Stabilization of a transmission system involving thermoelasticity

Louis Tebou

Florida International University

Shanks Conference
Vanderbilt University

May 16, 2016

Overview

- A thermoelasticity system.

Overview

- A thermoelasticity system.
- The transmission system.

Overview

- A thermoelasticity system.
- The transmission system.
- Well-posedness and strong stability.

Overview

- A thermoelasticity system.
- The transmission system.
- Well-posedness and strong stability.
- Exponential stability.

Overview

- A thermoelasticity system.
- The transmission system.
- Well-posedness and strong stability.
- Exponential stability.
- Polynomial stability

Consider the following system

$$
\begin{aligned}
& y_{t t}-a \Delta y+\alpha \Delta \theta=0 \text { in } \Omega \times(0, \infty) \\
& \theta_{t}-\mu \Delta \theta+\beta y_{t}=0 \text { in } \Omega \times(0, \infty) \\
& y=0, \quad \theta=0 \text { on } \Gamma \times(0, \infty) \\
& y(x, 0)=y^{0}(x), \quad y_{t}(x, 0)=y^{1}(x), \quad \theta(x, 0)=\theta^{0}(x) \text { in } \Omega,
\end{aligned}
$$

$\Omega=$ bounded domain in \mathbb{R}^{N} with smooth boundary, a and μ are positive constants, and α, β are constants with $\alpha \beta>0$.

Consider the following system

$$
\begin{aligned}
& y_{t t}-a \Delta y+\alpha \Delta \theta=0 \text { in } \Omega \times(0, \infty) \\
& \theta_{t}-\mu \Delta \theta+\beta y_{t}=0 \text { in } \Omega \times(0, \infty) \\
& y=0, \quad \theta=0 \text { on } \Gamma \times(0, \infty) \\
& y(x, 0)=y^{0}(x), \quad y_{t}(x, 0)=y^{1}(x), \quad \theta(x, 0)=\theta^{0}(x) \text { in } \Omega,
\end{aligned}
$$

$\Omega=$ bounded domain in \mathbb{R}^{N} with smooth boundary, a and μ are positive constants, and α, β are constants with $\alpha \beta>0$.
System is well-posed in $H_{0}^{1}(\Omega) \times L^{2}(\Omega) \times H_{0}^{1}(\Omega)$, and its energy given by

$$
E(t)=\frac{1}{2} \int_{\Omega}\left\{\left|y_{t}(x, t)\right|^{2}+a|\nabla y(x, t)|^{2}+\frac{\alpha}{\beta}|\nabla \theta(x, t)|^{2}\right\} d x
$$

is a nonincreasing function of the time variable t, as

$$
E^{\prime}(t)=-\frac{\mu \alpha}{\beta} \int_{\Omega}|\Delta \theta(x, t)|^{2} d x, \quad \text { a.e. } t>0 .
$$

It can be shown that the semigroup associated with this system is exponentially stable, but not analytic.

A bit of history and a question

- Albano and Tataru established for that system a boundary observability estimate; this leads to boundary controllability results using two controls.

A bit of history and a question

- Albano and Tataru established for that system a boundary observability estimate; this leads to boundary controllability results using two controls.
- Lebeau and Zuazua proved internal null controllability results under the action of a single control.

A bit of history and a question

- Albano and Tataru established for that system a boundary observability estimate; this leads to boundary controllability results using two controls.
- Lebeau and Zuazua proved internal null controllability results under the action of a single control.

A bit of history and a question

- Albano and Tataru established for that system a boundary observability estimate; this leads to boundary controllability results using two controls.
- Lebeau and Zuazua proved internal null controllability results under the action of a single control.

Question: Knowing that this thermoelasticity system is exponentially stable, how robust is this stability? In other words, if this structure is connected, through the usual transmission conditions, to another undamped structure modeled by a wave equation with possibly a different speed of propagation, is the exponential stability property kept?

Problem formulation

Consider the transmission system

$$
\begin{aligned}
& y_{t t}-a \Delta y+\alpha \Delta \theta=0 \text { in } \Omega_{d} \times(0, \infty) \\
& \theta_{t}-\mu \Delta \theta+\beta y_{t}=0 \text { in } \Omega_{d} \times(0, \infty) \\
& y=0, \quad \theta=0 \text { on } \Gamma \times(0, \infty) \\
& y(x, 0)=y^{0}(x), \quad y_{t}(x, 0)=y^{1}(x), \quad \theta(x, 0)=\theta^{0}(x) \text { in } \Omega_{d}, \\
& z_{t t}-b \Delta z=0 \text { in } \Omega_{u} \times(0, \infty) \\
& z=y, \quad b \partial_{\nu} z=a a_{\nu} y \text { on } I \times(0, \infty) \\
& z(x, 0)=z^{0}(x), \quad z_{t}(x, 0)=z^{1}(x) \text { in } \Omega_{u},
\end{aligned}
$$

where a, b and μ are positive constants and α and β are constants with $\alpha \beta>0$, while ν denotes the unit outward normal to the boundary of Ω_{d}. The initial data are given in appropriate Hilbert spaces to be specified later on.
We are interested in the study of stability issues for this system.

Geometric configuration

Some literature

This work was inspired by closely related works on

- fluid-structure interaction (Avalos-Triggiani, Lasiecka-Lu, Rauch-Zhang-Zuazua,...)

Some literature

This work was inspired by closely related works on

- fluid-structure interaction (Avalos-Triggiani, Lasiecka-Lu, Rauch-Zhang-Zuazua,...)
- structural acoustics (Avalos-Lasiecka,...)

Well-posedness and strong stability

Set $V=\left\{(u, w) \in H^{1}\left(\Omega_{d}\right) \times H^{1}\left(\Omega_{u}\right) ; u=0\right.$ on $\Gamma, \quad u=w$ on I $\}$, and introduce the Hilbert space over the field \mathbb{C} of complex numbers $\mathcal{H}=V \times L^{2}\left(\Omega_{d}\right) \times L^{2}\left(\Omega_{u}\right) \times H_{0}^{1}\left(\Omega_{d}\right)$, equipped with the norm

$$
\begin{aligned}
& \|Z\|_{\mathcal{H}}^{2}=\int_{\Omega_{d}}\left\{a|\nabla u|^{2}+|v|^{2}+\frac{\alpha}{\beta}|\nabla \varphi|^{2}\right\} d x+\int_{\Omega_{u}}\left\{b|\nabla w|^{2}+|z|^{2}\right\} d x \\
& \forall Z=(u, w, v, z, \varphi) \in \mathcal{H} .
\end{aligned}
$$

Well-posedness and strong stability

Set $V=\left\{(u, w) \in H^{1}\left(\Omega_{d}\right) \times H^{1}\left(\Omega_{u}\right) ; u=0\right.$ on $\Gamma, \quad u=w$ on I $\}$, and introduce the Hilbert space over the field \mathbb{C} of complex numbers $\mathcal{H}=V \times L^{2}\left(\Omega_{d}\right) \times L^{2}\left(\Omega_{u}\right) \times H_{0}^{1}\left(\Omega_{d}\right)$, equipped with the norm

$$
\begin{aligned}
& \|Z\|_{\mathcal{H}}^{2}=\int_{\Omega_{d}}\left\{a|\nabla u|^{2}+|v|^{2}+\frac{\alpha}{\beta}|\nabla \varphi|^{2}\right\} d x+\int_{\Omega_{u}}\left\{b|\nabla w|^{2}+|z|^{2}\right\} d x \\
& \forall Z=(u, w, v, z, \varphi) \in \mathcal{H} .
\end{aligned}
$$

Setting $Z=\left(y, y^{\prime}, \theta, z, z^{\prime}\right)$, the system may be recast as:

$$
Z^{\prime}-\mathcal{A} Z=0 \text { in }(0, \infty), \quad Z(0)=\left(y^{0}, y^{1}, \theta^{0}, z^{0}, z^{1}\right)
$$

Well-posedness and strong stability

the unbounded operator $\mathcal{A}: D(\mathcal{A}) \longrightarrow \mathcal{H}$ is given by

$$
\mathcal{A}=\left(\begin{array}{ccccc}
0 & 0 & l & 0 & 0 \\
0 & 0 & 0 & l & 0 \\
a \Delta & 0 & 0 & 0 & -\alpha \Delta \\
0 & b \Delta & 0 & 0 & 0 \\
0 & 0 & -\beta l & 0 & \mu \Delta
\end{array}\right)
$$

with

$$
\begin{array}{r}
D(\mathcal{A})=\left\{(u, w, v, z, \varphi) \in V \times V \times H_{0}^{1}\left(\Omega_{d}\right) ; a \Delta u-\alpha \Delta \varphi \in L^{2}\left(\Omega_{d}\right)\right. \\
\Delta w \in L^{2}\left(\Omega_{u}\right), \quad \mu \Delta \varphi-\beta v \in H_{0}^{1}\left(\Omega_{d}\right), \\
\text { and } \left.a \partial_{\nu} u=b \partial_{\nu} w \text { on } I\right\} .
\end{array}
$$

Well-posedness and strong stability

Theorem 1

Suppose that Ω_{d} and Ω_{u} have Lipschitz boundaries, and assume that meas $\left(\partial \Omega_{d} \cap \partial \Omega_{u}\right) \neq 0$. The operator \mathcal{A} generates a C_{0}-semigroup of contractions $(S(t))_{t \geq 0}$ on \mathcal{H}, which is strongly stable:

$$
\lim _{t \rightarrow \infty}\left\|S(t) Z^{0}\right\|_{\mathcal{H}}=0, \quad \forall Z^{0} \in \mathcal{H}
$$

Well-posedness and strong stability

Theorem 1

Suppose that Ω_{d} and Ω_{u} have Lipschitz boundaries, and assume that meas $\left(\partial \Omega_{d} \cap \partial \Omega_{u}\right) \neq 0$. The operator \mathcal{A} generates a C_{0}-semigroup of contractions $(S(t))_{t \geq 0}$ on \mathcal{H}, which is strongly stable:

$$
\lim _{t \rightarrow \infty}\left\|S(t) Z^{0}\right\|_{\mathcal{H}}=0, \quad \forall Z^{0} \in \mathcal{H} .
$$

Proof ideas. Semigroup generation follows from Lumer-Philips theorem.

Well-posedness and strong stability

Theorem 1

Suppose that Ω_{d} and Ω_{u} have Lipschitz boundaries, and assume that meas $\left(\partial \Omega_{d} \cap \partial \Omega_{u}\right) \neq 0$. The operator \mathcal{A} generates a C_{0}-semigroup of contractions $(S(t))_{t \geq 0}$ on \mathcal{H}, which is strongly stable:

$$
\lim _{t \rightarrow \infty}\left\|S(t) Z^{0}\right\|_{\mathcal{H}}=0, \quad \forall Z^{0} \in \mathcal{H} .
$$

Proof ideas. Semigroup generation follows from Lumer-Philips theorem.
On the other hand, one checks that the operator \mathcal{A} has a compact resolvent; so the spectrum $\sigma(\mathcal{A})$ is discrete.

Well-posedness and strong stability

Theorem 1

Suppose that Ω_{d} and Ω_{u} have Lipschitz boundaries, and assume that meas $\left(\partial \Omega_{d} \cap \partial \Omega_{u}\right) \neq 0$. The operator \mathcal{A} generates a C_{0}-semigroup of contractions $(S(t))_{t \geq 0}$ on \mathcal{H}, which is strongly stable:

$$
\lim _{t \rightarrow \infty}\left\|S(t) Z^{0}\right\|_{\mathcal{H}}=0, \quad \forall Z^{0} \in \mathcal{H} .
$$

Proof ideas. Semigroup generation follows from Lumer-Philips theorem.
On the other hand, one checks that the operator \mathcal{A} has a compact resolvent; so the spectrum $\sigma(\mathcal{A})$ is discrete.
Next, one shows that \mathcal{A} has no purely imaginary eigenvalue. The stability theorem in Arendt-Batty (1988) yields the claimed strong stability result.

Exponential stability

Theorem 2

Suppose that Ω_{d} and Ω_{u} have C^{2} boundaries, and $b>a$. Further assume that Ω_{d} is a collar around Ω_{u}, and Ω_{u} is strictly star-shaped with respect to some $x^{0} \in \mathbb{R}^{N}$:

$$
\exists \rho>0:\left(x-x^{0}\right) \cdot \nu(x) \leq-\rho \text { for all } x \text { on } \mathrm{I} .
$$

The semigroup $(S(t))_{t \geq 0}$ is exponentially stable; more precisely, there exist positive constants M and γ with

$$
\left\|S(t) Z^{0}\right\|_{\mathcal{H}} \leq M \exp (-\gamma t)\left\|Z^{0}\right\|_{\mathcal{H}}, \quad \forall Z^{0} \in \mathcal{H}
$$

Proof Sketch.

The proof amounts to showing:

- $i \mathbb{R} \subset \rho(\mathcal{A}),($ given by Theorem 1)

Proof Sketch.

The proof amounts to showing:

- $i \mathbb{R} \subset \rho(\mathcal{A})$, (given by Theorem 1)
- $\exists C>0:\left\|(i \lambda-\mathcal{A})^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leq C, \quad \forall \lambda \in \mathbb{R}$.

Proof Sketch.

The proof amounts to showing:

- $i \mathbb{R} \subset \rho(\mathcal{A})$, (given by Theorem 1)
- $\exists C>0:\left\|(i \lambda-\mathcal{A})^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leq C, \quad \forall \lambda \in \mathbb{R}$.

Then apply a theorem due to Prüss or Huang on exponential decay of bounded semigroups.

Proof Sketch.

The proof amounts to showing:

- $i \mathbb{R} \subset \rho(\mathcal{A})$, (given by Theorem 1)
- $\exists C>0:\left\|(i \lambda-\mathcal{A})^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leq C, \quad \forall \lambda \in \mathbb{R}$.

Then apply a theorem due to Prüss or Huang on exponential decay of bounded semigroups.

Proof Sketch.

The proof amounts to showing:

- $i \mathbb{R} \subset \rho(\mathcal{A})$, (given by Theorem 1)
- $\exists C>0:\left\|(i \lambda-\mathcal{A})^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leq C, \quad \forall \lambda \in \mathbb{R}$.

Then apply a theorem due to Prüss or Huang on exponential decay of bounded semigroups.

We shall prove that there exists a constant $C>0$ such that for every $U=(f, g, h, k, I)$ in \mathcal{H}, the element $Z=(i \lambda-\mathcal{A})^{-1} U=(u, w, v, z, \varphi)$ in $D(\mathcal{A})$ satisfies:

$$
\|Z\|_{\mathcal{H}} \leq C\|U\|_{\mathcal{H}}, \quad \forall \lambda \in \mathbb{R} .
$$

The equation

$$
\begin{equation*}
(i \lambda-\mathcal{A}) Z=U \tag{1}
\end{equation*}
$$

may be recast as

$$
\left\{\begin{array}{l}
i \lambda u-v=f \text { in } \Omega_{d} \\
i \lambda z-w=g \text { in } \Omega_{u} \\
i \lambda v-a \Delta u+\alpha \Delta \varphi=h \text { in } \Omega_{d} \\
i \lambda z-b w=k \text { in } \Omega_{u} \\
i \lambda \varphi-\mu \Delta \varphi+\beta v=l \text { in } \Omega_{d}
\end{array}\right.
$$

It easily follows from the equation (1)

$$
\frac{\alpha \mu}{\beta} \int_{\Omega_{d}}|\Delta \varphi(x)|^{2} d x=\Re((i \lambda-\mathcal{A}) Z, Z)=\Re(U, Z) \leq\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}
$$

Using appropriate multipliers and Green's formula, one derives

$$
\begin{aligned}
& \int_{\Omega_{d}}\left(|v|^{2}+a|\nabla u|^{2}\right) d x \\
& =\frac{2}{\beta} \Re \int_{\Omega_{d}}\left\{(\mu \Delta \varphi+I) \bar{v}-a \nabla \bar{u} \cdot \nabla \varphi+\alpha|\nabla \varphi|^{2}+\bar{h} \varphi\right\} d x \\
& \quad+\Re \int_{\Omega_{d}}\{v \bar{f}+\alpha \nabla \bar{u} \cdot \nabla \varphi+h \bar{u}\} d x+a \int_{l}\left(\partial_{\nu} u\right) \bar{u} d \Gamma, \\
& \leq \\
& C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{\mathcal{H}}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+a \int_{l}\left(\partial_{\nu} u\right) \bar{u} d \Gamma,
\end{aligned}
$$

Using appropriate multipliers and Green's formula, one derives

$$
\begin{aligned}
& \int_{\Omega_{d}}\left(|v|^{2}+a|\nabla u|^{2}\right) d x \\
& =\frac{2}{\beta} \Re \int_{\Omega_{d}}\left\{(\mu \Delta \varphi+l) \bar{v}-a \nabla \bar{u} \cdot \nabla \varphi+\alpha|\nabla \varphi|^{2}+\bar{h} \varphi\right\} d x \\
& \quad+\Re \int_{\Omega_{d}}\{v \bar{f}+\alpha \nabla \bar{u} \cdot \nabla \varphi+h \bar{u}\} d x+a \int_{l}\left(\partial_{\nu} u\right) \bar{u} d \Gamma, \\
& \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\| \mathcal{H}\|Z\|_{\mathcal{H}}\right)+a \int_{l}\left(\partial_{\nu} u\right) \bar{u} d \Gamma,
\end{aligned}
$$

Set $m(x)=x-x^{0}$. With Green's formula, we have the identity:

$$
\Re \int_{\Omega_{d}}(i \lambda v-a \Delta u)(2 m \cdot \nabla \bar{u}+(N-1) \bar{u}) d x
$$

$$
=\int_{\Omega_{d}}\left\{|v|^{2}+a|\nabla u|^{2}-v(2 m \cdot \nabla \bar{f}+(N-1) \bar{f})\right\} d x-a \int_{\Gamma}(m \cdot \nu)\left|\partial_{\nu} u\right|^{2} d \Gamma
$$

$$
-\int_{I}\left\{(m \cdot \nu)|v|^{2}+a\left(\partial_{\nu} u\right)(2 m \cdot \nabla \bar{u}+(N-1) \bar{u})-a(m \cdot \nu)|\nabla u|^{2}\right\} d \Gamma
$$

$$
=\Re \int_{\Omega_{d}}(h-\alpha \Delta \varphi)(2 m \cdot \nabla \bar{u}+(N-1) \bar{u}) d x .
$$

Set $m(x)=x-x^{0}$. With Green's formula, we have the identity:

$$
\begin{aligned}
& \Re \int_{\Omega_{d}}(i \lambda v-a \Delta u)(2 m \cdot \nabla \bar{u}+(N-1) \bar{u}) d x \\
& =\int_{\Omega_{d}}\left\{|v|^{2}+a|\nabla u|^{2}-v(2 m \cdot \nabla \bar{f}+(N-1) \bar{f})\right\} d x-a \int_{\Gamma}(m \cdot \nu)\left|\partial_{\nu} u\right|^{2} d \Gamma \\
& -\int_{I}\left\{(m \cdot \nu)|v|^{2}+a\left(\partial_{\nu} u\right)(2 m \cdot \nabla \bar{u}+(N-1) \bar{u})-a(m \cdot \nu)|\nabla u|^{2}\right\} d \Gamma \\
& =\Re \int_{\Omega_{d}}(h-\alpha \Delta \varphi)(2 m \cdot \nabla \bar{u}+(N-1) \bar{u}) d x
\end{aligned}
$$

Similarly, one has:

$$
\begin{aligned}
& \Re \int_{\Omega_{u}} k(2 m \cdot \nabla \bar{w}+(N-1) \bar{w}) d x=\Re \int_{\Omega_{u}}(i \lambda z-a \Delta w)(2 m \cdot \nabla \bar{w}+(N-1) \bar{w}) d x \\
& \quad=\int_{\Omega_{u}}\left\{|z|^{2}+b|\nabla w|^{2}-z(2 m \cdot \nabla \bar{k}+(N-1) \bar{k})\right\} d x \\
& \quad+\int_{1}\left\{(m \cdot \nu)|z|^{2}+b\left(\partial_{\nu} w\right)(2 m \cdot \nabla \bar{w}+(N-1) \bar{w})-b(m \cdot \nu)|\nabla w|^{2}\right\} d \Gamma .
\end{aligned}
$$

Using Cauchy-Schwarz and Poincaré inequalities, it follows from those identities:

$$
\begin{aligned}
& \int_{\Omega_{d}}\left(|v|^{2}+a|\nabla u|^{2}+\frac{\alpha}{\beta}|\nabla \varphi|^{2}\right) d x+\int_{\Omega_{u}}\left(|z|^{2}+b|\nabla w|^{2}\right) d x \\
& \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+\frac{a}{b}(b-a) \int_{I}(m \cdot \nu)\left|\partial_{\nu} u\right|^{2} d \Gamma \\
& \quad+(b-a) \int_{I}(m \cdot \nu)\left|\nabla_{\tau} u\right|^{2} d \Gamma+\int_{\Gamma}(m \cdot \nu)\left|\partial_{\nu} u\right|^{2} d \Gamma .
\end{aligned}
$$

Using Cauchy-Schwarz and Poincaré inequalities, it follows from those identities:

$$
\begin{aligned}
& \int_{\Omega_{d}}\left(|v|^{2}+a|\nabla u|^{2}+\frac{\alpha}{\beta}|\nabla \varphi|^{2}\right) d x+\int_{\Omega_{u}}\left(|z|^{2}+b|\nabla w|^{2}\right) d x \\
& \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+\frac{a}{b}(b-a) \int_{I}(m \cdot \nu)\left|\partial_{\nu} u\right|^{2} d \Gamma \\
& \quad+(b-a) \int_{I}(m \cdot \nu)\left|\nabla_{\tau} u\right|^{2} d \Gamma+\int_{\Gamma}(m \cdot \nu)\left|\partial_{\nu} u\right|^{2} d \Gamma .
\end{aligned}
$$

Thanks to the geometric constraint on Ω_{u}, and $b>a$, we get

$$
\begin{gathered}
\|Z\|_{\mathcal{H}}^{2}+\int_{I}\left|\partial_{\nu} u\right|^{2} d \Gamma \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|\left\|_{\mathcal{H}}\right\| Z \|_{\mathcal{H}}\right) \\
+C_{0} \int_{\Gamma}\left|\partial_{\nu} u\right|^{2} d \Gamma .
\end{gathered}
$$

Let $q \in\left[\mathcal{C}^{1}\left(\Omega_{d}\right)\right]^{N}$ be a vector field satisfying $q=\nu$ on Γ and $q=0$ on $/$. Multiplier techniques show that:

$$
\begin{aligned}
\int_{\Gamma}\left|\partial_{\nu} u\right|^{2} d \Gamma & \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+C_{0} \int_{\Omega_{d}}\left(|v|^{2}+a|\nabla u|^{2}\right) d x \\
& \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+C_{0}\left|\int_{1}\left(\partial_{\nu} u\right) \bar{u} d \Gamma\right|
\end{aligned}
$$

Let $q \in\left[\mathcal{C}^{1}\left(\Omega_{d}\right)\right]^{N}$ be a vector field satisfying $q=\nu$ on Γ and $q=0$ on I. Multiplier techniques show that:

$$
\begin{aligned}
\int_{\Gamma}\left|\partial_{\nu} u\right|^{2} d \Gamma & \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+C_{0} \int_{\Omega_{d}}\left(|v|^{2}+a|\nabla u|^{2}\right) d x \\
& \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+C_{0}\left|\int_{1}\left(\partial_{\nu} u\right) \bar{u} d \Gamma\right|
\end{aligned}
$$

Using the preceding estimate, we derive

$$
\int_{\Gamma}\left|\partial_{\nu} u\right|^{2} d \Gamma \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+C_{0} \int_{I}|u|^{2} d \Gamma .
$$

By interpolation, one derives

$$
C_{0} \int_{l}|u|^{2} d \Gamma \leq \varepsilon \int_{\Omega_{d}}|\nabla u|^{2} d x+C_{\varepsilon} \int_{\Omega_{d}}|u|^{2} d x, \quad \forall \varepsilon>0 .
$$

By interpolation, one derives

$$
C_{0} \int_{I}|u|^{2} d \Gamma \leq \varepsilon \int_{\Omega_{d}}|\nabla u|^{2} d x+C_{\varepsilon} \int_{\Omega_{d}}|u|^{2} d x, \quad \forall \varepsilon>0
$$

Hence

$$
\begin{aligned}
&\|Z\|_{\mathcal{H}}^{2}+\lambda^{2} \int_{\Omega_{d}}|u|^{2} d x \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right) \\
&+C_{0} \varepsilon\|Z\|_{\mathcal{H}}^{2}+C_{\varepsilon} \int_{\Omega_{d}}|u|^{2} d x
\end{aligned}
$$

By interpolation, one derives

$$
C_{0} \int_{I}|u|^{2} d \Gamma \leq \varepsilon \int_{\Omega_{d}}|\nabla u|^{2} d x+C_{\varepsilon} \int_{\Omega_{d}}|u|^{2} d x, \quad \forall \varepsilon>0
$$

Hence

$$
\begin{aligned}
&\|Z\|_{\mathcal{H}}^{2}+\lambda^{2} \int_{\Omega_{d}}|u|^{2} d x \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right) \\
&+C_{0} \varepsilon\|Z\|_{\mathcal{H}}^{2}+C_{\varepsilon} \int_{\Omega_{d}}|u|^{2} d x
\end{aligned}
$$

Choosing an appropriate ε, and using Young inequality, one derives

$$
\|Z\|_{\mathcal{H}} \leq C_{0}\|U\|_{\mathcal{H}}
$$

provided $|\lambda|>\lambda_{0}$ for some suitable $\lambda_{0}>0$.

Using the continuity of the resolvent for $|\lambda| \leq \lambda_{0}$, we get the claimed estimate.

Using the continuity of the resolvent for $|\lambda| \leq \lambda_{0}$, we get the claimed estimate.

Remark. Case: $a=b$. Following Rauch-Zhang-Zuazua, we set $\psi=y 1_{\Omega_{d}}+z 1_{\Omega_{u}}$, and recast the transmission system as

$$
\begin{aligned}
& \psi_{t t}-a \Delta \psi=-\alpha \Delta \theta 1 \Omega_{d} \text { in } \Omega \times(0, \infty) \\
& \theta_{t}-\mu \Delta \theta+\beta \psi_{t}=0 \text { in } \Omega_{d} \times(0, \infty) \\
& \psi=0, \theta=0 \text { on } \Gamma \times(0, \infty) \\
& y(x, 0)=y^{0}(x) \Lambda_{\Omega_{d}}+z^{0}(x) 1_{\Omega_{u}} \quad \psi_{t}(x, 0)=y^{1}(x) 1_{\Omega_{d}}+z^{1}(x) 1_{\Omega_{u}}, \text { in } \Omega, \\
& \theta(x, 0)=\theta^{0}(x) \text { in } \Omega_{d},
\end{aligned}
$$

where $\Omega=\Omega_{d} \cup \bar{\Omega}_{u}$,

Using the continuity of the resolvent for $|\lambda| \leq \lambda_{0}$, we get the claimed estimate.

Remark. Case: $a=b$. Following Rauch-Zhang-Zuazua, we set $\psi=y 1_{\Omega_{d}}+z 1_{\Omega_{u}}$, and recast the transmission system as

$$
\begin{aligned}
& \psi_{t t}-a \Delta \psi=-\alpha \Delta \theta 1_{\Omega_{d}} \text { in } \Omega \times(0, \infty) \\
& \theta_{t}-\mu \Delta \theta+\beta \psi_{t}=0 \text { in } \Omega_{d} \times(0, \infty) \\
& \psi=0, \quad \theta=0 \text { on } \Gamma \times(0, \infty) \\
& y(x, 0)=y^{0}(x) 1_{\Omega_{d}}+z^{0}(x) 1_{\Omega_{u}} \quad \psi_{t}(x, 0)=y^{1}(x) 1_{\Omega_{d}}+z^{1}(x) 1_{\Omega_{u}}, \text { in } \Omega, \\
& \theta(x, 0)=\theta^{0}(x) \text { in } \Omega_{d},
\end{aligned}
$$

where $\Omega=\Omega_{d} \cup \bar{\Omega}_{u}$,
with $\left(\Omega_{d}, T\right)$ satisfying the Bardos-Lebeau-Rauch geometric control condition for some $T>0$:
every ray of geometric optics enters Ω_{d} in a time less than T.

Following Lebeau ideas, one derives the observability estimate:

$$
E(0) \leq C \int_{0}^{T} \int_{\Omega_{d}}\left\{r(t)^{2}\left|y_{t}(x, t)\right|^{2}+|\Delta \theta(x, t)|^{2}\right\} d x d t
$$

for some large enough T and an appropriate cut-off function r.

Following Lebeau ideas, one derives the observability estimate:

$$
E(0) \leq C \int_{0}^{T} \int_{\Omega_{d}}\left\{r(t)^{2}\left|y_{t}(x, t)\right|^{2}+|\Delta \theta(x, t)|^{2}\right\} d x d t
$$

for some large enough T and an appropriate cut-off function r. Using appropriate multipliers, one can then get rid of the term involving y_{t}, obtaining:

$$
E(0) \leq C \int_{0}^{T} \int_{\Omega_{d}}|\Delta \theta(x, t)|^{2} d x d t
$$

Following Lebeau ideas, one derives the observability estimate:

$$
E(0) \leq C \int_{0}^{T} \int_{\Omega_{d}}\left\{r(t)^{2}\left|y_{t}(x, t)\right|^{2}+|\Delta \theta(x, t)|^{2}\right\} d x d t
$$

for some large enough T and an appropriate cut-off function r.
Using appropriate multipliers, one can then get rid of the term involving y_{t}, obtaining:

$$
E(0) \leq C \int_{0}^{T} \int_{\Omega_{d}}|\Delta \theta(x, t)|^{2} d x d t
$$

Hence

$$
E(t) \leq \gamma E(0), \quad \forall t \geq T
$$

for $\gamma=\frac{C}{C+1}<1$.

Following Lebeau ideas, one derives the observability estimate:

$$
E(0) \leq C \int_{0}^{T} \int_{\Omega_{d}}\left\{r(t)^{2}\left|y_{t}(x, t)\right|^{2}+|\Delta \theta(x, t)|^{2}\right\} d x d t,
$$

for some large enough T and an appropriate cut-off function r. Using appropriate multipliers, one can then get rid of the term involving y_{t}, obtaining:

$$
E(0) \leq C \int_{0}^{T} \int_{\Omega_{d}}|\Delta \theta(x, t)|^{2} d x d t .
$$

Hence

$$
E(t) \leq \gamma E(0), \quad \forall t \geq T
$$

for $\gamma=\frac{C}{C+1}<1$.
The semigroup property can then be invoked to claim the exponential decay of the energy.

Polynomial stability

Theorem 3

Suppose that Ω_{d} and Ω_{u} have C^{2} boundaries. Further assume that Ω_{d} is a collar around Ω_{u}, and $a>b$. There exists a positive constant C such that the semigroup $(S(t))_{t \geq 0}$ satisfies:

$$
\left\|S(t) Z^{0}\right\|_{\mathcal{H}} \leq \frac{C\left\|Z^{0}\right\|_{D(\mathcal{A})}}{(1+t)^{\frac{1}{4}}}, \quad \forall Z^{0} \in D(\mathcal{A}), \quad \forall t \geq 0
$$

Proof Sketch.

Following the proof of Theorem 2, we already have:

$$
\begin{aligned}
& \int_{\Omega_{d}}\left(|v|^{2}+a|\nabla u|^{2}+\frac{\alpha}{\beta}|\nabla \varphi|^{2}\right) d x+\int_{\Omega_{u}}\left(|z|^{2}+b|\nabla w|^{2}\right) d x \\
& \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+\frac{a}{b}(b-a) \int_{I}(m \cdot \nu)\left|\partial_{\nu} u\right|^{2} d \Gamma \\
& \quad+(b-a) \int_{I}(m \cdot \nu)\left|\nabla_{\tau} u\right|^{2} d \Gamma+\int_{\Gamma}(m \cdot \nu)\left|\partial_{\nu} u\right|^{2} d \Gamma .
\end{aligned}
$$

Proof Sketch.

Following the proof of Theorem 2, we already have:

$$
\begin{aligned}
& \int_{\Omega_{d}}\left(|v|^{2}+a|\nabla u|^{2}+\frac{\alpha}{\beta}|\nabla \varphi|^{2}\right) d x+\int_{\Omega_{u}}\left(|z|^{2}+b|\nabla w|^{2}\right) d x \\
& \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+\frac{a}{b}(b-a) \int_{I}(m \cdot \nu)\left|\partial_{\nu} u\right|^{2} d \Gamma \\
& \quad+(b-a) \int_{I}(m \cdot \nu)\left|\nabla_{\tau} u\right|^{2} d \Gamma+\int_{\Gamma}(m \cdot \nu)\left|\partial_{\nu} u\right|^{2} d \Gamma .
\end{aligned}
$$

Now, one checks
$\int_{I}\left|\nabla_{\tau} u\right|^{2} d \Gamma \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+C_{0} \int_{I}\left\{\left|\partial_{\nu} u\right|^{2}+|u|^{2}\right\} d \Gamma$

Hence, as earlier, and for $|\lambda|$ large enough:

$$
\|Z\|_{\mathcal{H}}^{2} \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+C_{0} \int_{I}\left|\partial_{\nu} u\right|^{2} d \Gamma .
$$

Hence, as earlier, and for $|\lambda|$ large enough:

$$
\|Z\|_{\mathcal{H}}^{2} \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+C_{0} \int_{I}\left|\partial_{\nu} u\right|^{2} d \Gamma
$$

Now borrowing ideas from Avalos-Triggiani (EECT, 2(2013)), one derives:

$$
\int_{I}\left|\partial_{\nu} u\right|^{2} d \Gamma \leq C_{0}\left(\lambda^{2}+1\right)\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)
$$

Thanks to Young inequality, we finally get:

$$
\|Z\|_{\mathcal{H}}^{2} \leq C_{0} \lambda^{8}\|U\|_{\mathcal{H}}^{2}
$$

Hence, as earlier, and for $|\lambda|$ large enough:

$$
\|Z\|_{\mathcal{H}}^{2} \leq C_{0}\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)+C_{0} \int_{I}\left|\partial_{\nu} u\right|^{2} d \Gamma
$$

Now borrowing ideas from Avalos-Triggiani (EECT, 2(2013)), one derives:

$$
\int_{I}\left|\partial_{\nu} u\right|^{2} d \Gamma \leq C_{0}\left(\lambda^{2}+1\right)\left(\|U\|_{\mathcal{H}}^{\frac{1}{2}}\|Z\|_{\mathcal{H}}^{\frac{3}{2}}+\|U\|_{\mathcal{H}}\|Z\|_{\mathcal{H}}\right)
$$

Thanks to Young inequality, we finally get:

$$
\|Z\|_{\mathcal{H}}^{2} \leq C_{0} \lambda^{8}\|U\|_{\mathcal{H}}^{2}
$$

The claimed polynomial decay then follows from a Theorem of Tomilov and Borichev.

And if anyone thinks that he knows anything, he knows nothing yet as he ought to know.

THANKS!

