series. In light of the
results of our time series analysis of only 19 months of PGGA
data, we extrapolate to several 5-year measurement scenarios.

Whether our estimated noise characteristics can be generalized to
a longer time period is unclear and will only be verified by
analyses of longer time series. Even then, extrapolating from one
continuous site to another may not be valid because of possibly
different local conditions. Nevertheless, recognizing these
potential limitations, we compare in Table 6 typical annual
campaign measurements of 5 consecutive days per site;
semiannual measurements of 5 consecutive days per site; single-
day monthly measurements; single-day weekly measurements;
and daily (continuous) measurements. Velocity (10)
uncertainties are estimated for different magnitudes of random
walk noise (b,) and flicker noise (b), assuming that in all cases
the magnitude of white noise is @ = 2 mm. In addition to the
WN+FN and WN+RWN models, we look at the special cases of
WN, FN, and RWN to quantify the individual contribution of
each type of error.
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Figure 5. Weighted autocovariance functions of daily position
time series of sites PIN1 and PIN2, in north, east, and vertical
components for a time lag up to 150 days. The vertical scale
denotes (unitless) covariances within the range [-0.5, 0.5].

In the case WN, we can achieve nearly an order of magnitude
improvement in velocity uncertainty (1-6) for continuous
measurements (0.03 mm/yr) (see also Figure 7) compared to
annual measurements (0.21 mm/yr). In the “best” case, FN will
add (0.()7)2 mm? to the velocity variance, while RWN will add
(0.22)% mm>2/yr2 for all measurement scenarios. FN will only
degrade velocity uncertainty significantly for continuous
measurements and then by nearly a factor of 3 compared to WN.
RWN will degrade velocity uncertainty by nearly a factor of 3
even for weekly measurements and nearly a factor of 8 for
continuous measurements compared to WN. In the “typical”
case, FN will degrade velocity uncertainty for annual to weekly
measurements by a factor of 1.5-3.5, and by an order of
magnitude for continuous measurements compared to WN.
RWN will degrade velocity uncertainty for annual to weekly
measurements by a factor of 4.5-10 and by a factor of 30 for
continuous measurements compared to WN. Furthermore, there
is little improvement achieved in observing continuously
compared to observing annually. For the FN model velocity
uncertainty is 0.3 mm/yr after 5 years of measurements and 3
times larger for RWN. In the “worst” case, velocity uncertainty
is 0.7 mm/yr for FN and 2.2 mm/yr for RWN for all tested
measurement scenarios.

Campaign GPS measurements are more prone to site survey
errors than permanent GPS installations since the GPS antenna is
almost always realigned over the geodetic mark (monument) for
each measurement period. Careful field surveys, however, can
minimize these errors, as demonstrated, for example, by Genrich
and Bock [1992]. Other site-specific errors such as multipath,
signal scattering, and antenna phase center variations may be
more important for campaign surveys if the observation times are
less than 24 hours. Continuous measurements allow for a degree
of reduction in these types of errors since they tend to repeat on
successive days [e.g., Genrich and Bock, 1992]. Finally,
monumentation for campaign measurements is often less stable
than for continuous measurements, with increased spatial density
(i.e., more sites) thought to compensate for decreased site
stability (this is the argument often made for installing large
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continuous GPS networks with less expensive monuments). The
comparisons in Table 6 assume that monumentation is of the
same quality for both continuous and campaign measurements
and that there are no site setup errors for the latter. Though not
impossible to achieve, this is not the “typical” case.
Nevertheless, under these assumptions, it is clear that random-
walk-like motions exhibited by other types of continuous
geodetic measurements [e.g., Langbein and Johnson, 1997), of
order 1-1.5 mm/yr%5 even for well-anchored monuments, would
limit the utility of continuous GPS measurements for estimation
of interseismic deformation compared to infrequent but carefully
surveyed campaign measurements. On the other hand, if
continuous GPS position time series are fractal white noise
processes with spectral indices of about 0.4 and the magnitude of
colored noise can be kept at a reasonable level (~0.5-1.0 mm),
then there is about a factor of 3 improvement in site velocity
uncertainties achievable by continuous GPS measurements
compared to less frequent measurements. However, if colored
noise is of magnitude 2 mm or larger, there is no significant
improvement when observing continuously. Reducing the
magnitude of low-frequency colored noise is critical and is best
accomplished by building sites with bedrock-anchored or deeply
anchored monuments, whether these sites will be observed
continuously or less frequently.

The choice of whether to use continuous GPS or field GPS
measurements to monitor interseismic deformation becomes (1) a
question of cost, a trade off between increased spatial resolution
(e.g., building a larger number of stable monuments with only a
subset surveyed by dedicated roving field crews) and installing
unattended continuous sites, (2) a function of the desired velocity
uncertainty, and (3) a function of the expected type and
magnitude of colored noise in geodetic time series. More
conclusive results on the latter will be obtained by analyzing
longer spans of data and from arrays with a larger number of
sites. Multimodal measurements that mix the two approaches as
advocated by Bevis et al. [1997] may offer an alternative option
for achieving a balance of enhanced spatial and temporal
resolution.

Station Design

Our time series are not long enough to demonstrate the
existence of random walk noise of order 1.5 mm/yr% reported by
other investigators for longer continuous geodetic time series and
attributed to motions of geodetic monuments. However, we
cannot rule out random walk processes since much longer
continuous time series from laser strain meters and two-color
laser distance measurements do exhibit spectra that rise
approximately as 2. Furthermore, both of these measurement
techniques are more precise than GPS, allowing a more accurate
estimation of the random walk component. Terrestrial geodetic
measurement techniques are much simpler in concept than space-
based measurements and have a shorter list of possible
measurement errors; the main similarity between the techniques
is the need to firmly anchor the measurements to the subsurface.

Although the 19-month PGGA time series between the
Landers and Northridge earthquakes is limited in duration, our
analysis does provide some insight for continuous GPS station
design. Table 1 summarizes the type of geodetic monument and
gives a description of what equipment and other changes
occurred at each site. We bin and score the ratio of FN and WN
coefficients (by/ay) for the WN+FN model which range between
0.5 and 1.7 for each time series as follows: [0.5-0.8] scores +1,
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Figure 6. Relative component (baseline) time series for sites PIN1 and PIN2. The data to the left of the dashed
vertical line are neglected in the estimation of the linear rate of displacement. Rate estimates and uncertainties are
indicated for white noise (WN) and white noise plus flicker noise (WN+FN) models. The weighted RMS scatter for
each component is shown in the upper right-hand corner of each panel. The scaling coefficients a and b for white
noise and flicker noise coefficients, respectively, are indicated in the lower right-hand corner.

[0.9-1.2] scores 0, [1.3-1.7] scores -1. For example, MATH
scores +3, JPLM scores -2. These are the highest and lowest
SCores, per site, respectively.

For sites with well-anchored monuments (bedrock or deeply
anchored, see Table 1) the total score is +7; for sites with shallow
anchoring and/or stability problems (JPLM, PVEP) or
unconventional monumentation (GOLD, HARV), the total score
is -3. If we exclude the vertical components which have larger
white noise components, the total score is +3 for “good”
monumentation; -3, otherwise. As in the autocorrelation
analysis, the north component of GOLD and the east component
of PVEP stand out as anomalous. From this we infer that the

time series with the least colored noise are those that have stable
monumentation, whether deeply anchored with antennas more
than 1.5 m above the surface (PIN1, PIN2, SIO3, VNDP) or
anchored to bedrock with antennas about 0.2 m above the rock
surface (MATH, ROCH). PGGA sites with questionable stability
and marginal anchoring display larger flicker noise magnitudes in
their time series.

For sites with no hardware changes, the total score is +2; for
sites with hardware changes (and corrected antenna offsets), the
score is the same; i.e., there is no apparent correlation between
the ratio of FN and WN coefficients and these changes.
Nevertheless, changes in equipment during the lifetime of an
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Table 5. Pacific Plate Horizontal Velocity Estimates

Site Code Component FWN WN+FN
Group 1
GOLD North -29.0+1.0 -28.6+55
East 21.0%1.5 21.1+56
JPLM North -19+0.6 16+36
East 24%£1.0 21%6.1
SIO3 North 07106 07+21
East 45+1.1 48%40
VNDP North -13%09 -1.0+4.6
East 1.6+16 12£66
Group 2
PIN1 North -10.8£0.8 -10.1£3.8
East 182+15 185%55
PIN2 North -10.5+£08 -107£3.1
East 17.8%£1.6 17.2%4.1
ROCH North -6.510.7 -6.5+25
East 140+ 16 137£73
Group 3
HARV North 46%20 -42%92
East -0.8+43 1.5+113
MATH North -49+1.1 4823
East 76+2.0 7453
PVEP North 1518 0.5+5.7
East -108+3.5 -113+152

Velocity estimates in millimeters per year for fractal white noise
(FWN) and white noise plus flicker noise (WN-+FN) models. See
Figure 3. Uncertainties are 95% confidence intervals. Site groupings

are explained in Table 1.

Velocity Uncertainty (mm/yr)

14

experiment, in particular antennas, will tend to reduce the
detectability of geophysical signals. For example, in the
estimation of site velocity (and measurement noise coefficients)
with the MLE technique, a new offset parameter will generally
need to be added for each antenna change. Thus it is good
practice to avoid these changes if at all possible. The negative
impact of these types of changes on continuous GPS time series
may be reduced in the future by expected improvements in site
and antenna calibrations.

Local site stability is essential, as it is for all types of precise
geodetic measurements. Site PVEP (group 3, Table 1) is an
example of a site with stable monumentation but is suspected of
being locally unstable. Periodic surveys to nearby stable
reference marks is good practiée, A better but more expensive
practice is to install stable continuous GPS sites in pairs at nearby
marks (e.g., PIN1 and PIN2) to allow for the proper assessment
of geodetic precision and enhanced detectability of geophysical
signals.

Conclusions

We have analyzed the stochastic properties of continuous GPS
position time series for the 19-month period between the 1992
Landers and 1994 Northridge earthquakes in southern California
and determined that there is significant temporal correlation in all
series, which is not reflected in the weighted RMS. Hence it is
clear that this statistic, which is sometimes used to describe the
repeatability or scatter of GPS position estimates, is unsuitable
for describing long-term precision. We have tested colored noise

{ 2 ! L 1 L i N !
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Figure 7. Velocity uncertainties for 0.5 to 10 years of continuous GPS measurements for three cases: white noise,
WN (a = 3.4 mm); white noise plus flicker noise, WN+FN (a; = 2.8 mm, b; = 2.9 mm); and white noise pius
random walk noise, WN+RWN (a, = 3.0 mm, b, = 6.3 mm/yi?->). The values for a, ay, a3, by, and b, are averages
of the horizontal component scale factors given in Table 4.
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Table 6. Site Velocity Uncertainties Extrapolated to a Five-Year Period

‘White Noise  Colored Noise Mixed Noise Mixed Noise Mixed Noise

a=2 a=0 “Best” Case, a=2 “Typical” Case,a=2 “Worst” Case,a=2

Observations b=0 by=05 b,=05 b=05 b;=05 by =2 by=2 by =5 by=35

Frequency Number WN FN RWN WN+FN ~ WN+RWN WN+FN  WN+RWN WN+FN WN+RWN

Annual 6 021 0.06 022 022 031 033 0.93 0.65 225
Semi-Annual 11 0.17 0.06 0.22 0.18 0.29 0.32 0.92 0.69 2.25
Monthly 61 0.17 0.07" 0.22 0.19 0.30 0.35 0.94 0.75 227
Weekly 261 0.09 0.07° 0.22 0.11 0.25 0.31 0.92 0.74 2.26
Daily 1826 0.03 0.07" 0.22 0.08 023 0.30 0.90 0.74 224

Site velocity uncertainties (16) achievable by five measurement scenarios, for the case of white noise (WN), flicker noise (FN), random walk
noise (RWN), white noise plus flicker noise (WN+FN), and white noise plus random walk noise (WN+RWN). Scenarios tested include annual and
semi-annual measurements of 5 consecutive days each, monthly and weekly measurements of 1 day each, and daily (continuous) measurements.
Coefficients are @ for WN (mm), &, for FN (mm), and b, for RWN (mm/yi®>). Units are millimeters per year for site velocities.

*The apparent slight increase in velocity uncertainty is due to the estimator being statistically inconsistent in the presence of flicker noise.

models with both integer and fractional spectral indices. For
models with integer spectral indices, we assume that
measurement error is a linear combination of a white noise
process and either a flicker noise or random walk noise process
and estimate by a maximum likelihood algorithm scaling
coefficients for each process simultaneously with a linear rate of
displacement. A white noise plus flicker noise model clearly fits
the data better than a white noise model. However, we cannot
distinguish between this two-component model and a single-
component fractal white noise model. We estimate a spectral
index of about 0.4+0.2 (95% confidence interval) for the latter
model. For the fractal white noise model, velocity uncertainties
are 2—4 times larger than uncertainties derived from a white noise
model; for the white noise plus flicker noise model, the velocity
uncertainties are 3—6 times larger than the white noise model.
The relatively short length of the time series, however, precludes
a definitive rejection of the random walk noise processes seen in
longer continuous geodetic data sets.

Time series of monuments anchored in bedrock or deeply
anchored with surface-isolated, braced steel rods tend to reduce
colored noise in the daily position estimates. Although
sometimes expensive, sites that are not properly monumented
may nullify improvements in velocity uncertainties achievable
from continzous GPS measurements, compared to infrequent
field measurements. Proper site selection is also critical in
keeping position errors to a reasonable level.

Appendix A: Weighted Linear Regression
With Equally Spaced Data

The linear regression problem can be expressed as fitting a
straight line through a series of N points x; taken at times #;. The
parameters that define the line are its x-intercept xy and slope r

such that
x(t) =xg+ rt; + £(1) (AD)

We assume that the error term £,(¢) is a linear combination of a
sequence of independent unit-variance random variables ¢; and a
sequence of temporally correlated random variables f; such that

elt) = aa;(t) + b (1) (A2)

Scaling coefficients a and b are the magnitude of uncorrelated
random error (white noise) and temporally correlated random

error (colored noise), respectively. We assume here that the
temporal correlation is described by a random walk process. We
can then express the covariance matrix of the measurements x; as

C ()= a2+ b2 T, (A3)

where I is the identity matrix of dimension N and J, is the
random walk covariance matrix such that (see equation (B3))

1111
1222

Lo=f'1 233 =01 (A4)
123N

where f; is the sampling period in yr'!, T is the total observation
span, and N is the number of measurements [Johnson and Wyatt,
1994]. Fitting a straight line to the time series, i.e.,

() =R+ 7t; (AS)
by weighted linear regression (least squares) yields estimates for
xp and r

F=1ATc;'A1'ATC % (A6)
with covariance matrix (within a scale factor)
~ 1 41-1
C,=1a7C3A] (A7)
where
_ T
x—(x1, "',XN) (A8)
1
A=l % (A9)
y =0T (A10)

Uncorrelated Errors (White Noise)

In the case of uncorrelated errors only, b=0, it is easily shown
that
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The variance of the estimated x intercept for uncorrelated
measurement errors (white noise) is then

N
2 2 ‘21 i
—_ =
(GEO)WN—a N N J? (Al3)
N -2y
i=1 i=1
and the variance of the estimated slope is
2y _ Na?
(GF)WN Y N2 (AlD)
NY 2|2y
i=1 i=1

These are well known formulas for the linear regression problem
under the assumption of uncorrelated measurement error.
We now derive simpler expressions for (A13) and (A14) in the

case of equally spaced data such that
L,=(-1)AT; T=(N-1) AT (A15)

where AT is the sampling interval, and T is the total observation
span. From (A14) and (A15)

2 _ Na?
(af)WN - N N 2 (Al6)
NAT?}_‘,I (i-1)2- AT? _g‘,l (-1
2 Na? :
(Gf)WNz V1 12 (A17)
AT? <N .20 iz—():oi }
i= i=
Using the identities
i k=n(n+l);i kzzn(n+1)(2n+1) (A18)
i=1 2 iT1 6
we can express (A17) as
2 _ Na?
(0%} = ~ )
2 ) NYN-DRN-1) (NN-1)
AT 3 - 5
which reduces to
2 a2 12 N>
(("‘)WN_AT2 NNDWaD 22 (A20)
or, using (Al5),
2 _a? 12(N-1) S
(62)n= oD V22 (A21)
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Similarly, we can derive an expression for the x intercept
variance

( %) =2a2(2N—1)
*0/WN

NN+ (A22)

which is a function of the measurement error a and the number of
measurements T. For large N, we see that

_ 1242

(6% g = e (A23)
and
2 _ 4q?
(GXO)WN - N (A29)

Random Walk Errors

In the presence of only random walk errors, i.c., a=0, the
inverse of the position covariance matrix (A3) is given by the
tridiagonal matrix

-1 0 O 0
-1 2-1 0 0
1_N-1| 06 -1 2 = . :
=82 A25
J2 T 0 0 - - 0 ( )
- .2 -1
0 0 0 -1 1
and
A1 Ty-1
C; =(4'J5A
g =@ (A26)
_peN-1 b of
T 151 C22
where
,  Nal,  Na
Cp=t5+ 22,1 5 —2i§1 (10
Using (A15) and (A18), C,, can be simplified to
5 S , Nl
Cp=ATN~1) +2‘>~:‘1 (-1 —221 @E-1]
N Nol
SATHN-1)?-2Y i+2 X 1]
5 , i=1 i=1 (A27)
= AT (N - 1)° = NN -1) + 2(N -]
=(N-1) AT?
and hence
N 1 0
-1 _,2N-1
Cy =b" "% 0 (N-DAT
(A28)
1
2| AT 0
0 (N - hHAT
Inverting (A28) yields
R b2 (N-1) AT 0
SEN—T| 1 (A29)
AT
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so that
2 _ b _b%.
(o rwn= 72T =73V 22 (430)
2 2 BT
pd = b AT = T N2>22 A3l
(GxO)RWN (N-1) (A3D)
( o ) RN~ 0 (A32)

Appendix B: Covariance Matrices for Integer
Spectral Models

The covariance matrices for the three underlying integer
spectral models, white noise (WN), random walk noise (RWN),
and flicker noise (FN), are given in this appendix in order of
increasing complexity.

White noise (x=0). In this case, b= 0, and

C,=aX (B1)
That is, the covariance matrix is diagonal and independent of
time.

Random walk noise (x=2). In this case, a=0, and

111 1
1222

C=Y,m=123..3 ;f;% (B2)
123N

where f; is the sampling frequency in yr'!, T is the total
observation span, and N is the number of measurements [Johnson
and Wyatt, 1994]. Note that (B2) is for data that are equally
spaced in time; for non-equally spaced data the expression is
considerably more complicated.

Flicker noise (x=1). In this case, a=0, and

312241 -J )
c.=J, = (—)———_ (B3)
* 4 12 NaN
where element (f, k) of the symmetric matrix J is given by
J 0 ;i=k B4
0= B4)
log (k— i) .
W +2 ; 1< k
For example, for a time series of 1000 points,
1.125 1.031 0.984 0957 0.564
1.125 1.031 0.984 0.564
1.125 1.031 0.564
Iy = . . :
1.125 1.031
Sym 1.125
11000x1000

The constants in (B3) have been chosen so that power spectra for
random walk noise and flicker noise cross at a frequency of yr!
when coefficients 5y and b, are both unity. Equation (B3)
contains no reference to time or sampling frequency as did (B2);
flicker noise, being on the asymptotic boundary between
stationary and nonstationary processes, displays several odd
traits: this is just one example.
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