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A thermoelasticity system

Consider the following system

ytt − a∆y + α∆θ = 0 in Ω× (0,∞)
θt − µ∆θ + βyt = 0 in Ω× (0,∞)
y = 0, θ = 0 on Γ× (0,∞)
y(x ,0) = y0(x), yt (x ,0) = y1(x), θ(x ,0) = θ0(x) in Ω,

Ω = bounded domain in RN with smooth boundary, a and µ are positive
constants, and α, β are constants with αβ > 0.

System is well-posed in H1
0 (Ω)× L2(Ω)× H1

0 (Ω), and its energy given
by

E(t) =
1
2

∫
Ω
{|yt (x , t)|2 + a|∇y(x , t)|2 +

α

β
|∇θ(x , t)|2}dx

is a nonincreasing function of the time variable t , as

E ′(t) = −µα
β

∫
Ω
|∆θ(x , t)|2 dx , a.e. t > 0.

It can be shown that the semigroup associated with this system is
exponentially stable, but not analytic.
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A thermoelasticity system

A bit of history and a question

Albano and Tataru established for that system a boundary
observability estimate; this leads to boundary controllability results
using two controls.

Lebeau and Zuazua proved internal null controllability results
under the action of a single control.

Question: Knowing that this thermoelasticity system is exponentially
stable, how robust is this stability? In other words, if this structure is
connected, through the usual transmission conditions, to another
undamped structure modeled by a wave equation with possibly a
different speed of propagation, is the exponential stability property
kept?
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A transmission system

Problem formulation

Consider the transmission system

ytt − a∆y + α∆θ = 0 in Ωd × (0,∞)
θt − µ∆θ + βyt = 0 in Ωd × (0,∞)
y = 0, θ = 0 on Γ× (0,∞)
y(x ,0) = y0(x), yt (x ,0) = y1(x), θ(x ,0) = θ0(x) in Ωd ,
ztt − b∆z = 0 in Ωu × (0,∞)
z = y , b∂νz = a∂νy on I × (0,∞)
z(x ,0) = z0(x), zt (x ,0) = z1(x) in Ωu,

where a, b and µ are positive constants and α and β are constants
with αβ > 0, while ν denotes the unit outward normal to the boundary
of Ωd . The initial data are given in appropriate Hilbert spaces to be
specified later on.
We are interested in the study of stability issues for this system.
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A transmission system

Geometric configuration
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A transmission system

Some literature

This work was inspired by closely related works on
fluid-structure interaction (Avalos-Triggiani, Lasiecka-Lu,
Rauch-Zhang-Zuazua,...)

structural acoustics (Avalos-Lasiecka,...)
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A transmission system

Well-posedness and strong stability

Set V = {(u,w) ∈ H1(Ωd )× H1(Ωu); u = 0 on Γ, u = w on I}, and
introduce the Hilbert space over the field C of complex numbers
H = V × L2(Ωd )× L2(Ωu)× H1

0 (Ωd ), equipped with the norm

||Z ||2H =

∫
Ωd

{a|∇u|2 + |v |2 +
α

β
|∇ϕ|2}dx +

∫
Ωu

{b|∇w |2 + |z|2}dx ,

∀Z = (u,w , v , z, ϕ) ∈ H.

Setting Z = (y , y ′, θ, z, z ′), the system may be recast as:

Z ′ −AZ = 0 in (0,∞), Z (0) = (y0, y1, θ0, z0, z1),
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A transmission system

Well-posedness and strong stability

the unbounded operator A : D(A) −→ H is given by

A =


0 0 I 0 0
0 0 0 I 0

a∆ 0 0 0 −α∆
0 b∆ 0 0 0
0 0 −βI 0 µ∆


with

D(A) =
{

(u,w , v , z, ϕ) ∈ V × V × H1
0 (Ωd ); a∆u − α∆ϕ ∈ L2(Ωd )

∆w ∈ L2(Ωu), µ∆ϕ− βv ∈ H1
0 (Ωd ),

and a∂νu = b∂νw on I
}
.
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A transmission system

Well-posedness and strong stability

Theorem 1
Suppose that Ωd and Ωu have Lipschitz boundaries, and assume that
meas(∂Ωd ∩ ∂Ωu) 6= 0. The operator A generates a C0-semigroup of
contractions (S(t))t≥0 on H, which is strongly stable:

lim
t→∞
||S(t)Z 0||H = 0, ∀Z 0 ∈ H.

Proof ideas. Semigroup generation follows from Lumer-Philips
theorem.
On the other hand, one checks that the operator A has a compact
resolvent; so the spectrum σ(A) is discrete.
Next, one shows that A has no purely imaginary eigenvalue. The
stability theorem in Arendt-Batty (1988) yields the claimed strong
stability result.
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A transmission system

Exponential stability

Theorem 2

Suppose that Ωd and Ωu have C2 boundaries, and b > a. Further
assume that Ωd is a collar around Ωu, and Ωu is strictly star-shaped
with respect to some x0 ∈ RN :

∃ρ > 0 : (x − x0) · ν(x) ≤ −ρ for all x on I .

The semigroup (S(t))t≥0 is exponentially stable; more precisely, there
exist positive constants M and γ with

||S(t)Z 0||H ≤ M exp(−γt)||Z 0||H, ∀Z 0 ∈ H.
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A transmission system

Proof Sketch.

The proof amounts to showing:
iR ⊂ ρ(A), (given by Theorem 1)

∃C > 0 : ||(iλ−A)−1||L(H) ≤ C, ∀λ ∈ R.

Then apply a theorem due to Prüss or Huang on exponential decay of
bounded semigroups.

We shall prove that there exists a constant C > 0 such that for every
U = (f ,g,h, k , l) in H, the element Z = (iλ−A)−1U = (u,w , v , z, ϕ) in
D(A) satisfies:

||Z ||H ≤ C||U||H, ∀λ ∈ R.
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A transmission system

The equation
(iλ−A)Z = U (1)

may be recast as 
iλu − v = f in Ωd
iλz − w = g in Ωu
iλv − a∆u + α∆ϕ = h in Ωd
iλz − bw = k in Ωu
iλϕ− µ∆ϕ+ βv = l in Ωd .

It easily follows from the equation (1)

αµ

β

∫
Ωd

|∆ϕ(x)|2 dx = < ((iλ−A)Z ,Z ) = <(U,Z ) ≤ ||U||H||Z ||H.
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A transmission system

Using appropriate multipliers and Green’s formula, one derives∫
Ωd

(|v |2 + a|∇u|2) dx

=
2
β
<
∫

Ωd

{(µ∆ϕ+ l)v̄ − a∇ū · ∇ϕ+ α|∇ϕ|2 + h̄ϕ}dx

+ <
∫

Ωd

{v f̄ + α∇ū · ∇ϕ+ hū}dx + a
∫

I
(∂νu)ū dΓ,

≤ C0(||U||
1
2
H||Z ||

3
2
H + ||U||H||Z ||H) + a

∫
I
(∂νu)ū dΓ,
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A transmission system

Set m(x) = x − x0. With Green’s formula, we have the identity:

<
∫

Ωd

(iλv − a∆u)(2m · ∇ū + (N − 1)ū) dx

=

∫
Ωd

{|v |2 + a|∇u|2 − v(2m · ∇f̄ + (N − 1)f̄ )}dx − a
∫

Γ
(m · ν)|∂νu|2 dΓ

−
∫

I
{(m · ν)|v |2 + a(∂νu)(2m · ∇ū + (N − 1)ū)− a(m · ν)|∇u|2}dΓ

= <
∫

Ωd

(h − α∆ϕ)(2m · ∇ū + (N − 1)ū) dx .

Similarly, one has:

<
∫

Ωu

k(2m · ∇w̄ + (N − 1)w̄)dx =<
∫

Ωu

(iλz − a∆w)(2m · ∇w̄ + (N − 1)w̄)dx =

=

∫
Ωu

{|z|2 + b|∇w |2 − z(2m · ∇k̄ + (N − 1)k̄)}dx

+

∫
I
{(m · ν)|z|2 + b(∂νw)(2m · ∇w̄ + (N − 1)w̄)− b(m · ν)|∇w |2}dΓ.
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A transmission system

Using Cauchy-Schwarz and Poincaré inequalities, it follows from those
identities:∫

Ωd

(|v |2 + a|∇u|2 +
α

β
|∇ϕ|2) dx +

∫
Ωu

(|z|2 + b|∇w |2) dx

≤ C0(||U||
1
2
H||Z ||

3
2
H + ||U||H||Z ||H) +

a
b

(b − a)

∫
I
(m · ν)|∂νu|2 dΓ

+ (b − a)

∫
I
(m · ν)|∇τu|2 dΓ +

∫
Γ
(m · ν)|∂νu|2 dΓ.

Thanks to the geometric constraint on Ωu, and b > a, we get

||Z ||2H +

∫
I
|∂νu|2 dΓ ≤ C0(||U||

1
2
H||Z ||

3
2
H + ||U||H||Z ||H)

+ C0

∫
Γ
|∂νu|2 dΓ.
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A transmission system

Let q ∈ [C1(Ωd )]N be a vector field satisfying q = ν on Γ and
q = 0 on I. Multiplier techniques show that:∫

Γ
|∂νu|2 dΓ ≤ C0(||U||

1
2
H||Z ||

3
2
H + ||U||H||Z ||H) + C0

∫
Ωd

(|v |2 + a|∇u|2) dx

≤ C0(||U||
1
2
H||Z ||

3
2
H + ||U||H||Z ||H) + C0

∣∣∣∣∫
I
(∂νu)ū dΓ

∣∣∣∣

Using the preceding estimate, we derive∫
Γ
|∂νu|2 dΓ ≤ C0(||U||

1
2
H||Z ||

3
2
H + ||U||H||Z ||H) + C0

∫
I
|u|2 dΓ.
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≤ C0(||U||
1
2
H||Z ||

3
2
H + ||U||H||Z ||H) + C0

∣∣∣∣∫
I
(∂νu)ū dΓ

∣∣∣∣
Using the preceding estimate, we derive∫

Γ
|∂νu|2 dΓ ≤ C0(||U||

1
2
H||Z ||

3
2
H + ||U||H||Z ||H) + C0

∫
I
|u|2 dΓ.
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A transmission system

By interpolation, one derives

C0

∫
I
|u|2 dΓ ≤ ε

∫
Ωd

|∇u|2 dx + Cε

∫
Ωd

|u|2 dx , ∀ε > 0.

Hence

||Z ||2H + λ2
∫

Ωd

|u|2 dx ≤ C0(||U||
1
2
H||Z ||

3
2
H + ||U||H||Z ||H)

+ C0ε||Z ||2H + Cε

∫
Ωd

|u|2 dx .

Choosing an appropriate ε, and using Young inequality, one derives

||Z ||H ≤ C0||U||H

provided |λ| > λ0 for some suitable λ0 > 0.
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A transmission system

Using the continuity of the resolvent for |λ| ≤ λ0, we get the claimed
estimate.

Remark. Case: a = b. Following Rauch-Zhang-Zuazua, we set
ψ = y1Ωd + z1Ωu , and recast the transmission system as

ψtt − a∆ψ = −α∆θ1Ωd in Ω× (0,∞)
θt − µ∆θ + βψt = 0 in Ωd × (0,∞)
ψ = 0, θ = 0 on Γ× (0,∞)
y(x ,0) = y0(x)1Ωd + z0(x)1Ωu ψt (x ,0) = y1(x)1Ωd + z1(x)1Ωu , in Ω,
θ(x ,0) = θ0(x) in Ωd ,

where Ω = Ωd ∪ Ω̄u,
with (Ωd ,T ) satisfying the Bardos-Lebeau-Rauch geometric control
condition for some T > 0:
every ray of geometric optics enters Ωd in a time less than T .
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A transmission system

Following Lebeau ideas, one derives the observability estimate:

E(0) ≤ C
∫ T

0

∫
Ωd

{r(t)2|yt (x , t)|2 + |∆θ(x , t)|2}dxdt ,

for some large enough T and an appropriate cut-off function r .

Using appropriate multipliers, one can then get rid of the term involving
yt , obtaining:

E(0) ≤ C
∫ T

0

∫
Ωd

|∆θ(x , t)|2 dxdt .

Hence
E(t) ≤ γE(0), ∀t ≥ T

for γ = C
C+1 < 1.

The semigroup property can then be invoked to claim the exponential
decay of the energy.

Louis Tebou (Florida International University) Stabilization of a transmission system... Vanderbilt U, May 16, 2016 20 / 24



A transmission system

Following Lebeau ideas, one derives the observability estimate:

E(0) ≤ C
∫ T

0

∫
Ωd

{r(t)2|yt (x , t)|2 + |∆θ(x , t)|2}dxdt ,

for some large enough T and an appropriate cut-off function r .
Using appropriate multipliers, one can then get rid of the term involving
yt , obtaining:

E(0) ≤ C
∫ T

0

∫
Ωd

|∆θ(x , t)|2 dxdt .

Hence
E(t) ≤ γE(0), ∀t ≥ T

for γ = C
C+1 < 1.

The semigroup property can then be invoked to claim the exponential
decay of the energy.

Louis Tebou (Florida International University) Stabilization of a transmission system... Vanderbilt U, May 16, 2016 20 / 24



A transmission system

Following Lebeau ideas, one derives the observability estimate:

E(0) ≤ C
∫ T

0

∫
Ωd

{r(t)2|yt (x , t)|2 + |∆θ(x , t)|2}dxdt ,

for some large enough T and an appropriate cut-off function r .
Using appropriate multipliers, one can then get rid of the term involving
yt , obtaining:

E(0) ≤ C
∫ T

0

∫
Ωd

|∆θ(x , t)|2 dxdt .

Hence
E(t) ≤ γE(0), ∀t ≥ T

for γ = C
C+1 < 1.

The semigroup property can then be invoked to claim the exponential
decay of the energy.

Louis Tebou (Florida International University) Stabilization of a transmission system... Vanderbilt U, May 16, 2016 20 / 24



A transmission system

Following Lebeau ideas, one derives the observability estimate:

E(0) ≤ C
∫ T

0

∫
Ωd

{r(t)2|yt (x , t)|2 + |∆θ(x , t)|2}dxdt ,

for some large enough T and an appropriate cut-off function r .
Using appropriate multipliers, one can then get rid of the term involving
yt , obtaining:

E(0) ≤ C
∫ T

0

∫
Ωd

|∆θ(x , t)|2 dxdt .

Hence
E(t) ≤ γE(0), ∀t ≥ T

for γ = C
C+1 < 1.

The semigroup property can then be invoked to claim the exponential
decay of the energy.

Louis Tebou (Florida International University) Stabilization of a transmission system... Vanderbilt U, May 16, 2016 20 / 24



A transmission system

Polynomial stability

Theorem 3

Suppose that Ωd and Ωu have C2 boundaries. Further assume that Ωd
is a collar around Ωu, and a > b. There exists a positive constant C
such that the semigroup (S(t))t≥0 satisfies:

||S(t)Z 0||H ≤
C||Z 0||D(A)

(1 + t)
1
4

, ∀Z 0 ∈ D(A), ∀t ≥ 0.
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A transmission system

Proof Sketch.

Following the proof of Theorem 2, we already have:∫
Ωd

(|v |2 + a|∇u|2 +
α

β
|∇ϕ|2) dx +

∫
Ωu

(|z|2 + b|∇w |2) dx

≤ C0(||U||
1
2
H||Z ||

3
2
H + ||U||H||Z ||H) +

a
b

(b − a)

∫
I
(m · ν)|∂νu|2 dΓ

+ (b − a)

∫
I
(m · ν)|∇τu|2 dΓ +

∫
Γ
(m · ν)|∂νu|2 dΓ.

Now, one checks

∫
I
|∇τu|2 dΓ ≤ C0(||U||

1
2
H||Z ||

3
2
H + ||U||H||Z ||H) + C0

∫
I
{|∂νu|2 + |u|2}dΓ
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A transmission system

Hence, as earlier, and for |λ| large enough:

||Z ||2H ≤ C0(||U||
1
2
H||Z ||

3
2
H + ||U||H||Z ||H) + C0

∫
I
|∂νu|2 dΓ.

Now borrowing ideas from Avalos-Triggiani (EECT, 2(2013)), one
derives: ∫

I
|∂νu|2 dΓ ≤ C0(λ2 + 1)(||U||

1
2
H||Z ||

3
2
H + ||U||H||Z ||H).

Thanks to Young inequality, we finally get:

||Z ||2H ≤ C0λ
8||U||2H.

The claimed polynomial decay then follows from a Theorem of Tomilov
and Borichev.
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