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The frictional damping case

The linear damping case

Ω ⊂ RN throughout. Consider the damped wave equation

ytt + Ay + ayt = 0 in Ω× (0,∞)
y(0) = y0 ∈ H1

0 (Ω), yt (0) = y1 ∈ L2(Ω),

where A is a second order elliptic operator with smooth coefficients,
and a is smooth. In general a(x) ≥ a0 > 0 a.e. in the damping region
ω and a(x) ≡ 0 in Ω \ ω, for some positive constant a0.

Introduce the energy

E(t) =
1
2

∫
Ω
{|yt (x , t)|2 + |A

1
2 y(x , t)|2}dx , ∀t ≥ 0.

Rauch-Taylor, 1974: Ω is a compact manifold without boundary,
use microlocal analysis to prove the exponential decay of the
energy, provided there exists T > 0:
every ray of geometric optics meets ω × (0,T ).
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The frictional damping case

The linear damping case

Haraux, 1989: A = −∆, Ω is a bounded open set with smooth
boundary, Dirichlet boundary conditions are imposed on the
boundary, and ω is a neighborhood of a portion of the boundary,
uses observability to derive the exponential decay of the energy.

Zuazua, 1990-1991: considers the semilinear wave equation
ytt −∆y + f (y) + ayt = 0, Ω is a bounded open set with smooth
boundary, Dirichlet boundary conditions are imposed on the
boundary, and ω is a neighborhood of the whole boundary. Proves
exponential decay of the energy using multipliers technique and
compactness-uniqueness. Does same for some unbounded
domains.
Nakao, 1996: linear wave equation, a ∈ Cm(Ω̄), m > N/2,
∃0 < p < 1 :

∫
ω

dx
a(x)p <∞, proves E(t) = O((1 + t)

−2mp
N ) for

smooth initial data. Discusses a semilinear version with m = 4.
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The frictional damping case

The linear damping case

Lebeau, 1996: Ω is a compact manifold with C∞ boundary and
the damping coefficient a ∈ C∞(Ω̄), uses microlocal analysis to
show that E(t) = O( log(3+log(3+t))

log(3+t) ) for smooth initial data when the
damping region is an arbitrary nonempty open set.
Liu, 1997: introduces the notion of piecewise multipliers, and
shows that for the wave equation with Dirichlet boundary
conditions, more general feedback control regions may be built; in
particular, if Ω is a spherical ball, the damping region may be
chosen to be a neighborhood of a diameter, and in 2D, if Ω is a
rectangular region, the damping region could be a neighborhood
of a diagonal.
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The frictional damping case

The linear damping case

Tebou, 1998: Unaware of Liu’s work, proposes a constructive
method for solving the stabilization problem for the wave equation
with a localized damping; the damping region is the same as in
Nakao’s work,

a ∈ Cm−1(Ω̄), m ≥ 1, ∃p > 0 :
∫
ω

dx
a(x)p <∞, proves

E(t) = O((1 + t)
−2mp

N ) for 0 < p <∞ and N ≤ 2m, and

E(t) = O((1 + t)
−mp

N ) if N ≥ 2m + 1 and N − 2m ≤ mp.

a ∈ Lr (Ω), with r ≥ 3N+
√

9N2−16N
4 if N ≥ 3, E(t) = O((1 + t)

−2r(r−2)
N(3r−2) ).

Those polynomial decay results were improved in 2007 and 2006
respectively in the framework of the dynamic elasticity equations.
exponential decay of the energy when a ∈ L∞(Ω) with 1/a ∈ L∞(ω).
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The frictional damping case

The linear damping case

Martinez, 1998 (Thesis):

Introduces a new integral inequality that improves the ones found in
Komornik’s book, Chaps 8 & 9.
Extends the notion of piecewise multipliers of Liu to the framework
of Neumann boundary conditions.
Improves the result of Nakao in a ball by allowing damping
coefficients that decay exponentially to zero on the boundary, and
proves the logarithmic decay of the energy.

Many other works follow...
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The frictional damping case

The nonlinear damping case

Consider the nonlinearly damped wave equation

ytt −∆y + ag(yt ) = 0 in Ω× (0,∞)
y(0) = y0 ∈ H1

0 (Ω), yt (0) = y1 ∈ L2(Ω),

where g : R −→ R is continuous and nondecreasing.

Dafermos, 1978: Uses the Lasalle invariance principle to show
that the energy decays to zero when the damping region is an
arbitrary nonempty open set, provided g is continuously
differentiable with a bounded derivative and strictly increasing; no
decay estimate is provided.

Haraux, 1985: Improves Dafermos’ result to include nonlinearities
g that are neither smooth nor strictly increasing, but which do
possess a monotone graph. No decay rate.
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The frictional damping case

The nonlinear damping case

Slemrod, 1989: Considers the wave equation
ytt −∆y + ag(yt ,∇y) = 0 in Ω× (0,∞).
Drops the monotonicity hypothesis and replaces it with the
assumption that g be globally Lipschitz, and have its graph in the
first and third quadrants. Shows the weak decay of solutions to
zero in the energy space. He introduces a weak notion of
invariance principle through the use of Young measures.

Zuazua, 1990: His previously mentioned work extends to globally
Lipschitz nonlinearities.

Nakao, 1996 nonlinearity has the usual polynomial growth, several
energy decay estimates (exponential, polynomial) are provided by
combining the multipliers technique, Nakao’s difference
inequalities, and a compactness uniqueness argument.
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The frictional damping case

The nonlinear damping case

Tebou, 1997-1998: Unaware of Nakao’s work, proposes a
constructive method based on the multipliers technique and
Komornik’s integral inequalities to establish precise exponential
and polynomial energy decay estimates.

Martinez, 1998 (Thesis): Uses his new integral estimate to prove
how the energy decay rate depends precisely on the nonlinearity
g; in general, E(t) = O((G−1(1/t))2) with G(s) = sg(s). But, in
particular, if g(s)

s vanishes at zero and is increasing on some
interval [0, r ] for some r > 0, then E(t) = O((g−1(1/t))2).
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The frictional damping case

The nonlinear damping case

Vancostenoble, 1998: Improves the work of Slemrod to include
nonlinearities g(s,p) that grow polynomially in s and are globally
Lipschitz in p.

Alabau, 2005: Improves the integral inequality of Martinez to allow
for more general decay rates.

Bellassoued, 2005: Improves the logarithmic decay rate of Lebeau
for arbitrary damping domains to include polynomially growing
nonlinearities; in particular, he shows E(t) = O((log(2 + t))−1).
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The frictional damping case

The nonlinear damping case

Lasiecka-Toundykov, 2006: Drop the requirement that the
nonlinearity have a linear growth at infinity from the works of
Martinez and Alabau. Discuss wave equations with source terms.

Ammari-Alabau: Show that the stabilization of the wave equation
with a nonlinear damping can be derived from the stabilization of
the wave equation with linear damping, thereby improving earlier
results by allowing for damping regions satisfying the geometric
optics condition of Rauch-Taylor.

Many more works by others...
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The Kelvin-Voigt damping case

The one-dimensional problem

Liu-Liu, 1998: Consider the wave equation

ytt − (pyx )x − (Da ytx )x = 0 in (0,L)× (0,∞)
y(0, t) = y(L, t) = 0 on (0,∞),
y(0) = y0 ∈ H1

0 (0,L), yt (0) = y1 ∈ L2(0,L).

Show that the exponential decay of the energy fails for piecewise
constant coefficients. No decay rate.
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The Kelvin-Voigt damping case

Renardy, 2004: Consider the wave equation

ytt − (yx )x − (b ytx )x = 0 in (−1,1)× (0,∞)
y(−1, t) = y(1, t) = 0 on (0,∞),
y(0) = y0 ∈ H1

0 (0,L), yt (0) = y1 ∈ L2(0,L).

Shows that if

b ∈ C1([−1,1]), b(x) = 0 on [−1,0], b(x) > 0 on (0,1]

lim
x→0+

b′(x)

xα
= k > 0, for some α > 0,

the sequence of the corresponding eigenvalues {λn} satisfies
<λn → −∞ as n→∞.
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The Kelvin-Voigt damping case

The multidimensional problem

Consider the wave equation with localized Kelvin-Voigt damping

ρ(x)ytt − div(a∇y)− div(b∇yt ) = 0 in Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞), y(0) = y0 ∈ H1

0 (Ω), yt (0) = y1 ∈ L2(Ω).

Liu-Rao, 2006: Show the exponential decay of the energy
provided

ρ, a, b ∈ C1,1(Ω̄), ∆b ∈ L∞(Ω),
∃C > 0 : |∇b(x)|2 ≤ Cb(x) a.e. in ω.

and ω is a neighborhood of the whole boundary. They rely on the
frequency domain method (FDM) combined with multipliers
technique and mollifiers.
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The Kelvin-Voigt damping case

The multidimensional problem

Tebou, 2012: Improves the energy exponential decay result of
Liu-Rao by dropping the hypothesis ∆b ∈ L∞(Ω), and by allowing
for a more general class of damping regions. Proves a polynomial
energy decay estimate when the damping coefficient is bounded
measurable only. Relies on FDM, piecewise multipliers of Liu, and
auxiliary variables.

Burq-Christianson, 2015: Use semi-classical analysis to show that
the energy decays exponentially provided:

the feedback control support ω = {x ∈ Ω; a(x) > 0} satisfies the
same geometric control condition as in the work of Rauch-Taylor,
the damping coefficient a is in C∞(Ω) with

|∂αa(x)| ≤ Cαa
k−|α|

k , |α| ≤ 2,

for some k > 2, and
the initial displacement is identically zero in Ω.
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The Kelvin-Voigt damping case

The multidimensional problem

Tebou, 2016: Extends the results obtained for the wave equation
to the elasticity equations.
Ammari-Hassine-Robbiano, 2018: b(x) = d1ω, d > 0 is a
constant, and ω is an arbitrary nonempty open set in Ω; they use
microlocal analysis to prove the logarithmic decay of the energy.

Louis Tebou (FIU, Miami) Stabilization... wave equation... localized damping... Monastir, 06/26-27/2018 17 / 36



The wave equation with Kelvin-Voigt damping

Problem formulation

Consider the wave equation with localized Kelvin-Voigt damping

ytt −∆y − div(a∇yt ) = 0 in Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞), y(0) = y0, yt (0) = y1 in Ω,

where
Ω= bounded domain in RN , N ≥ 1,
Γ= boundary of Ω is smooth.

The damping coefficient is nonnegative, bounded measurable,
and is positive in a nonempty open subset ω of Ω,

the system may be viewed as a model of interaction between an
elastic material (portion of Ω where a ≡ 0), and a viscoelastic
material (portion of Ω where a > 0).
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The wave equation with Kelvin-Voigt damping

Remark

If (y0, y1) ∈ H1
0 (Ω)× L2(Ω), then the system is well-posed in

H1
0 (Ω)× L2(Ω). Introduce the energy

E(t) =
1
2

∫
Ω
{|yt (x , t)|2 + |∇y(x , t)|2}dx , ∀t ≥ 0.

We have the dissipation law:

dE
dt

(t) = −
∫

Ω
a(x)|∇yt (x , t)|2 dx a.e. t > 0.

The energy is a nonincreasing function of the time variable.

Question 1: Does the energy approach zero?

Question 2: When the energy does go to zero, how fast is its decay,
and under what conditions?
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The wave equation with Kelvin-Voigt damping

Introduce the Hilbert space over the field C of complex numbers
H = H1

0 (Ω)× L2(Ω), equipped with the norm

||Z ||2H =

∫
Ω
{|v |2 + |∇u|2}dx , ∀Z = (u, v) ∈ H.

Setting Z =

(
y
y ′

)
, the system may be recast as:

Z ′ −AZ = 0 in (0,∞), Z (0) =

(
y0

y1

)
,

the unbounded operator A : D(A) −→ H is given by

A =

(
0 I
∆ div(a∇.)

)
with D(A) =

{
(u, v) ∈ H1

0 (Ω)× H1
0 (Ω); ∆u + div(a∇v) ∈ L2(Ω)

}
.
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The wave equation with Kelvin-Voigt damping

Now if (y0, y1) ∈ H2(Ω) ∩ H1
0 (Ω)× H1

0 (Ω) then it can be shown that the
unique solution of the system satisfies

y ∈ C([0,∞); H1
0 (Ω)) ∩ C1([0,∞); H1

0 (Ω)).

Note the discrepancy between the regularity of the initial state of the
system and that of all other states as the system evolves with time.

This is what makes the stabilization problem at hand trickier than the
case of a viscous damping ayt , or more generally ag(yt ) for an
appropriate nonlinear function g.
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Well-posedness and strong stability

Theorem 1 [Liu-Rao, 2006]
Suppose that ω is an arbitrary nonempty open set in Ω. Let the
damping coefficient a be nonnegative, bounded measurable, and
positive in ω. The operator A generates a C0-semigroup of
contractions (S(t))t≥0 on H, which is strongly stable:

lim
t→∞
||S(t)Z 0||H = 0, ∀Z 0 ∈ H.
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Polynomial stability

For the sequel we need the geometric constraint (GC) on the subset ω
where the dissipation is effective.

(GC). There exist open sets Ωj ⊂ Ω with piecewise smooth boundary
∂Ωj , and points x j

0 ∈ RN , j = 1, 2, ..., J, such that Ωi ∩ Ωj = ∅, for any
1 ≤ i < j ≤ J, and:

Ω ∩Nδ

 J⋃
j=1

Γj

⋃Ω \
J⋃

j=1

Ωj

 ⊂ ω,
for some δ > 0, where Nδ(S) =

⋃
x∈S

{y ∈ RN ; |x − y | < δ}, for S ⊂ RN ,

Γj =
{

x ∈ ∂Ωj ; (x − x j
0) · ν j(x) > 0

}
, ν j being the unit normal vector

pointing into the exterior of Ωj .
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Polynomial stability

Theorem 2
Suppose that ω satisfies the geometric condition (GC). Let the
damping coefficient a be nonnegative, bounded measurable, with
a(x) ≥ a0 a.e. in ω, for some constant a0 > 0. There exists a positive
constant C such that the semigroup (S(t))t≥0 satisfies:

||S(t)Z 0||H ≤
C||Z 0||D(A)√

1 + t
, ∀Z 0 ∈ D(A), ∀t ≥ 0.

Remark. The polynomial decay estimate in Theorem 2 is in sharp
contrast with what happens in the case of a viscous damping of the
form ayt or ag(yt ) for a nondecreasing globally Lipschitz nonlinearity g;
in fact, when (GC) holds, the geometric control condition of
Bardos-Lebeau-Rauch (every ray of geometric optics intersects ω in a
finite time T0) is met, and exponential decay of the energy should be
expected; this is by now well known:
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Polynomial stability

Proof Sketch of Theorem 2. The proof amounts to showing:
iR ⊂ ρ(A), (given by Theorem 1)

∃C > 0 : ||(ib −A)−1||L(H) ≤ Cb2, ∀b ∈ R, |b| ≥ 1,
Apply a theorem of Borichev-Tomilov on polynomial decay of
bounded semigroups.
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Polynomial stability

We shall prove that there exists a constant C > 0 such that for every
U = (f ,g) ∈ H, the element Z = (ib −A)−1U = (u, v) in D(A)
satisfies:

||Z ||H ≤ Cb2||U||H, ∀b ∈ R, |b| ≥ 1

Note that
ibZ −AZ = U

may be recast as

ibu − v = f in Ω
ibv −∆u − div(a(x)∇v) = g in Ω
u = 0, v = 0 on Γ.
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Polynomial stability

Introduce the new function u1 = u − w , where w = G(div(a∇v)), with
G =inverse of −∆ with Dirichlet BCs. One notes u1 ∈ H2(Ω) ∩ H1

0 (Ω),
and

||w ||H1
0 (Ω) ≤

√
|a|∞||U||H||Z ||H, ||u1||H1

0 (Ω) ≤ ||Z ||H+
√
|a|∞||U||H||Z ||H.

The second equation in (3) becomes

ibv −∆u1 = g in Ω,

from which one derives

|b|||v ||H−1(Ω) ≤ ||u1||H1
0 (Ω) + C|g|2.
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Polynomial stability

Let J ≥ 1 be a an integer. For each j = 1,2, ..., J, set mj(x) = x − x j
0.

Let 0 < δ0 < δ1 < δ, where δ is the same as in the geometric condition
stated above. Set

S =

 J⋃
j=1

Γj

⋃Ω \
J⋃

j=1

Ωj

 ,

Q0 = Nδ0(S), Q1 = Nδ1(S), ω1 = Ω ∩Q1,

and for each j , let ϕj be a function satisfying

ϕj ∈W 1,∞(Ω), 0 ≤ ϕj ≤ 1, ϕj = 1 in Ω̄j \Q1, ϕj = 0 in Ω ∩Q0.
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Polynomial stability

x2
0

ω

Ω2

Ω1

x1
0

Louis Tebou (FIU, Miami) Stabilization... wave equation... localized damping... Monastir, 06/26-27/2018 29 / 36



Polynomial stability

The usual multiplier technique leads to the estimate

||Z ||2H ≤ C||U||2H + C|b|

∣∣∣∣∣∣
J∑

j=1

∫
Ωj

vϕjmj · ∇w̄ dx

∣∣∣∣∣∣ .

Thanks to the estimate on w , one derives

C|b|

∣∣∣∣∣∣
J∑

j=1

∫
Ωj

vϕjmj · ∇w̄ dx

∣∣∣∣∣∣ ≤ C|b|||U||
1
2
H||Z ||

3
2
H.

Combining the two equations, one derives the desired estimate:

||Z ||H ≤ Cb2||U||H.
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Exponential stability

Theorem 3
Suppose that ω satisfies the geometric condition (GC). As for the
damping coefficient a, assume

a ∈W 1,∞(Ω) with |∇a(x)|2 ≤ M0a(x), a.e. in Ω,
a(x) ≥ a0 > 0 a.e. in ω1,

for some positive constants M0 and a0.
The semigroup (S(t))t≥0 is exponentially stable; more precisely, there
exist positive constants M and λ with

||S(t)Z 0||H ≤ M exp(−λt)||Z 0||H, ∀Z 0 ∈ H.

Remark. In Liu-Rao (2006), the feedback control region ω is a
neighborhood of the whole boundary, and the damping coefficient a
should further satisfy ∆a ∈ L∞(Ω).
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Exponential stability

Proof Sketch of Theorem 3. The proof amounts to showing:
iR ⊂ ρ(A), (given by Theorem 1)

∃C > 0 : ||(ib −A)−1||L(H) ≤ C, ∀b ∈ R
Apply a theorem due to Prüss or Huang on exponential decay of
bounded semigroups.
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Exponential stability

We shall prove that there exists a constant C > 0 such that for every
U = (f ,g) ∈ H, the element Z = (ib −A)−1U = (u, v) in D(A)
satisfies:

||Z ||H ≤ C||U||H, ∀b ∈ R.

Thanks to the proof sketch of Theorem 2, we already have:

||Z ||2H ≤ C||U||2H + C|b|

∣∣∣∣∣∣
J∑

j=1

∫
Ωj

vϕjmj · ∇w̄ dx

∣∣∣∣∣∣ .
With the smoothness and structural conditions on the coefficient a, it
can be shown that, on the one hand

C|b|

∣∣∣∣∣∣
J∑

j=1

∫
Ωj

vϕjmj · ∇w̄ dx

∣∣∣∣∣∣ ≤ C|b||
√

av |2(||U||
1
2
H||Z ||

1
2
H + ||Z ||H),
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Exponential stability

and on the other hand, one shows

b2|
√

av |22 ≤ C(||U||
1
2
H||Z ||

3
2
H + ||U||H||Z ||H + ||U||

3
2
H||Z ||

1
2
H).

Remark. The following system:

ytt −∆y − ag(∆yt ) = 0 in Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞), y(0) = y0, yt (0) = y1 in Ω.

But now, the natural the energy space is
Ĥ = H2(Ω) ∩ H1

0 (Ω)× H1
0 (Ω).When g is globally Lipschitz, and the

damping is localized, it has been shown that the energy decays
exponentially, by using the Komornik integral inequality and the
localized smoothness of solutions. When a ≡ 1 in Ω, and
g(s) = |s|p−2s, it has been established that

E(t) ≤


K1

(1+t)
3−p
p−2

if 2 < p < 3,

K2

(log(2+t))
2

p−2
if p ≥ 3,

∀t ≥ 0.
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Extensions and open problems.

1 The stabilization of the semilinear plate equation
ytt + ∆2y + f (y) + a(x)g(yt ) = 0 in Ω× (0,∞) is open.

2 What are the optimal conditions on the damping coefficient a for
exponential stability to hold in the K-V case?

3 The analysis of the stabilization problem under localized K-V
damping and either Neumann or Robin boundary conditions is an
interesting open problem.

4 The case of ytt + ∆2y − div(b(x)g(∇yt )) = 0 in Ω× (0,∞) is open.
5 The analysis of the stabilization problem for the semilinear wave

equation ytt −∆y + f (y) + a(x)g(yt ) = 0 in Ω× (0,∞), when the
damping is localized in an arbitrary nonvoid open set is open.

6 The analogous problem for the plate
equationytt + ∆2y + ∆(a∆yt ) = 0 in Ω× (0,∞) with clamped BCs
is open in the multidimensional setting. No smoothness on the
damping coefficient is needed in the one-dimensional setting,
(Liu-Liu, 1998).
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Final Thought

And if anyone thinks that he knows anything, he
knows nothing yet as he ought to know.

THANKS!

Louis Tebou (FIU, Miami) Stabilization... wave equation... localized damping... Monastir, 06/26-27/2018 36 / 36


	The frictional damping case
	The Kelvin-Voigt damping case
	 The wave equation with Kelvin-Voigt damping
	Well-posedness and strong stability
	Polynomial stability
	Exponential stability
	 Extensions and open problems.
	Final Thought

