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Notations.

() = bounded domain in R%, d > 1,

I' = boundary of () class C?, v =unit nor-
mal pointing into the exterior of ().
['y=nonvoid open set in I".
T>0Q=Qx(0,T), ¥ =Tgx(0,7T),

@, w = nonvoid open sets in (2.

Einstein summation convention used.



Motivation. Consider the controllability
problem: Given (y°,y') € H}(Q) x L*(Q),
and ¢ € L?(Q), find a control

v € L*(0,T; L?(w)) such that the solution y
of the hyperbolic system:

yir — 0;(bij(x)0;y) = £+ vl in Q
y=0on X =090 x(0,T)
y(0) =y, :(0) =" in Q,



where the coefficients (b;;), ;, satisfy:
bi; € CH(Q); by =bj;, Vi,j=1,2,..,d,
and dby > O:

bij(2)2i2; > bozizs, Y(w,2) € Q x RY,
then y satisfies:

y(x, T) =0, y(x,T)=0in €.



Solving this controllability problem amounts
to showing that for the adjoint system:

ugg — O3 (bi;(x)0;u) = 0 in Q
u=0on X =0900x(0,T)
uw(0) =u’ € L*(Q), u(0) =u' €¢ HHQ),

one has the observability estimate:

T
012+l 21 ) < C / / uf? dudt.



This controllability problem may be solved
for large enough time I', and control set
w with the help of the Hilbert uniqueness
method (HUM) of Lions (e.g. Haraux (1988),
Bardos-Lebeau-Rauch, Zuazua in Lions’ Book
on controllability (1988), Fursikov-Imanuvilov
(1996), Yao (1999), Zhang (2000)). In par-
ticular, w must satisty the Bardos-Lebeau-
Rauch geometric control condition.



Such a control v is very sensitive to
small variations of the data of the system:;
SO we cannot expect a quantity such as
fOT Jr, ]%7;) 2 ddt to be insensitive to such
variations. For the latter to happen, a new
concept of controllability is needed. This is
probably what motivated Lions to introduce
the notion of desensitizing control in the late
eighties.



Desensitizing control problem: Linear case.
Consider the new control problem: Given
(v°,y') € Hy(Q) x L*(), and £ € L*(Q),
find a control v € L?(0,T; L?*(w)) such that
for the solution y of the hyperbolic system:



y=0on X =00 x (0,T)
y(0) = y° + 709"
ye(0) =y' + gt in €,

/o

o (9°,9') € H}(Q) x L?(Q) have unit
norm, are arbitrary and unknown,

e 79 and 7y are arbitrary small unknown
real numbers,



the quantity

[

is insensitive to small perturbations of the
initial data. In other words, can we find a
control v that desensitizes the functional P

defined by
S

Oy(7,t)
aVB

drydt

Oy(v,t)
aVB

dvdt?




This amounts to constructing a control v
such that for all (§°,9') € H}(Q) x L?(Q)

with unit norm:

0P (y)
87'0

0P (y)
07'1

:O:

7'0:7'120
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History: desensitizing control
a) J.L. Lions (1989), parabolic equations.
b) Bodart-Fabre (e-desensitizing
controls, 1995),

c) de Teresa (1997, 2000),

d) Bodart-Gonzalez Burgos-

Perez Garcia (3 papers, 2004),

e) Fernandez Cara-Garcia-Osses (2005),
f) de Teresa-Zuazua (2009),

g) Kavian-de Teresa (2010)...
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h) Desensitizing control concept in its in-
fancy for second order evolution equations,
i) Déager (2006), desensitizing controls, one
dimensional wave equation. The proof tech-
nique developed by Dager critically relies on
the fact that the one dimensional wave equa-
tion is time periodic, which is not the case in
higher dimensions.
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The functional that the control desensi-
tizes in Dager paper, as well as in almost all
the papers dealing with parabolic equations

1S
1 [t )
V() =5 y(x,t)|” dadt,
0 O

where O is another open subset of (2.

13



Theorem 1. A control v desensitizes the
functional ® if and only if the solution pair
(Yo, q) of the cascade system:

Yott — 5'7;(1%']' (ﬂf)ajyo) = &£+ UXw Q)
Yo =0 on X =00 x (0,T)

Y0(0) = ?JO; Yo (0) = yl mn €

(gt — 03 (bij(x)0;9) = 0 in Q

g = S%XFO on 3 =0 x (0,T)

/"

¢(T)=0; q(T)=0inQ,

\

satisfies:
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Theorem. 2. Suppose that the coefficients
bi; are C*, and Q is C°. Let Ty satisfy
the geometric control condition of Bardos-
Lebeau-Rauch. Assume that w 1s a neigh-
borhood of I'g. There exists a positive time
Ty depending only on ) and I'y such that
for every T > Ty, and for all y° € Hj(Q)
and yt € L?(Q), there exists a control v €
L?(0,T; L?(w)) that desensitizes the func-
tional .
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Thanks to Theorem 1 and Lions” HUM,
proving Theorem 2 amounts to proving the
following observability inequality:

T
191 By + 10 ooy <€ [ [ 12 dact
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for the adjoint cascade system:

[ pie — 0i(bij(2)9;p) = 0 in Q
p=0on X =00 x(0,7T)

L p(0) =p";  p:(0)=p'in Q

/"

( Ztt — (92(1?”(33)8]2) =0 1n Q
op

= %XPO

2(T)=10; 2/(T)=0in Q.

2 on ¥ =00 x (0,7T)

\
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To prove the observability inequality:

T
11 By + 10 ooy <€ [ [ 12 dact

first we show the weighted observability in-
equality [Burq, 1997]:

Op(v,1)
aVB

T
mﬁmsc/7ﬁf \ 2 dydt.
0 I'o

Then, we use a localizing argument.
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e-desensitizing controls. If the observation
set I'g does not satisfy the GCC, then we
cannot expect to build desensitizing controls,
but we can construct e-desensitizing controls.
A control v is said to e-desensitize the func-

tional ® defined by:

Sy

oy(v,t

cl dt
aVB Y
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if for all (9°,9') € H}(Q) x L*(Q) with unit

norin:

d
Ve > 0, 00(y) < g,
87-0 7‘0:’7‘1:0
and
0%(y) <.
87—1 ’7'0:7'1:0 N
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Theorem 3. A control v e-desensitizes the
functional ® if and only if the solution pair
(Yo, q) of the cascade system:

Yort — 5'7;(1%']' (ﬂf)ajyo) = &£+ UXw Q)
Yo =0 on X =00 x (0,T)

Y0(0) = ?JO; Yo (0) = yl mn €

(gt — 03 (bij(x)0;9) = 0 in Q

g = S%XFO on 3 =0 x (0,T)

/"

q(T)=0; q(T)=01nQ,

satisfies:

19(0)l[2() <& l@(0)][-1(0) <&
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Theorem. 4. Suppose that the coefficients
bi; are C?, and Q is C3. Let Ty be a non-
void open subset of the boundary of ). As-
sume that w s a neighborhood of I'y. There
exists a positive time Ty depending only on
) and 'y such that for every T > Ty, and
for all y° € H}(Q) and y' € L*(Q), there
exists a control v € L?(0,T; L*(w)) that e-
desensitizes the functional P.
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It may be shown that proving Theorem
4 reduces to proving the following observabil-
ity inequality:

1P°12200) + 1P 171

) Ee:0) \\ g
<C<l <2+ fonwﬂdscdt)) Hd
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for the adjoint cascade system:

[ pie — 0i(bij(2)9;p) = 0 in Q
p=0on X =00 x(0,7T)

L p(0) =p";  p:(0)=p'in Q

/"

( Ztt — (92(1?”(33)8]2) =0 1n Q
op

= %XPO

2(T)=10; 2/(T)=0in Q.

2 on ¥ =00 x (0,7T)

\
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To prove the observability inequality:

||pOH%2(Q) T Hp1||%1—1(@)

) w0\ .
<ofv(e o)) w
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first we derive the weak observability in-
equality [Robbiano, 1995]:

19" 12200 + 1171
< o EW:0)

A
T

+ Clet / r2 [ 12290 2 g
0 To Ovp

Then, we use a localizing argument.

26



Internal observation. Let O be a nonvoid
open subset of ). A control v desensitizes
(resp. e-desensitizes) the functional ¥ de-

fined by

U(y) = %/OT/O\y(af,t)\dedt,

if for all §° and §' with unit norm in appro-
priate Hilbert spaces, one has:

0¥ (y) _ o= 9%
87-0 7'0:’7'1:0 87—1 7'0:7'1207
respectively:
Ve >0 OV (y) < g,
| 87-0 7'0:7'1:0 B
OV (y) <.
87-1 7'0:7'1:0 B
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Theorem 5. A control v desensitizes the
functional ¥ if and only if the solution pair
(Yo, q) of the cascade system:

C yorr — 0i(bij(2)0;90) = & + vl in Q
Yo =0 on X =00 x (0,T)
L50(0) = 4% wor(0) =y in Q

/"

( dit — a’i(bz’j (x)an) =ylo in Q
q=0 on =00 x(0,T)
Lq(T) =0; q(T)=01inQQ,

/"

satisfies:
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Theorem. 6. Suppose that the coefficients
bi; are C3, and Q is also C3. Let wy CC
O Nw be an open subset satisfying the ge-
ometric control condition of Bardos-Lebeau-
Rauch. There exists a positive time Ty de-
pending only on ) and wqg such that for ev-
ery T > Ty, and for all y° € L?(Q) and
yl € H 1(Q), there exists a control v €
[H1(0,T; L*(w))]" that desensitizes the func-
tional W.

Thanks to Theorem 5 and Lions’ HUM,
proving Theorem 2 amounts to proving the
following observability inequality:
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T
1712 oy + 1310 < € / [ Jaf?

for the adjoint cascade system:

( Py — 0i(bij(2)0jp) =0 in Q
p=0on X =00 x(0,7T)

L p(0) =p"; p(0) =p' inQ

/"

zit — 0i(bii(x)052) = plo in Q
z=0o0n X =00 x (0,T)
2(T)=0; 2z(T)=0in .
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To prove the observability inequality:

T
1By + P e < C [ [ Jaf? dact

first we show the weighted observability in-
equality:

E(p;0) < C/O r(t)2/ Ip(x,t)|* dedt.

Then, we use a localizing argument.
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Theorem 7. Suppose that O and w are two
nonempty open sets in  with O Nw # 0.
There exists a positive time 1™ depending
only on , O, and w such that for every
T >T*, for all y° € H}(Q) and y' € L*(Q),
and for every positive constant €, there ex-
ists a control v € L*(0,T;L*(w)) that -

desensitizes the functional W.
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To prove Theorem 7, it is enough to
show the following observability inequality:

1P°1[7 20 + leH%I—l(Q)

. 1
<C <ln (2 + fOT fw oE da:dt)) E(p;0)
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To prove the observability inequality,
first we derive the weak observability in-
equality [Bellassoued, 2005]:

HPOH%%Q) T leH%I—l(Q)
SOE%w

T
+ Cem / r(t)? / p(a 0)2 dud.
0 wo

Then, we use a localizing argument.
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A nonlinear problem. Let f : R — R be a
continuously differentiable function with

lim sup | f(s)
s|—oo |S|(log |s])®

=0,

for some 0 < o < 3/2.
Let £ € L?(Q), and consider the wave

equation:
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(Y — Ay + fly) =€+ vxe in Q
y=0on X =00 x (0,T)
y(0) = y° + 109"

Cy(0) =y' +7g" in Q

where (y°,y') € H}(Q) x L*(Q) are given,
(9°,9') € H}(Q) x L*(Q) have unit norm
and are unknown, and 79 and 71 are small
unknown real numbers.
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We want to find a control v that desen-
sitizes the functional ® defined by

This amounts to constructing a control v
that satisfies for all (9°,9') € H}(Q) x L*(Q)
with unit norm:

0P (y)
(97'()

T():’Tl:O
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History: controllability of semilinear wave
equation

a) Fattorini (1975), 1d hyperbolic equa-
tions, implicit function method,

b) Chewning (1976) generalizes Fattorini
(1975) to higher dimensions,

c¢) Zuazua (1990-1991), HUM + Schauder
fixed-point (linear growth)

d) Zuazua (1993), HUM + Leray-

Schauder (1d, superlinear growth al-
lowed)

e) Lasiecka-Triggiani (1991), global in-
version theorem (Lipschitz),
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f) Cannarsa-Komornik-Loreti (1999), 1d,
iterated log, improves Zuazua (1993)

g) Li-Zhang (2000), Carleman estimates,
superlinear growth allowed,

h) Martinez-Vancostenoble (2003), 1d,
arbitrarily short time,

i) Fu-Yong-Zhang (2007), Carleman es-
timates, hyperbolic equations,

j) Duyckaerts-Zhang-Zuazua (2008), im-
proved Carleman estimates, allows

lim sup | f(s)]
s |—>oo s|(log |s|)>

=0, 0<a<3/2
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Theorem. 8. Let xy € R? \ Q. Set Ty =
{x € T';(x — x9) -v > 0}. Assume that
w 18 a neighborhood of I'y. There exists a
positive time Ty depending only on ) and
w such that for every T > 1y, and for all
Y € H3(Q) and y' € L*(Q), there exists a
control v € L*(0,T; L*(w)) that desensitizes
the functional .
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The main ingredient for proving the ex-
istence of a desensitizing control is to reduce
the problem to a controllability problem. To
this end, consider the following cascade wave
equations:

Yorr — Ayo + f(yo) = § +vxw in Q
Yo =0 on X =0 x (0,T)

Y0(0) = yo; Yo+ (0) = yl in
gt — Aq+ f'(yo)g = in Q

0
¢ = 5, Xro On =00 x (0,T)
¢(T)=0; @(T)=01in Q.
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Proposition 9. A control v desensitizes the
functional ¥ if and only if the solution pair
(1o, q) satisfies:
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Set

9(s) = { (f(s) = £(0))/s, if 5 # 0
f(0), if s=0.
Let w € L*(0,T; L*(Q)). Set

a(aj7t) — g(w(az,t)), b(xvt) — f/(w<$7t))'

The nonlinear cascade system may be lin-
earized as:
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/"

( yorr — Ayo +ayo = —f(0) + & +vx, in Q
Yo = 0 on X

L10(0) =% y0:(0) = y' in Q

(gt —Ag+bg=01in Q
0
\ ﬂXFO on .

q — 5
v
Lq(T)=10; ¢q(T)=0in €,
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Introduce the adjoint system:

(i — Ap+bp=0in Q
p=0on X

L p(0) =p°;  pi(0) =p' in Q

/"

(24t — Az+az=01in @
0
\ z:—pxpo on 2’

ov
L 2(T) =0; 2(T)=01in Q.
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Sketch of the proof of Theorem 8.
Thanks to Lions’ HUM, the proot of The-

orem reduces to proving:

Proposition 10. Let w, and T’ be given as in
Theorem. Let e > 0 with (d—2)e < 4. There
ex1Sts

C1 = exp Co(1 + [[al| o ; wr e 1] ey 29)
such that for all (p°,p') € H}(Q) x L*(Q):
T
Ep:0)<Cr [ [ |sta ) dod,

0 w

where [, = 2 +4¢~ !, and 0 = ed/(4 + 2¢),
and HHOO,T — H.HLoo(O’T;Lr(Q)).
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Thanks to Proposition 10 and Lions’
HUM, the linearized problem is exactly con-
trollable. A Schauder fixed-point argument
shows that the nonlinear system is also ex-
actly controllable; the exact control v de-
sensitizes the functional ¥ by Proposition
9. []
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Sketch of the proof of Proposition 10.
e Apply the [Duyckaerts-Zhang-Zuazual

Carleman estimate to get: the existence of

positive constants C', u, and A\, = C(1 +

16]] 2> 29) such that for all A > A,

/ P2 (33 |p(a, £)]2 + Alpe | + A|Vp|?} dadt
Q

< Che " E(p;0)

+C’ec>‘/ 9pL % )lzdvdt.

F0

e Show that for all s, ¢ € [0,7T], one has:

0

i
E(p;t) < E(p;s)exp(C(1+ |[b]| 5, )|t — s)-
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e Derive the inverse inequality:

E(p;0) < |exp A / 0p % )\2d7dt.

I'o

e Use a localizing argument to get:

I'o

T
C(1+]|b— a|y§%)/ / | 2|? dadt.
0 w

e Combine both estimates to find:

E(p <C’(1—I—Ha\| )[exp)\g]*

/ / 2| dxdt.
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Final remarks and open problems. 1) The
method developed to solve the desensitizing
control problems may be used to construct a
desensitizing control v such that the solution
of the system:

Yorr — Ayo + f(yo) = § +vxw in Q
Yo =0 on X =0 x (0,T)

y0(0) = 4% 5o (0) = y' in Q,

is steered to some prescribed final state.
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2) In the multidimensional set-
ting, can we build s-desensitizing con-

trols for hyperbolic equations when
ONw =107

1d case solved (ordinary wave equation),

(Dager, 2006). Parabolic equations, solved
(Kavian-de Teresa, 2010).
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3) For which class of initial data
can controls v € L?(0,T; L*(w)) be built
so as to desensitize the tunctional

V() = 5 / ) /O y(a, B)? dadt,

for hyperbolic equations?

Problem solved for parabolic equations by
de Teresa-Zuazua (2009).
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4) Can boundary desensitizing con-
trols be built in the multidimensional
setting”

boundary e-desensitizing controls for
parabolic equations found in Bodart-Fabre
(1995) when the control and observation
sets are intersecting boundary portions.
See also Kavian-de Teresa (2010) for more
general results in the same framework.
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5) Constructing desensitizing controls for
plate equations or coupled systems (ther-
moelasticity, maxwell equations,...) re-
mains a widely open problem.
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