Florida International University

MAC 2312 (Calculus IT)
Integration Problems

Be sure to be able to do all these problems by the end of the semester.
A. Compute the following integrals.
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11) Let a < b be two real numbers. Let f : [a,b] — R be a continuous function with f(a+b—2x) = f(x) for every

x in [a,b]. a) Show that ff af(z)de = 250 f; f(z)dx. b) Use part a) to evaluate I = [ 2524 da.

12) Set I = [? Tre——dzand J = IS V% dx. a) Show that I = J. b) Use appropriate trigonometric

identities to evaluate I + J, then derive the values of I and J.
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B. Area between curves.
1) Find the area of the region bounded by the curves y = m—‘ﬁ, x=0,and z = 1.

2) One wants to find the area under the curve y = sinz for 0 < x < /2. a) Use the trigonometric comple-
mentary identity to show that [2 sin? z de = JoF cos? zdx. (Do not evaluate any of those integrals). b) Use the
trigonometric identity sin® x + cos? 2 = 1 to show that the value of that area is /4.
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3) Find the area of the region bounded by the curves y = H%’ y = e “* and the y-axis.

4) Find the area of the region in the first quadrant enclosed by the curves y = /x and y = ﬁ.
5) Find the area of the region in the first quadrant enclosed by the curves y =

1 _ 1 ‘
ez Y = Teoss and the y-axis.

C. Riemann sums.

1) Let f be continuous on (a,b) such that the improper integral f;’ f(x)dx converges. a) Show that the sequence
n—1

(Sn)n>2 given by S, = — a) converges to f;f(m) dz. b) Given that for each n > 2, one has:

((nfl)ﬂ) _

sin(Z) sin(2X)... sin("= ST

use Riemann sums to evaluate the integral fo In(sinu) du.
2) Use Rlemann sums to evaluate each of the following limits
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continuously differentiable on [a, b]. Dlscuss the case where f is contmuous only on [a, b]
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D. Indefinite integrals. Evaluate each of the following integrals.
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E. Volumes.

1) Find the volume of the solid obtained by revolving around the z—axis the region bounded by the curve y =
0<z<1.

X
e
2) Find the volume of the solid obtained by revolving the region enclosed by the curve in 1), and the curves z = 0,
and y = 1/2 around the y—axis.

3) Find the volume of the solid obtained by revolving around the z—axis the region bounded by the curve y =
0<x<1.

1
1+ex?

4) Find the volume of the solid obtained by revolving around the y—axis the region bounded by the curve
Y= 0<a <m

5) Find the volume of the solid obtained by revolving around the z—axis the region bounded by the curve
v=\/itsms 0S o < g

F. Improper integrals.

1) Use the trigonometric identity sin(2z) = 2sinz cos « along with fooo % dx = % to show that

OC sinx cosx _
fO T dr = 4-

2) Use integration by parts in 1) to derive the formula f > Sl?ﬂ—m dr = 7.
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4) Use two integration by parts, and the result of 3) to obtain fooo

)

3) Use the trigonometric identity cos? z + sin?z = 1 along with 2) to obtain fooo Sigz Lde=7Z.
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)

5) Let f: [0 00) — [0,00) be a continuous nonincreasing function such that lim f(z) =0 and

fo t)ydt—xf(z) < M, for all x > 0, for some M > 0. Show that the improper integral fo t) dt converges.
6) Set [ = ff In(sinz) dz and J = foj In(cos z) dz.

i) Show that the improper integral converges.

ii) Show that I = J.
iii) Show that I + J = —mIn2, and derive the value of I.

G. Sequences and Series.

n

1) Consider the sequence (a,) given by a; = e and ap41 = —, n=1, 2,..
oo an
an
We want to evaluate S =
i) Show that for each p € N, one hab. a2p+2 =eP and agpy1 = ePtl,
1

ii) Derive from i) that S = ct 61 .

e —

2) Consider the sequence (uy,) defined by ug > 0 and uny1 = upe ™, n=1, 2,....
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i) Show that lim u, = 0.
n—oo

oo
ii) Show that Z Uy, = 00.
n=1
3) Let (ay) be a sequence of real numbers that converges to some real number a. For each n > 1, set
2 2 2
Vp = w and Wy, = %

i) Show that lim v, = a and lim w, = a*.
n—oo n—oo

2
ii) Find lim = Y aa.

n— 00
1<k<i<n

4) Determine for which values of the positive parameters the given series converges or diverges.
b > | o mlnm

. a .. n! pm+tq )

i —, i —, i — .
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5) Let A be a nonzero real number. with |A| < 1, and for each nonnegative integer n, set

2 cos(nzx)
Up = / —————dx.
o 1—2\cosz+ A2
oo o0 27
i) Given that 1 —2Xcosz + A2 = (1 — Ae™®)(1 — Ae™™®), show that u,, = Z Z )\m+p/ cos(na)e’ Py,
m=0 p=0 0
. . . TA"
ii) Derive from i) that u, = e

n
6) Let (un) be a sequence of positive real numbers. For each integer n > 0, set S,, = Z up, and assume
p=0

that lim

n—00 Ny,

= «, for some a > 0.
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i) Determine whether the series Z uy, converges or diverges. (You may use a contradiction argument.)
n=0
a
ii) For each n > 1, set a,, = nS, — (n — 1)S,_1 and b, = nu,. a) Find lim —.
n— 00 n

. . a as + ... +ap

b) Derive from a), lim Gt st ot

. . .. U+ 2u9 + ...+ nuy,
iii) Derive from i) and ii), lim 5 =,
n—00 nu,

n Lnp

7) Let p > 0. Find lim wu, if u, = .
n— o0 1 nnpP



