
Predator-Prey Models 

This is a diverse area that includes general models of 
consumption: 

• Granivores eating seeds 

• Parasitoids 

• Parasite-host interactions 

Lotka-Voterra model prey and predator: 

 V = victim population 

 P = predator population 

Such that: 

 

 

 

If predator is only limiting factor for victim population. 
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Predator-Prey Models 

Start 

 

 

Then add                                          losses to predator 

 

Where: α = encounter rate; proportional to killing rate of 

predator 

 

* αV = functional response (rate of victim capture as a 

function of victim density) 
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Predator-Prey Models 

Predator 

 

 

If no prey 

 

 

With prey 

 

Where β is the conversion efficiency of prey into predator 
offspring 

… proportional to nutritional value of individual prey 

β V  = numerical response 

 = growth rate of predator population as a function 
of prey density 
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exponential decline 



Predator-Prey Models 
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Predator-Prey Models 
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Predator-Prey Models 

Equilibrium solutions 

yield predator-prey 

isoclines 

 

 

 

 

 

Note: isoclines only 

cross at 90o angles 



Predator-Prey Models 

Together, these 
equations divide 
the state space into 
4 regions. 

 

Prey populations 
trace on an ellipse 
unless 

 1) start precisely at 
the intersection; 

 2) start at low initial 
abundance 

 

 

 

 



Predator-Prey Models 

Note: Yields cycles… 

closer to intersection 

of isoclines the less 

amplitude 

Amplitude (A) = neutrally 

stable, amplitude set 

by initial conditions 

Period 

 

 

Key is reciprocal control 

of P and V 
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Predator-Prey Models 

Lotka-Volterra assumptions: 

1) Growth of V limited only by P 

2) Predator is a specialist on V 

3) Individual P can consume infinite number 
of V 

a. No interference or cooperation 

b. No satiation or escape; type I functional 
response 

4) Predator/Victim encounter randomly in 
homogeneous environment 



Predator-Prey Models 

Incorporating carrying capacity for prey 

 

Consider:  set c
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Then by substitution 

Back to prey 

population 



Predator-Prey Models 

Incorporating carrying capacity for prey 
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• Lotka-Volterra dynamics with 

prey density-dependence 

 

• Can yield converging 

oscillations 

 

• Populus parameters: 

    d=rate pred starve; 

g=conversion efficiency of 

prey to pred recruits 

C=encounter rate 

Predator-Prey 

Models 



Predator-Prey Models 

Functional Response 

Lotka-Volterra assumes 

constant proportion of prey 

captured. 

Called a type I functional 

response 

 - no satiation 

 - no handling time 

α:  Δy/ Δx = capture efficiency 

n=# prey eaten/predator•time 



Predator-Prey Models 
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Predator-Prey Models 

Which can be shown (see text): 

 

 

 

In other words…  
feeding rate = f(capture efficiency, prey density, handling time) 

 

Thus, at low V, αVh is small and feeding rate 

approaches s = αV as in the Lotka-Volterra models 
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Predator-Prey Models 

But as V gets bigger, feeding rate approaches: 

 

 

Thus, handling time sets the max feeding rate in 

the model.  Yields asymptotic functional 

response (fig. 6.6) 

FYI: substituting into Lotka-Volterra gives model 

identical to Michaelis-Menton enzyme kinetics 

Type III: asymptotic, but feeding rate or α 

increases at low V 

Figs. 6.7, 6.8 
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Predator-Prey Models 



Predator-Prey Models 

Summary:  If predator number held 
constant, no predator can avoid handling 
time limitation over all V.   

Type II and III models are useful & general 

Type II & III yield unstable equilibria… 

If V exceeds asymptotic functional response, 
prey escape predator regulation… 

Thus, key is probably numerical and 
aggregative responses in nature. 



Victim isocline is humped 
as in Allee Effect 

… example, large prey 
pops may defend against 
or avoid predators better 

 

In this case, outcome 
depends on where the 
vertical predator isocline 
meets the prey isocline 
(fig. 6.10) 

Paradox of 

Enrichment 



Paradox of Enrichment 

Outcomes: 

At peak, yields cycles 

1) To right of peak, converge on stable equilibrium … 

efficient predator 

2) To left of peak, unstable equilib with potential for 

predator over exploitation 

- Predator too efficient; high α or low q 

 Option 3 may explain observation called Paradox of 

Enrichment 

 -artificial enrichment with nutrients leads to pest 

outbreaks (fig. 6.11) 



Paradox of Enrichment 



Ratio-Dependent Models 
Lotka-Volterra model population response as 

product of pred and prey populations 

 

 

 

Leslie proposed ratio-dependence (logistic form) 

 

 

 

Where e = marginal subsistence demand for prey and 
N/e is the predator K with constant prey 
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Ratio-Dependent Models 

Basically yields models where predator isocline is a 

fraction of prey density… prey density sets predator K 

 

 

 

 

 

Many permutations possible, see Berryman 92 

Fig 6.15 

Type II functional response yields pred-prey ratio 

dependence 

P 

V 

Simple V isocline 

Ratio-dependent P isocline (K) 



Ratio-Dependent Models 



Ratio-Dependent 

Models 



Ratio-Dependent Models 

Problems from traditional models 

 Link fast parameters (foraging) with slow 

parameters (population growth) [Slobodkin 92] 

 

Functional responses are variable 

Very few predators have only one prey type 

ETC 

 

See Arditi and Ginzburg. 2012. How Species 

Interact. Oxford Univ Press. 



Predation for Biological Control? 

"Natural Enemies" 

Huffaker mites on oranges 

Efficient predator drove prey extinct, 
then went extinct 



Predator-Prey Metapopulations 

By adding spatial complexity to the experiment,  

made predator inefficient enough to cycle 3-4 

times before extinction 

 

Conclusion:  Want efficient bio control agent, but 

efficient predators are unstable! 



Huffaker's 1958 mites on oranges 
A: empty orange 

B: E. sexmaculatus (prey) only 

C: E. sexmaculatus & T. occidentalis (predator) 

A+B+C=1 
 

r1: per patch E. sexmaculatus colonization rate 

r2: per patch T. occidentalis colonization rate 

r3: extinction rate of E. sexmaculatis & T. occidentalis 

 

  ΔA =  -r1AB + r3C 

  ΔB = +r1AB – r2BC 

  ΔC = +r2BC – r3C 

 

Â = (r2/r1)Ĉ 

B = r3/r2 

Predator-Prey Metapopulations 

^ 


