Predator-Prey Models

This is a diverse area that includes general models of
consumption:

« Granivores eating seeds
« Parasitoids
« Parasite-host interactions
Lotka-Voterra model prey and predator:
V = victim population
P = predator population
Such that:
dVv

= f(V.P)

If predator is only limiting factor for victim population.



Predator-Prey Models

av _

dt

dVv
Then add E =rV _ losses to predator

Where: a = encounter rate; proportional to killing rate of
predator

Start

*aV = functional response (rate of victim capture as a
function of victim density)



Predator-Prey Models

Predator dP
— = 9(P,V)
at
dpP

It no prey —=—-gP exponential decline
at

| dP
With prey —=P-qgP
Where (3 Is the conversion efficiency of prey into predator
offspring
.. proportional to nutritional value of individual prey
BV = numerical response

= growth rate of predator population as a function
of prey density



Predator-Prey Models

Set T =0=rVavP

dt
rV = aVP
r=abP
So: FA):L
a

Notes: 1) solution for V in terms of P

2) P some number of predators needed to yield
prey growth rate equal to O

3) Function of victim r AND predator encounter
rate such that, greater r requires more predators
(or more efficient predator) to keep victim
population growth in check



Predator-Prey Models

. dP
Set: = 0= AP-qP
AP = P
LV =0
.
: V = —
SO: 5

1) Solution in terms of V
2) V number of prey needed to sustain P

3) Function of predator death rate and
conversion efficiency... greater
efficiency, less prey needed to sustain P



Predator-Prey Models

Equilibrium solutions
yield predator-prey
Isoclines

Note: isoclines only
cross at 90° angles

dv/dt=0
r/a

Number of predators (P)

Number of victims (V)

Figure 6.1 The victim isocline in state space. The Lotka—Volterra predation model

predicts a critical number of predators (/) that controls the victim population. If
there are fewer predators than this, the victim population increases (right-pointing
arrows). If there are more predators, the victim population decreases (left-pointing
arrows). The victim population has zero growth when P = r/c.

dP/dt =0~
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Figure 6.2 The predator isocline in state space. The Lotka—Volterra predation model
predicts a critical number of victims (g/f) that controls the predator population. If
there are fewer victims than this, the predator population decreases (downward-
pointing arrows). If there are more victims, the predator population increases
(upward-pointing arrows). The predator population has zero growth when V= g/B.



Predator-Prey Models

Together, these
equations divide
the state space into
4 regions.

Prey populations
trace on an ellipse
unless

1) start precisely at
the intersection;

2) start at low initial
abundance
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Figure 6.3 The dynamics of predator and victim populations in the Lotka—Volterra
model. The vectors indicate the trajectories of the populations in the different
regions of the state space. The populations trace a counterclockwise path that
approximates an ellipse.



Predator-Prey Models

Period

v

y 3

Note: Yields cycles...
closer to intersection
of Isoclines the less
amplitude

Amplitude (A) = neutrall
stable, amplitude set
by initial conditions

Figure 6.4 Cycles of predators and victims in the Lotka-Volterra model. Each popu-
lation cycles with an amplitude that is determined by the starting population sizes

L] . ~ . . . .
P e rl O d and a period of approximately 277/ V/rq. The predator and victim populations are
72I displaced by one-quarter of a cycle, so that the predator population peaks when the
C victim population has declined to half its maximum, and vice versa.

Key is reciprocal control
of Pand V




Predator-Prey Models

Lotka-Volterra assumptions:
1) Growth of V limited only by P
2) Predator is a specialist on V

3) Individual P can consume infinite number
of V
a. No interference or cooperation
b. No satiation or escape; type | functional
response
4) Predator/Victim encounter randomly In
homogeneous environment



Predator-Prey Models

Incorporating carrying capacity for prey

i I
Consider: dN _ ( ) ﬁ) o N e
g rN| 1 <) rN ” K

Then by substitution %—\t/ =rV -cV’

Back to prey LR
population dt



Predator-Prey Models
Incorporating carrying capacity for prey

av ’ d—V—rV(1 X) VP
EZFV—O(VP—CV dt _ K o

Number of predators (P)

r/c

Number of victims (V)

Figure 6.5 The effect of a victim carrying capacity on the victim isocline. The victim
isocline slopes downward with a carrying capacity incorporated. The intersection
with the vertical predator isocline forms a stable equilibrium point.



Predator-Prey
Models

Lotka-Volterra dynamics with
prey density-dependence

Can yield converging
oscillations

Populus parameters:
d=rate pred starve;
g=conversion efficiency of
prey to pred recruits
C=encounter rate

'4{ Continuous PratorPrydels: Input

Model Type
Laotka-Yolterra I © - Logistic |

% Lotka-Votterra Model Parameters
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& Run until time:
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Predator-Prey Models

Functional Response

Lotka-Volterra assumes ]
constant proportion of prey
captured.

1/h=k == mmmmmm o e e

Called a type | functional
response N b

predator e time (11/t)

Number of prey eaten/

I
I
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1/0h=D

- n O Satl atl O n Victim abundance
Figure 6.6 The functional response of predators is the feeding rate per predator as a
h d I . . function of prey abundance. The shape of these curves depends on the capture effi-
- n O an I n g tl I I le ciency (), the maximum predator feeding rate (k), and the victim abundance for
which the predator feeding rate is half of the maximum (D).

a:. Ay/ Ax = capture efficiency

n=# prey eaten/predatoretime



Predator-Prey Models

Consider a type Il functional response:
t = time feeding; t,=time searching; t,=time handling
Wheret =1t +t,
h= time handling each item; n = # eaten

t, = hen
and n = Vat,
N
s b= a—V

and by substitutingt =t +t,

n
t= —+ hn
oV



Predator-Prey Models

Which can be shown (see text):

n aV
t 1+ aVh

In other words...
feeding rate = f(capture efficiency, prey density, handling time)

Thus, at low V, aVh is small and feeding rate
approaches s = aV as in the Lotka-Volterra models



Predator-Prey Models

But as V gets bigger, feeding rate approaches:
n 1

—_— A —
~/

t h

Thus, handling time sets the max feeding rate in
the model. Yields asymptotic functional
response (fig. 6.6)

FYI: substituting into Lotka-Volterra gives model
identical to Michaelis-Menton enzyme kinetics

Type lll: asymptotic, but feeding rate or a
Increases at low V

Figs. 6.7, 6.8



Predator-Prey Models

III

Number of prey eaten per predator

Victim abundance

Figure 6.7 Type I, Type II, and Type III functional responses.

Proportion of victim
population consumed
-
=

11

Victim abundance

Figure 6.8 The proportion of the victim population consumed by an individual
predator as a function of victim abundance.



Predator-Prey Models

Summary: If predator number held
constant, no predator can avoid handling
time limitation over all V.

'ype Il and Ill models are useful & general
ype Il & Ill yield unstable equilibria...

If V exceeds asymptotic functional response,
prey escape predator regulation...

hus, key Is probably numerical and
aggregative responses in nature.




Paradox of
Enrichment

Victim isocline is humped
as in Allee Effect

... example, large prey
pops may defend against
or avoid predators better

In this case, outcome
depends on where the
vertical predator isocline
meets the prey isocline
(fig. 6.10)




Paradox of Enrichment

Outcomes:
At peak, yields cycles

1) To right of peak, converge on stable equilibrium ...
efficient predator

2) To left of peak, unstable equilib with potential for
predator over exploitation

- Predator too efficient; high a or low g

Option 3 may explain observation called Paradox of
Enrichment

-artificial enrichment with nutrients leads to pest
outbreaks (fig. 6.11)



Paradox of Enrichment

Figure 6.11 The paradox of enrichment. If the victim population has its carrying
capacity enhanced from K to K, the system moves from a stable equilibrium to over-
exploitation by the predator.
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Ratio-Dependent Models

Lotka-Volterra model population response as
product of pred and prey populations

dP

E = AVP-gP Michaelis-Menton
dv chemical equation
E =rV - aoP

Leslie proposed ratio-dependence (logistic form)

dt N
Where e = marginal subsistence demand for prey and
N/e Is the predator K with constant prevy



Ratio-Dependent Models

Basically yields models where predator isocline is a
fraction of prey density... prey density sets predator K

Ratio-dependent P isocline (K)

P F—-——-=—-5%—-—-=-- Simple V isocline

Many permutations possible, see Berryman 92

Fig 6.15

Type Il functional response yields pred-prey ratio
dependence



Ratio-Dependent Models

Neutra]
equilibrium
(Lotka —Volterra)
I

e el T

Damped cycles =

\

Number of predators (P)

———__-_——_-———

whose carrying capacity is proportional to victim density, to one whose carrying
capacity is ‘nrdependent of victim density.
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Fic. 1. Zero-growth isoclines for models of interacting prey (——) and predator (===-) populations. The thin line is a
trajectory predicted by the discrete-time per-capita trophic model, Egs. 8 and 9 (see Berryman 1990); i.e., N,, = N,,_,>xpla,
+ bN,_, + ¢,Z)), where i = 1 for prey and i = 2 for predator, Z, is the predator/prey ratio, N,,_,/(w, + N,,_,), in ratio
models and Z, = N,,_,, Z, = N,,_, in Lotka-Volierra models. (a) Lotka-Volterra-Nicholson-Bailey model: a,=02"5,=0,
¢ = —0.004, a, = 0.1, b, = 0, ¢, = 0.0002. (b) L-V-N-B model with logistic self-limitation on the prey: prey model with
parameters the same as (a) except @, = 0.3 and b, = —0.0004; predator model the same as (a) except ¢, = 0.0005. (c) Logistic-
Leslie predator equation: prey model as in (b); ratio predator with a, = 0.2, by=0,c;=—1,w,=0.(d) Hblling-Rosenzweig-
MacArthur model: ratio prey model with a, = 0.3, b, = —0.0004, ¢, = —1, w, = 0; predator model as in (a), a, = —0.5, b,
=0, ¢; = 0.001, w, = 0. (¢) Logistic predator-prey model with no predator self-limitation: prey model as in (d); predator
model as in (c). (f) Logistic predator-prey model with predator self-limitation: prey model a- in (d); predator model as in (c)
except b, = —0.001, P
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Ratio-Dependent Models

Problems from traditional models

Link fast parameters (foraging) with slow
parameters (population growth) [Slobodkin 92]

Functional responses are variable
Very few predators have only one prey type
ETC

See Arditi and Ginzburg. 2012. How Species
Interact. Oxford Univ Press.



Predation for Biological Control?

"Natural Enemies”
Huffaker mites on oranges

Efficient predator drove prey extinct,
then went extinct
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Fig. 11. Densities per orange-area of the prey, Eotetranychus sexmaculatus, and the
predator, Typhlodromus occidentalis, with 6 large areas of food for the prey (orange
surface) grouped at adjacent joined positions—a 6-orange feeding area on a 6-orange
dispersion (no photograph of this exact arrangement, but it was similar to that of
figure 3 except that 6 whole oranges were used; see text, Subsection C, Section II of

“Results”).
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Predator-Prey Metapopulations

By adding spatial complexity to the experiment,
made predator inefficient enough to cycle 3-4
times before extinction

Conclusion: Want efficient bio control agent, but
efficient predators are unstable!
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Fig. 18. Three oscillations in density of a predator-prey relation in which the predatory mite, Typhlodromus occidentalis, preyed upon the

orange feeding six-spotted mite, Eotetranychus sexmaculatus.

The graphic record below shows the sequence of densities per orange-area, while the pictorial record, charts A to R, above, shows both den-
sities and positions within the universe. The horizontal line by each letter “A,” “B,” et cetera, shows the period on the time scale repre-
sented by each chart. A photograph of the arrangement of this universe is shown in figure 5 and a sketch of the complex maze of vaseline
partial-barriers in figure 19—a 6-orange feeding area on a 120-orange dispersion (see text, Subsection I, Section IT of “Results”).



Predator-Prey Metapopulations

Huffaker's 1958 mites on oranges
A: empty orange

B: E. sexmaculatus (prey) only

C: E. sexmaculatus & T. occidentalis (predator)

A+B+C=1

r,: per patch E. sexmaculatus colonization rate
r,: per patch T. occidentalis colonization rate
r;: extinction rate of E. sexmaculatis & T. occidges

AA= -r,AB +r,C

AC = +1,BC —1,C P S—

2 3 -_5105_3 a° I F:.T El-, E .' |
A =(r,/ry)C : i
B — r3/r2 . ., Jjn."




