MAC 2313 (Calculus III)
 \section*{Test 2 Review: 13.1 to 13.8}

1. Describe the domain of the function f in words. a) $f(x, y, z)=\ln \left(z^{2}-x^{2}-y^{2}\right)$, b) $f(x, y, z)=\cos ^{-1}\left(x^{2}+y^{2}+z^{2}\right)$.
2. Sketch the largest region where f is continuous. a) $f(x, y)=\sqrt{x^{2}+y^{2}-4}$, b) $f(x, y)=\sin ^{-1}(y-x)$.
3. a) Find an equation for the level curve of the function f that passes through the point P. i) $f(x, y)=\int_{x}^{y} \frac{d t}{t^{2}+1}$, $P(-\sqrt{3}, \sqrt{3})$. ii) $f(x, y)=\sum_{n=0}^{\infty}(x / y)^{n}, P(1,2)$. b) Find an equation for the level surface of the function f that passes through the point P. i) $f(x, y, z)=\sum_{n=1}^{\infty} \frac{(-1)^{n}(x y z)^{n}}{n}, P(\sqrt{2}, 1,1 / \sqrt{2})$. ii) $f(x, y, z)=\int_{x}^{y} \frac{d \theta}{\sqrt{1-\theta^{2}}}+\int_{\sqrt{2}}^{z} \frac{d t}{\sqrt{t^{2}-1}}, P(0,1 / 2,2)$. c) Identify the level surfaces of $f(x, y, z)=\ln \left(x^{2}+y^{2}+z^{2}\right)$ for $k=-1,0,1$.
4. a) Let $f(x, y, z)=x^{2} y^{3} \sin \left(x^{3} z^{2}\right)$. i) Find $f(y, z, x)$ and $f(z, x, y)$. ii) Find $f_{x}(x, y, z), f_{y}(x, y, z)$ and $f_{z}(x, y, z)$.
b) Use implicit partial differentiation to find $\partial x / \partial y$ and $\partial x / \partial z$ if $x z+y \ln x-x^{2}+4=0$ defines x as a function of y and z. c) If $x=v \ln u, y=u \ln v$, use implicit partial differentiation to find u_{x}, v_{x}, u_{y} and v_{y}. If we set $z=\tan (2 u-3 v)$, use the chain rule to find z_{x} and z_{y}. d) answer the same questions as in c) if $x=u^{2}-v^{2}, y=u^{2}-v$, and $z=u^{2}+v^{2}$.
5. Evaluate each limit.
a) $\lim _{(x, y, z) \rightarrow(-1,2,1)} \frac{x z^{2}}{\sqrt{x^{2}+2 y^{2}+3 z^{2}}}$, b) $\lim _{(x, y) \rightarrow(1,1)} \frac{x^{2}-2 x y+y^{2}}{x^{2}-y^{2}}$, c) $\lim _{(x, y) \rightarrow(-1,1)} \frac{2 x^{3}+3 x^{2} y-2 x y^{2}-3 y^{3}}{2 x^{2}+x y-y^{2}}$,
d) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y z}{x^{2}+y^{2}+z^{2}}$, e) $\lim _{(x, y, z) \rightarrow(2,2,1)} \frac{\sin (2 x-5 y+6 z)}{(2 x-5 y+6 z)(y+z)}$, f) $\lim _{(x, y) \rightarrow(0,0)} \frac{1-\cos \left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}$.
6. Find an equation for the tangent plane and parametric equations for the normal line to the given surface at the given point. a) $2 x^{2}-2 y^{2}+4 z^{2}=4, P(-1,1,1)$. b) $\frac{x+2 y}{2 y+z}=1, P(1, \sqrt{7},-2)$.
7. Find parametric equations for the tangent line to the curve of intersection of the given surfaces at the given point. a) $z=x^{2}+y^{2}$ and $z=8-x^{2}-y^{2}, P(\sqrt{2},-\sqrt{2}, 4)$. b) $x^{2}+y^{2}=2$ and $x+2 y+3 z=6, P(1,1,1)$.
8. Let $f(x, y)=\left\{\begin{array}{l}\frac{x y}{x^{2}+y^{2}}-2 x+3 y, \\ 0, \quad(x, y)=(0,0) .\end{array}\right.$
a) Find $f_{x}(0,0)$, and $f_{y}(0,0)$. b) Show that f is not continuous at $(0,0)$. c) Is f differentiable at $(0,0)$?
9. a) Write down the definition of " f is differentiable at $\left(x_{0}, y_{0}\right)$ ". b) Use the definition in a) to show that the function f given by $f(x, y)=2 x-3 x y$ is differentiable at the point $(1,-2)$.
10. a) Let $f(x, y, z)=x^{3} e^{y z}$. i) Find the differential $d f$. ii) Find the local linear approximation for f about $P(1,-1,-1)$, and use it to approximate $f(Q)$ with $Q(0.99,-1.01,-0.98)$. b) Answer the same questions for i) $f(x, y, z)=y z \ln (x y)$, $P(e, 1,1)$ and $Q(2.72,0.99,1.01)$. ii) $f(x, y, z)=\tan ^{-1}(x y z), P(1,1,1)$ and $Q(0.98,1.01,0.99)$
11. Let $g(x, y, z)=x y e^{x+y z}$. a) Find the gradient of g at $P(1,1,-1)$. b) Find a unit vector in the direction in which g decreases most rapidly at the point $Q(-1,1,1)$, and find the rate of change of g at Q in that direction. c) Find the directional derivative of g in the direction of the vector $\vec{a}=2 \vec{i}-3 \vec{j}+4 \vec{k}$ at the point $A(1,-1,1)$.
12. Find all the critical points of f and classify them as points of local minimum, local maximum, or saddle points. a) $f(x, y)=x y+2 x-\ln \left(x^{2} y\right)$, b) $f(x, y)=x^{3}-y^{3}-2 x y+6$, c) $f(x, y)=4 x y+x^{4}+y^{4}$, d) $f(x, y)=x^{3} y^{3}$, e) $f(x, y)=2 y^{2} x-x^{2} y+4 x y$.
13. Find all the first partial derivatives of f if a) $f(x, y)=\log _{x}(y)$, b) $f(x, y)=\int_{x}^{y} g(t) d t$, c) $f(x, y, z)=y z \ln (x y)$, d) If z is defined implicitly by the relation $f(x, y, z)=0$ as a differentiable function of x and y, where f is a differentiable function with $f_{z}(x, y, z) \neq 0$ for all allowable points ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), use implicit differentiation and the chain rule to find the partial derivatives z_{x} and z_{y}.
14. a) Find the point on the paraboloid $z=x^{2}+y^{2}+10$ that is closest to the plane $x+2 y-z=0$. b) Find three positive numbers whose sum is 48 and their product is as large as possible. c) Problems 44 and 48 in 13.8, p. 987.
15. Review the true/false problems in the text.
