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CHAPTER 4

Estimating species richness
Nicholas J. Gotelli and Robert K. Colwell

4.1 Introduction

Measuring species richness is an essential objec-
tive for many community ecologists and conserva-
tion biologists. The number of species in a local
assemblage is an intuitive and natural index of
community structure, and patterns of species rich-
ness have been measured at both small (e.g. Blake
& Loiselle 2000) and large (e.g. Rahbek & Graves
2001) spatial scales. Many classic models in commu-
nity ecology, such as the MacArthur–Wilson equi-
librium model (MacArthur & Wilson 1967) and
the intermediate disturbance hypothesis (Connell
1978), as well as more recent models of neutral
theory (Hubbell 2001), metacommunity structure
(Holyoak et al. 2005), and biogeography (Gotelli
et al. 2009) generate quantitative predictions of the
number of coexisting species. To make progress in
modelling species richness, these predictions need
to be compared with empirical data. In applied
ecology and conservation biology, the number of
species that remain in a community represents the
ultimate ‘scorecard’ in the fight to preserve and
restore perturbed communities (e.g. Brook et al.
2003).

Yet, in spite of our familiarity with species rich-
ness, it is a surprisingly difficult variable to mea-
sure. Almost without exception, species richness
can be neither accurately measured nor directly
estimated by observation because the observed
number of species is a downward-biased estimator
for the complete (total) species richness of a local
assemblage. Hundreds of papers describe statistical
methods for correcting this bias in the estimation
of species richness (see also Chapter 3), and spe-
cial protocols and methods have been developed
for estimating species richness for particular taxa
(e.g. Agosti et al. 2000). Nevertheless, many recent

studies continue to ignore some of the fundamental
sampling and measurement problems that can com-
promise the accurate estimation of species richness
(Gotelli & Colwell 2001).

In this chapter we review the basic statisti-
cal issues involved with species richness estima-
tion. Although a complete review of the subject is
beyond the scope of this chapter, we highlight sam-
pling models for species richness that account for
undersampling bias by adjusting or controlling for
differences in the number of individuals and the
number of samples collected (rarefaction) as well as
models that use abundance or incidence distribu-
tions to estimate the number of undetected species
(estimators of asymptotic richness).

4.2 State of the field

4.2.1 Sampling models for biodiversity data

Although the methods of estimating species rich-
ness that we discuss can be applied to assemblages
of organisms that have been identified by genotype
(e.g. Hughes et al. 2000), to species, or to some
higher taxonomic rank, such as genus or family (e.g.
Bush & Bambach 2004), we will write ‘species’ to
keep it simple. Because we are discussing estima-
tion of species richness, we assume that one or more
samples have been taken, by collection or observa-
tion, from one or more assemblages for some speci-
fied group or groups of organisms. We distinguish
two kinds of data used in richness studies: (1) inci-
dence data, in which each species detected in a sam-
ple from an assemblage is simply noted as being
present, and (2) abundance data, in which the abun-
dance of each species is tallied within each sample.
Of course, abundance data can always be converted
to incidence data, but not the reverse.
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Box 4.1 Observed and estimated richness

Sobs is the total number of species observed in a sample, or
in a set of samples.

Sest is the estimated number of species in the
assemblage represented by the sample, or by the set of
samples, where est is replaced by the name of an estimator.

Abundance data. Let fk be the number of species each
represented by exactly k individuals in a single sample.
Thus, f0 is the number of undetected species (species
present in the assemblage but not included in the sample),
f1 is the number of singleton species, f2 is the number of
doubleton species, etc. The total number of individuals in

the sample is n =
Sobs∑

k =1
fk.

Replicated incidence data. Let qk be the number of
species present in exactly k samples in a set of replicate
incidence samples. Thus, q0 is the number of undetected
species (species present in the assemblage but not included
in the set of samples), q1 is the number of unique species,
q2is the number of duplicate species, etc. The total number

of samples is m =
Sobs∑

k =1
qk.

Chao 1 (for abundance data)

SChao1 = Sobs +
f 2
1

2 f2
is the classic form, but is not defined

when f2 = 0 (no doubletons).
SChao1 = Sobs + f1( f1−1)

2( f2+1)
is a bias-corrected form, always

obtainable.

var(SChao1) = f2

[
1
2

(
f1
f2

)2
+

(
f1
f2

)3
+ 1

4

(
f1
f2

)4
]

for

f1 > 0 and f2 > 0 (see Colwell 2009, Appendix B of
EstimateS User’s Guide for other cases and for asymmetrical
confidence interval computation).

Chao 2 (for replicated incidence data)

SChao2 = Sobs +
q2

1
2q2

is the classic form, but is not defined
when q2 = 0 (no duplicates).

SChao2 = Sobs +
(

m−1
m

) q1(q1−1)
2(q2+1)

is a bias-corrected form,
always obtainable.

var(SChao2) = q2

[
1
2

(
q1
q2

)2
+

(
q1
q2

)3
+ 1

4

(
q1
q2

)4
]

for

q1 > 0 and q2 > 0 (see Colwell 2009, Appendix B of
EstimateS User’s Guide for other cases and for asymmetrical
confidence interval computation).

ACE (for abundance data)

Srare =
10∑

k =1
fk is the number of rare species in a sample (each

with 10 or fewer individuals).

Sabund =
Sobs∑

k =11
fk is the number of abundant species in a

sample (each with more than 10 individuals).

nrare =
10∑

k =1
k fk is the total number of individuals in the

rare species.
The sample coverage estimate is CAC E = 1 − f1

nr ar e
, the

proportion of all individuals in rare species that are not
singletons. Then the ACE estimator of species richness is

SACE = Sabund + Sr ar e
C AC E

+ f1
C AC E

„2
ACE, where „2

ACE is the
coefficient of variation,

„2
ACE = max

⎡

⎢
⎢
⎢
⎣

Srare

CACE

10∑

k=1

k(k − 1)fk

(nrare) (nrare − 1)
− 1, 0

⎤

⎥
⎥
⎥
⎦

The formula for ACE is undefined when all rare species
are singletons (f1 = nrare, yielding CACE = 0). In this case,
compute the bias-corrected form of Chao1 instead.

ICE (for incidence data)

Sinfr =
10∑

k =1
qk is the number of infrequent species in a

sample (each found in 10 or fewer samples).

Sfreq =
Sobs∑

k =11
qk is the number of frequent species in a

sample (each found in more than 10 samples).

ninfr =
10∑

k =1
kqk is the total number of incidences in the

infrequent species.
The sample coverage estimate is CICE = 1 − q1

ni nf r
, the

proportion of all incidences of infrequent species that are
not uniques. Then the ICE estimator of species richness is

CICE = Sfreq + Si nf r
CICE

+ q1
CICE

„2
ICE, where „2

ICE is the coefficient
of variation,

„2
ICE = max

⎡

⎢
⎢
⎢
⎣

Sinfr

CICE

minfr

(minfr − 1)

10∑

k=1
k(k − 1)qk
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2 − 1, 0

⎤

⎥
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⎥
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The formula for ICE is undefined when all infrequent
species are uniques (q1 = ninfr, yielding CICE = 0). In this
case, compute the bias-corrected form of Chao2
instead.

Jackknife estimators (for abundance data)

The first-order jackknife richness estimator is

Sjackknife1 = Sobs + f1

The second-order jackknife richness estimator is

Sjackknife2 = Sobs + 2f1 − f2

Jackknife estimators (for incidence data)

The first-order jackknife richness estimator is

Sjackknife1 = Sobs + q1

(
m − 1

m

)

The second-order jackknife richness estimator is

Sjackknife2 = Sobs +

[
q1 (2m − 3)

m
− q2 (m − 2)2

m (m − 1)

]

By their nature, sampling data document only
the verified presence of species in samples. The
absence of a particular species in a sample may
represent either a true absence (the species is not
present in the assemblage) or a false absence (the
species is present, but was not detected in the
sample; see Chapter 3). Although the term ‘pres-
ence/absence data’ is often used as a synonym for
incidence data, the importance of distinguishing
true absences from false ones (not only for rich-
ness estimation, but in modelling contexts, e.g. Elith
et al. 2006) leads us to emphasize that incidence
data are actually ‘presence data’. Richness esti-
mation methods for abundance data assume that
organisms can be sampled and identified as dis-
tinct individuals. For clonal and colonial organisms,
such as many species of grasses and corals, indi-
viduals cannot always be separated or counted, but
methods designed for incidence data can nonethe-
less be used if species presence is recorded within
standardized quadrats or samples (e.g. Butler &
Chazdon 1998).

Snacking from a jar of mixed jellybeans provides
a good analogy for biodiversity sampling (Longino
et al. 2002). Each jellybean represents a single indi-
vidual, and the different colours represent the dif-
ferent species in the jellybean ‘assemblage’—in a
typical sample, some colours are common, but most
are rare. Collecting a sample of biodiversity data
is equivalent to taking a small handful of jelly-
beans from the jar and examining them one by
one. From this incomplete sample, we try to make

inferences about the number of colours (species) in
the entire jar. This process of statistical inference
depends critically on the biological assumption that
the community is ‘closed,’ with an unchanging total
number of species and a steady species abundance
distribution. Jellybeans may be added or removed
from the jar, but the proportional representation of
colours is assumed to remain the same. In an open
metacommunity, in which the assemblage changes
size and composition through time, it may not be
possible to draw valid inferences about community
structure from a snapshot sample at one point in
time (Magurran 2007). Few, if any, real communities
are completely ‘closed’, but many are sufficiently
circumscribed that that richness estimators may be
used, but with caution and caveats.

For all of the methods and metrics (Box 4.1) that
we discuss in this chapter, we make the closely
related statistical assumption that sampling is with
replacement. In terms of collecting inventory data
from nature, this assumption means either that indi-
viduals are recorded, but not removed, from the
assemblage (e.g. censusing trees in a plot) or, if
they are removed, the proportions remaining are
unchanged by the sampling.

This framework of sampling, counting, and iden-
tifying individuals applies not only to richness esti-
mation, but also to many other questions in the
study of biodiversity, including the characterization
of the species abundance distribution (see Chap-
ter 9) and partitioning diversity into α and β com-
ponents (see Chapters 6 and 7).
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Figure 4.1 Species accumulation and rarefaction curves. The
jagged line is the species accumulation curve for one of many
possible orderings of 121 soil seedbank samples, yielding a total
of 952 individual tree seedlings, from an intensive census of a plot
of Costa Rican rainforest (Butler & Chazdon 1998). The cumulative
number of tree species (y-axis) is plotted as a function of the
cumulative number of samples (upper x -axis), pooled in random
order. The smooth, solid line is the sample-based rarefaction curve
for the same data set, showing the mean number of species for all
possible combinations of 1, 2, . . . , m∗, . . . , 121 actual
samples from the dataset—this curve plots the statistical
expectation of the (sample-based) species accumulation curve.
The dashed line is the individual-based rarefaction curve for the
same data set—the expected number of species for
(m∗) (952/121) individuals, randomly chosen from all 952
individuals (lower x -axis). The black dot indicates the total
richness for all samples (or all individuals) pooled. The
sample-based rarefaction curve lies below the individual-based
rarefaction curve because of spatial aggregation within species.
This is a very typical pattern for empirical comparisons of
sample-based and individual-based rarefaction curves.

4.2.2 The species accumulation curve

Consider a graph in which the x-axis is the num-
ber of individuals sampled and the y-axis is the
cumulative number of species recorded (Fig. 4.1,
lower x-axis). Imagine taking one jellybean at a time
from the jar, at random. As more individuals (jelly-
beans) are sampled, the total number of species
(colours) recorded in the sample increases, and a
species accumulation curve is generated. Of course,
the first individual drawn will represent exactly one
species new to the sample, so all species accumu-
lation curves based on individual organisms origi-
nate at the point [1,1]. The next individual drawn
will represent either the same species or a species
new to the sample. The probability of drawing a
new species will depend both on the complete num-
ber of species in the assemblage and their relative
abundances. The more species in the assemblage
and the more even the species abundance distribu-
tion (see Chapter 9), the more rapidly this curve will
rise. In contrast, if the species abundance distribu-
tion is highly uneven (a few common species and
many rare ones, for example), the curve will rise
more slowly, even at the outset, because most of the
individuals sampled will represent more common
species that have already been added to the sample,
rather than rarer ones that have yet to be detected.

Regardless of the species abundance distribu-
tion, this curve increases monotonically, with a
decelerating slope. For a given sample, different
stochastic realizations of the order in which the
individuals in the sample are added to the graph
will produce species accumulation curves that dif-
fer slightly from one another. The smoothed aver-
age of these individual curves represents the sta-
tistical expectation of the species accumulation
curve for that particular sample, and the variabil-
ity among the different orderings is reflected in
the variance in the number of species recorded for
any given number of individuals. However, this
variance is specific, or conditional, on the particu-
lar sample that we have drawn because it is based
only on re-orderings of that single sample. Suppose,
instead, we plot the smoothed average of several
species accumulation curves, each based on a dif-
ferent handful of jellybeans from the same jar, each
handful having the same number of beans. Varia-
tion among these smoothed curves from the several
independent, random samples represents another
source of variation in richness, for a given number
of individuals. The variance among these curves is
called an unconditional variance because it estimates
the true variance in richness of the assemblage. The
unconditional variance in richness is necessarily
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larger than the variance conditional on any single
sample.

4.2.3 Climbing the species accumulation
curve

In theory, finding out how many species character-
ize an assemblage means sampling more and more
individuals until no new species are found and the
species accumulation curve reaches an asymptote.
In practice, this approach is routinely impossible for
two reasons. First, the number of individuals that
must be sampled to reach an asymptote can often be
prohibitively large (Chao et al. 2009). The problem
is most severe in the tropics, where species diversity
is high and most species are rare. For example, after
nearly 30 consecutive years of sampling, an ongo-
ing inventory of a tropical rainforest ant assemblage
at La Selva, Costa Rica, has still not reached an
asymptote in species richness. Each year, one or two
new species are added to the local list. In some cases
these species are already known from collections at
other localities, but in other cases they are new to
science (Longino et al. 2002). In other words, bio-
diversity samples, even very extensive ones, often
fall short of revealing the complete species richness
for an assemblage, representing some unspecified
milestone along a slowly rising species accumula-
tion curve with an unknown destination.

A second reason that the species accumula-
tion curve cannot be used to directly determine
species richness is that, in field sampling, ecolo-
gists almost never collect random individuals in
sequence. Instead, individual plants or mobile ani-
mals are often recorded from transects or points
counts, or individual organisms are collected in pit-
fall and bait traps, sweep samples, nets, plankton
tows, water, soil, and leaf litter samples, and other
taxon-specific sampling units that capture multi-
ple individuals (Southwood & Henderson 2000).
Although these samples can, under appropriate
circumstances, be treated as independent of one
another, the individuals accumulated within a sin-
gle sample do not represent independent observa-
tions. Although individuals contain the biodiver-
sity ‘information’ (species identity), it is the sam-
ples that represent the statistically independent
replicates for analysis. When spatial and temporal

autocorrelation is taken into account, the samples
themselves may be only partially independent.
Nevertheless, the inevitable non-independence of
individuals within samples can be overcome by
plotting a second kind of species accumulation
curve, called a sample-based species accumulation
curve, in which the x-axis is the number of samples
and the y-axis is the accumulated number of species
(Fig. 4.1, upper x-axis). Because only the identity
but not the number of individuals of each species
represented within a sample is needed to construct
a sample-based species accumulation curve, these
curves plot incidence data. This approach is there-
fore also suitable for clonal and colonial species that
cannot be counted as discrete individuals.

4.2.4 Species richness versus species density

The observed number of species recorded in a sam-
ple (or a set of samples) is very sensitive to the
number of individuals or samples observed or col-
lected, which in turn is influenced by the effec-
tive area that is sampled and, in replicated designs,
by the spatial arrangement of the replicates. Thus,
many measures reported as ‘species richness’ are
effectively measures of species density: the number
of species collected in a particular total area. For
quadrat samples or other methods that sample a
fixed area, species density is expressed in units of
species per specified area. Even for traps that col-
lect individuals at a single point (such as a pitfall
trap), there is probably an effective sampling area
that is encompassed by data collection at a single
point.

Whenever sampling is involved, species density
is a slippery concept that is often misused and
misunderstood. The problem arises from the non-
linearity of the species accumulation curve. Con-
sider the species accumulation curve for rainforest
seedlings (Butler & Chazdon 1998) in Fig. 4.2, which
plots the species of seedlings grown from dormant
seed in 121 soil samples, each covering a soil surface
area of 17.35 cm2 and a depth of 10 cm. The x-axis
plots the cumulative surface area of soil sampled.
The slopes of lines A, B, and C represent species
density: number of species observed (y), divided by
area-sampled (x). You can see that species density
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Figure 4.2 Species richness and species density are not the same
thing. The solid line is the sample-based rarefaction curve for the
same data set as in Fig 4.1, showing the expected species richness of
rainforest tree seedlings for 1, 2, . . . , m∗, . . . , 121 soil samples,
each covering a soil surface area of 17.35 cm2 and a depth of
10 cm. Species richness (y-axis) is plotted as a function of the total
soil surface area sampled (x-axis). Because species density is the ratio
of richness (y-coordinate) to area (x-coordinate) for any point in the
graph, the slopes of lines A, B, and C quantify species density for
500, 1000, and 2000 cm2, respectively. Clearly, species density
estimates depend on the particular amount of area sampled. All of
the species density slopes over-estimate species number when
extrapolated to larger areas, and species density estimates based on
differing areas are not comparable.

depends critically not just on area, but on the spe-
cific amount of area sampled. For this reason, it
never works to ‘standardize’ the species richness
of samples from two or more assemblages by sim-
ply dividing observed richness by area sampled (or
by any other measure of effort, including number
of individuals or number of samples). Estimating
species density by calculating the ratio of species
richness to area sampled will always grossly over-
estimate species density when this index is extrap-
olated to larger areas, and the size of that bias will
depend on the area sampled.

Sometimes, however, ecologists or conservation
biologists are interested in species density, for some
particular amount of area, in its own right. For
example, if only one of two areas, equal in size and
cost per hectare, can be purchased to establish a
reserve, species density at the scale of the reserve is
clearly a variable of interest. Because species density
is so sensitive to area (and, ultimately, to the num-
ber of individuals observed or collected), it is useful
to decompose it into the product of two quanti-
ties: species richness (number of species represented
by some particular number, N, of individuals) and
total individual density (number of individuals N,
disregarding species, in some particular amount of
area A):
(

species
area A

)

=
(

species
N individuals

)

×
(

N individuals
area A

)

(James & Wamer 1982). This decomposition demon-
strates that the number of species per sampling unit
reflects both the underlying species richness and
the total number of individuals sampled. If two
samples differ in species density, is it because of
differences in underlying species richness, differ-
ences in abundance, or some combination of both?
In other words, how do we meaningfully com-
pare the species richness of collections that prob-
ably differ in both the number of individuals and
the number of samples collected? Until recently,
many ecologists have not recognized this prob-
lem. The distinction between species density and
species richness has not always been appreciated,
and many papers have compared species density
using standard parametric statistics, but without
accounting for differences in abundance or sam-
pling effort.

One statistical solution is to treat abundance,
number of samples, or sample area as a covariate
that can be entered into a multiple regression analy-
sis or an analysis of covariance. If the original data
(counts and identities of individuals) are not avail-
able, this may be the best that we can do. For exam-
ple, Dunn et al. (2009) assembled a global database
of ant species richness from a number of published
studies. To control for sampling effects, they used
the area, number of samples, and total number of
individuals from each sample location as statisti-
cal covariates in regression analyses. However, they
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did not make the mistake of trying to ‘standard-
ize’ the richness of different samples by dividing
the species counts by the area, the number of indi-
viduals sampled, or any other measure of effort.
As we have repeatedly emphasized, this rescaling
produces serious distortions: extrapolations from
small sample ratios of species density inevitably
lead to gross over-estimates of the number of
species expected in larger sample areas (Fig. 4.2 and
Figure 4–6 in Gotelli & Colwell 2001).

4.2.5 Individual-based rarefaction

The species accumulation curve itself suggests an
intuitive way to compare the richness of two sam-
ples (for the same kind of organism) that differ in
the number of individuals collected. Suppose one
of the two samples has N individuals and S species,
and the other has n individuals and s species. The
samples differ in the number of individuals present
(N > n) and will usually differ in the number of
species present (typically S > s). In the procedure
called rarefaction, we randomly draw n∗ individuals,
subsampling without replacement from the larger
of the two original samples, where n∗ = n, the size
of the smaller original sample. (This re-sampling,
without replacement, of individuals from within
the sample does not violate the assumption that the
process of taking the sample itself did not change
the relative abundance of species). Computing the
mean number of species, s̄∗, among repeated sub-
samples of n∗ individuals estimates E(s∗|n∗), the
expected number of species in a random subsam-
ple of n∗ individuals from the larger original sam-
ple (Fig. 4.1, lower x-axis). The variance of (s∗),
among random re-orderings of individuals, can also
be estimated this way along with a parametric 95%
confidence interval, or the confidence interval can
be estimated from the bootstrapped values (Manly
1991).

A simple test can now be conducted to ask
whether s, the observed species richness of the com-
plete smaller sample, falls within the 95% confi-
dence interval of s∗, the expected species richness
based on random subsamples of size n from the
larger sample (Simberloff 1978). If the observed
value falls within the confidence interval, then the
hypothesis that the richness of the smaller sample,

based on all n individuals, does not differ from the
richness of a subsample of size n∗ from the larger
sample cannot be rejected at P ≤ 0.05. If this null
hypothesis is not rejected, and the original, unrar-
efied samples differed in species density, then this
difference in species density must be driven by
differing numbers of individuals between the two
samples. Alternatively, if s is not contained within
the confidence interval of s∗, the two samples differ
in species richness in ways that cannot be accounted
for entirely by differences in abundance and/or
sampling effort (at P ≤ 0.05).

Rarefaction can be used not only to calculate a
point estimate of s∗, but also to construct an entire
rarefaction curve in which the number of individuals
randomly subsampled ranges from 1 to N. Rarefac-
tion can be thought of as a method of interpolating
E(s∗|n∗) the expected number of species, given n∗

individuals (1 ≤ n∗ ≤ N), between the point [1, 1]
and the point [S, N] (Colwell et al. 2004). With pro-
gressively smaller subsamples from N – 1 to 1, the
resulting individual-based rarefaction curve, in a sense,
is the reverse of the corresponding species accumu-
lation curve, which progressively builds larger and
larger samples.

Because this individual-based rarefaction curve
is conditional on one particular sample, the vari-
ance in s∗, among random re-orderings of indi-
viduals, is 0 at both extremes of the curve: with
the minimum of only one individual there will
always be only one species represented, and with
the maximum of N individuals, there will always be
exactly S species represented. Hurlbert (1971) and
Heck et al. (1975) give analytical solutions for the
expectation and the conditional variance of s∗, which
are derived from the hypergeometric distribution.
In contrast, treating the sample (one handful of
jellybeans) as representative of a larger assemblage
(the jar of jellybeans) requires an estimate of the
unconditional variance (the variance in s∗|n∗ among
replicate handfuls of jellybeans from the same jar).
The unconditional variance in richness, S, for the
full sample of N individuals, must be greater than
zero to account for the heterogeneity that would
be expected with additional random samples of
the same size taken from the entire assemblage.
Although Smith & Grassle (1977) derived an esti-
mator for the unconditional variance of E(s∗|n∗),
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it is computationally complex and has been little
used. R.K. Colwell and C.X. Mao (in preparation)
have recently derived an unconditional variance
estimator for individual-based rarefaction that is
analogous to the unconditional variance estimator
for sample-based rarefaction described in Colwell
et al. (2004), and discussed below.

Regardless of how the variance is estimated, the
statistical significance of the difference in rarefied
species richness between two samples will depend,
in part, on n, the number of individuals being com-
pared. This sample-size dependence arises because
all rarefaction curves based on individuals con-
verge at the point [1,1]. Therefore, no matter how
different two assemblages are, rarefaction curves
based on samples of individuals drawn at ran-
dom will not appear to differ statistically if n is
too small. In some cases, rarefaction curves may
cross at higher values of n, making the results of
statistical tests even more dependent on n (e.g.
Raup 1975).

To compare multiple samples, each can be rar-
efied down to a common abundance, which will
typically be the total abundance for the smallest of
the samples. At that point, the set of s∗ values, one
for each sample, can be used as a response variable
in any kind of statistical analysis, such as ANOVA
or regression. This method assumes that the rarefac-
tion curves do not cross (which may be assessed
visually), so that their rank order remains the same
regardless of the abundance level used. Alterna-
tively, multiple samples from the same assemblage
can be used in a sample-based rarefaction, which we
describe below.

Rarefaction has a long history in ecology and evo-
lution (Sanders 1968; Hurlbert 1971; Raup 1975; Tip-
per 1979; Järvinen 1982; Chiarucci et al. 2008).The
method was proposed in the 1960s and 1970s to
compare species number when samples differed
in abundance (Tipper 1979), but the same statisti-
cal problem had been solved many decades ear-
lier by biogeographers who wanted to estimate
species/genus ratios and other taxonomic diversity
indices (Järvinen 1982).

Brewer & Williamson (1994) and Colwell & Cod-
dington (1994) pointed out that a very close approx-
imation for the rarefaction curve is the Coleman
‘passive sampling’ curve,

E (s∗) =
S∑

i=1

[
1 − (1 − n∗/N)ni

]
, (4.1)

in which i indexes species from 1 to S, and ni is the
abundance of species i in the full sample. As a null
model for the species–area relationship (see Chap-
ter 20), the Coleman curve assumes that islands of
different area randomly intercept individuals and
accumulate different numbers of species (Coleman
et al. 1982). The individual-based rarefaction curve
is very closely analogous to the Coleman curve
(and, although mathematically distinct, differs only
slightly from it) because relative island area is a
proxy for the proportion n∗/N of individuals sub-
sampled from the pooled distribution of all individ-
uals in the original sample (Gotelli 2008).

4.2.6 Sample-based rarefaction

Individual-based rarefaction computes the
expected number of species, s∗, in a subsample
of n∗ individuals drawn at random from a single
representative sample from an assemblage. In
contrast, sample-based rarefaction computes the
expected number of species s∗ when m∗ samples
(1 ≤ m∗ ≤ M) are drawn at random (without
replacement) from a set of samples that are,
collectively, representative of an assemblage
(Fig. 4.1, upper x-axis) (Gotelli & Colwell 2001;
Colwell et al. 2004). (This re-sampling, without
replacement, of samples from within the sample
set does not violate the assumption that the process
of taking the sample itself did not change the
relative abundance of species.) The fundamental
difference is that sample-based rarefaction, by
design, preserves the spatial structure of the
data, which may reflect processes such as spatial
aggregation or segregation (see Chapter 12)
both within and between species. In contrast,
individual-based rarefaction does not preserve the
spatial structure of the data and assumes complete
random mixing among individuals of all species.
Thus, for sample-based rarefaction, E (s∗|m∗) is the
expected number of species for m∗ pooled samples
that express the same patterns of aggregation,
association, or segregation as the observed set of
samples. For this reason, sample-based rarefaction
is a more realistic treatment of the independent
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sampling units used in most biodiversity studies.
Because sample-based rarefaction requires only
incidence data, it can also be used for clonal
organisms or for species in which individuals
in a sample cannot be easily distinguished or
counted.

Operationally, sample-based rarefaction can be
carried out by repeatedly selecting and pooling
m∗ samples at random from the set of samples,
and computing the mean and conditional (on the
particular set of samples) variance and 95% confi-
dence interval for s∗. On the other hand, E (s∗|m∗)
is more easily and accurately computed from com-
binatorial equations based on the distribution of
counts, the number of species found in exactly 1,
2, . . . , m∗ samples in the set (Ugland et al. 2003;
Colwell et al. 2004; see Chiarucci et al. 2008 for
a history of this approach). Colwell et al. 2004
also introduced a sample-based version of the
Coleman rarefaction model, the results of which
closely approximate the true sample-based rarefac-
tion curve.

Ugland et al. (2003) provide an expression for
the conditional variance in richness estimates from
sample-based rarefaction. Colwell et al. (2004)
derived an unconditional variance estimator for
sample-based rarefaction that treats the observed
set of samples, in turn, as a sample from some
larger assemblage, so that the variance in S for
all M samples, pooled (the full set of samples),
takes some non-zero value. This unconditional vari-
ance (and its associated confidence interval (CI))
accounts for the variability expected among repli-
cate sets of samples. Based on unconditional vari-
ances for two sample-based rarefaction curves, rich-
ness can be compared for any common number of
samples (or individuals, as explained below). Using
eigenvalue decomposition, Mao & Li (2009) devel-
oped a computationally complex method for com-
paring two sample-based rarefaction curves in their
entirety. A much simpler, but approximate, method
is to assess, for a desired value of m∗, whether or
not the two (appropriately computed) confidence
intervals overlap. If the two CIs (calculated from the
unconditional variance) are approximately equal,
for a type I error rate of P < 0.05, the appropriate
CI is about 84% (Payton et al. 2003; the z value
for 84% CI is 0.994 standard deviations). Basing the

test on the overlap of traditional 95% CIs is overly
conservative: richness values that would differ sig-
nificantly with the 84% interval would often be
declared statistically indistinguishable because the
95% intervals for the same pair of samples would
overlap (Payton et al. 2003).

An important pitfall to avoid in using sample-
based rarefaction to compare richness between
sample sets is that the method does not directly con-
trol for differences in overall abundance between
sets of samples. Suppose two sets of samples are
recorded from the same assemblage, but they dif-
fer in mean number of individuals per sample
(systematically or by chance). When plotted as a
function of number of samples (on the x-axis) the
sample-based rarefaction curve for the sample set
with a higher mean abundance per sample will lie
above the curve for the sample set with lower mean
abundance because more individuals reveal more
species. The solution suggested by Gotelli & Col-
well (2001) is to first calculate sample-based rarefac-
tion curves and their variances (or CIs) for each set
of samples in the analysis. Next, the curves are re-
plotted against an x-axis of individual abundance,
rather than number of samples. This re-plotting
effectively shifts the points of each individual-based
rarefaction curve to the left or the right, depending
on the average number of individuals that were
collected in each sample. Ellison et al. (2007) used
this method to compare the efficacy of ant sam-
pling methods that differed greatly in the average
number of individuals per sample (e.g. 2 ants per
pitfall trap, versus > 89 ants per plot for standard-
ized hand sampling). Note that if sample-based rar-
efaction is based on species occurrences rather than
abundances, then the rescaled x-axis is the number
of species occurrences, not the number of individu-
als.

4.2.7 Assumptions of rarefaction

To use rarefaction to compare species richness of
two (or more) samples or assemblages rigorously,
the following assumptions should be met:

1. Sufficient sampling. As with any other statis-
tical procedure, the power to detect a dif-
ference, if there is one, depends on having
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large enough individuals or samples, especially
since rarefactions curves necessarily converge
towards the origin. Although it is difficult to give
specific recommendations, our experience has
been that rarefaction curves should be based on
at least 20 individuals (individual-based rarefac-
tion) or 20 samples (sample-based rarefaction),
and preferably many more.

2. Comparable sampling methods. Because all sam-
pling methods have inherent and usually
unknown sampling biases that favour detection
of some species but not others (see Chapter 3),
rarefaction cannot be used to compare data from
two different assemblages that were collected
with two different methods (e.g. bait samples vs
pitfall traps, mist-netting vs point-sampling for
birds). However, rarefaction can be used mean-
ingfully to compare the efficacy of different sam-
pling methods that are used in the same area
(Longino et al. 2002; Ellison et al. 2007). Also,
data from different sampling methods may be
pooled in order to maximize the kinds of species
that may be sampled with different sampling
methods (e.g. ants in Colwell et al. (2008)). How-
ever, identical sampling and pooling procedures
must to be employed to compare two composite
collections.

3. Taxonomic similarity. The assemblages repre-
sented by the two samples should be taxonom-
ically ‘similar’. In other words, if two samples
that differ in abundance but have rarefaction
curves with identical shapes do not share any
taxa, we would not want to conclude that the
smaller collection is a random subsample of the
larger (Tipper 1979). Rarefaction seems most use-
ful when the species composition of the smaller
sample appears to be a nested or partially nested
subset of the larger collection. Much more pow-
erful methods are now available to test directly
for differences in species composition (Chao
et al. 2005).

4. Closed communities of discrete individuals. The
assemblages being sampled should be well cir-
cumscribed, with consistent membership. Dis-
crete individuals in a single sample must
be countable (individual-based rarefaction) or
species presence in multiple samples must be
detectable (sample-based rarefaction).

5. Random placement. Individual-based rarefaction
assumes that the spatial distribution of individ-
uals sampled is random. If individuals within
species are spatially aggregated, individual-
based rarefaction will over-estimate species rich-
ness because it assumes that the rare and com-
mon species are perfectly intermixed. Some
authors have modified the basic rarefaction
equations to include explicit terms for spatial
clumping (Kobayashi & Kimura 1994). However,
this approach is rarely successful because the
model parameters (such as the constants in the
negative binomial distribution) cannot be eas-
ily and independently estimated for all of the
species in the sample. One way to deal with
aggregation is to increase the distance or timing
between randomly sampled individuals so that
patterns of spatial or temporal aggregation are
not so prominent. An even better approach is to
use sample-based rarefaction, again employing
sampling areas that are large enough to over-
come small-scale aggregation.

6. Independent, random sampling. Individuals or
samples should be collected randomly and
independently. Both the individual-based and
sample-based methods described in this chap-
ter assume that sampling, from nature, does not
affect the relative abundance of species (statis-
tically, sampling with replacement). However,
if the sample is relatively small compared to
the size of the underlying assemblage (which is
often the case), the results should be similar for
samples collected with or without replacement.
More work is needed to derive estimators that
can be used for sampling without replacement,
which will be important for cases in which the
sample represents a large fraction of the total
assemblage. Unfortunately, as we have noted
earlier, biodiversity data rarely consist of col-
lections of individuals that were sampled ran-
domly. Instead, the data often consist of a series
of random and approximately independent sam-
ples that contain multiple individuals.

4.2.8 Estimating asymptotic species richness

Consider the species richness of a single biodiver-
sity sample (or the pooled richness of a set of sam-
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ples) as the starting point in a graph of richness
versus abundance or sample number (the dot at the
right-hand end of the curves in Fig. 4.1). Rarefac-
tion amounts to interpolating ‘backward’ from the
endpoint of a species accumulation curve, yielding
estimates of species richness expected for smaller
numbers of individuals or samples. In contrast,
using this starting point to estimate the complete
richness of the assemblage, including species that
were not detected by the sample, can be visualized
as extrapolating ‘forward’ along a hypothetical pro-
jection the accumulation curve (Colwell et al. 2004,
their Figure 4). Two objectives of extrapolation can
be distinguished: (1) estimating the richness of a
larger sample and (2) estimating the complete rich-
ness of the assemblage, visualized as the asymptote
of the accumulation curve. Once this asymptote is
reached, the species accumulation curve is flat and
additional sampling will not yield any additional
species.

Why should the species accumulation curve have
an asymptote? On large geographical scales, it does
not: larger areas accumulate species at a constant
or even an increasing rate because expanded sam-
pling incorporates diverse habitat types that sup-
port distinctive species assemblages (see Chap-
ter 20). As a consequence, the species accumulation
curve continues to increase, and will not reach a
final asymptote until it approaches the total area
of the biosphere. The subject of species turnover is
covered by Jost et al. and Magurran (Chapters 6
and 7) and species–area relationships are the subject of
Chapter 20. In this chapter, we focus on the estima-
tion of species richness at smaller spatial scales—
scales at which an asymptote is a reasonable sup-
position and sampling issues are substantially more
important than spatial turnover on habitat mosaics
or gradients (Cam et al. 2002). In statistical terms,
we assume that samples were drawn independently
and at random from the local assemblage, so that
the ordering of the samples in time or space is not
important. In fact, unimportance of sample order is
diagnostic of the kinds of sample sets appropriately
used by ecologists to assess local species richness
(Colwell et al. 2004).

The most direct approach to estimating the
species richness asymptote is to fit an asymp-
totic mathematical function (such as the Michaelis–

Menten function; Keating & Quinn (1998)) to a
rarefaction or species accumulation curve. This
approach dates back at least to Holdridge et al.
(1971), who fitted a negative binomial function to
smoothed species accumulation curves to compare
the richness of Costa Rica trees at different local-
ities. Many other asymptotic functions have since
been explored (reviewed by Colwell & Coddington
(1994), Flather (1996), Chao (2005), and Rosenzweig
et al. (2003)). Unfortunately, this strictly phenom-
enological method, despite the advantage that it
makes no assumptions about sampling schemes or
species abundance distributions, does not seem to
work well in practice. Two or more functions may
fit a dataset equally well, but yield drastically dif-
ferent estimates of asymptotic richness (Soberón &
Llorente 1993; Chao 2005), and variance estimates
for the asymptote are necessarily large. Residual
analysis often reveals that the popular functions
do not correctly fit the shape of empirical species
accumulation curves (O’Hara 2005), and this curve-
fitting method consistently performs worse than
other approaches (Walther & Moore 2005; Walther
& Morand 2008). For these reasons, we do not rec-
ommend fitting asymptotic mathematical functions
as a means of estimating complete species richness
of local assemblages.

Mixture models, in which species abundance
or occurrence distributions are modelled as a
weighted mixture of statistical distributions, offer
a completely different, non-parametric approach to
extrapolating an empirical rarefaction curve to a
larger sample sizes (or a larger set of samples)
(reviewed by Mao et al. (2005), Mao & Colwell
(2005), and Chao (2005)). Colwell et al. (2004), for
example, modelled the sample-based rarefaction
curve as a binomial mixture model. However, these
models are effective only for a doubling or tripling
of the observed sample size. Beyond this point, the
variance of the richness estimate increases rapidly.
Unless the initial sample size is very large, pro-
jecting the curve to an asymptotic value usually
requires much more than a doubling or tripling of
the initial sample size (Chao et al. 2009), so this
method is not always feasible, especially for hyper-
diverse taxa (Mao & Colwell 2005).

Another classical approach to estimating asymp-
totic richness is to fit a species abundance
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Figure 4.3 Estimation of asymptotic species richness by fitting a
log-normal distribution to a species abundance distribution. The graph
shows the number of species of ants in each of seven
logarithmically-scaled abundance categories (a total of 435 species
collected) in a long-term rainforest inventory in Costa Rica (Longino
et al. 2002). The number of undetected species (21 additional species) is
estimated by the area marked with horizontal hatching, yielding a
predicted complete richness of 456 species.

distribution (see Chapter 9), based on a single sam-
ple, to a truncated parametric distribution, then
estimate the ‘missing’ portion of the distribution,
which corresponds to the undetected species in
an assemblage. Fisher et al. (1943) pioneered this
approach by fitting a geometric series to a large
sample of moths captured at light traps. Relative
incidence distributions from replicated sets of sam-
ples can be treated in the same way (Longino et al.
2002). The most widely used species abundance
distribution for this approach is the log-normal
(Fig. 4.3) and its variants (from Preston (1948) to
Hubbell (2001)), but other distributions (geometric
series, negative binomial, γ, exponential, inverse
Guassian) have also been used. The challenges of
fitting the log-normal have been widely discussed
(e.g. Colwell & Coddington 1994; Chao 2004; Dor-
nelas et al. 2006; Connolly et al. 2009). One of
the limitations of this approach is shared with the
extrapolation of fitted parametric functions: two or
more species abundance distributions may fit the
data equally well, but predict quite different assem-
blage richness. In addition, the species abundance
distribution that fits best may be one that cannot
be used to estimate undetected species, such as the
widely used log-series distribution (Chao 2004).

The limitations of parametric methods inspired
the development of non-parametric richness esti-
mators, which require no assumptions about an
underlying species abundance distribution and do
not require the fitting of either a priori or ad hoc
models (Chao 2004). These estimators have experi-
enced a meteoric increase in usage in the past two
decades, as species richness has become a focus of

biodiversity surveys and conservation issues, and a
subject of basic research on the causes and conse-
quences of species richness in natural ecosystems.
In Box 4.1, we have listed six of the most widely
used and best-performing indices. All the estima-
tors in Box 4.1 depend on a fundamental principle
discovered during World War II by Alan Turing and
I.J. Good (as reported by Good (1953, 2000)), while
cracking the military codes of the German Wehrma-
cht Enigma coding machine: the abundances of the
very rarest species or their frequencies in a sample
or set of samples can be used to estimate the fre-
quencies of undetected species. All of the estima-
tors in Box 4.1 correct the observed richness Sobs by
adding a term based on the number of species rep-
resented in a single abundance sample by only one
individual (singletons), by two (doubletons), or by a
few individuals. For incidence data, the added term
is based on the frequencies of species represented in
only one (uniques) sample, in two (duplicates), or in
a few replicate incidence samples.

Fig. 4.4 shows how well one of these estima-
tors, Chao2, estimates the asymptotic richness of the
seedbank dataset of Figure 4.1, based on sets of m∗

samples chosen at random. The estimator stabilizes
after about 30 samples have been pooled. When all
121 samples have been pooled, the estimator sug-
gests that 1–2 additional species still remain unde-
tected.

Only four of the estimators in Box 4.1 (Chao1,
ACE, and the two individual-based jackknife esti-
mators) are appropriate for abundance data; the
rest require replicated incidence data. Most of the
incidence-based estimators were first developed, in
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Figure 4.4 Asymptotic species richness estimated by the Chao2
non-parametric richness estimator for the seedbank dataset of
Fig. 4.1. Plotted values for Chao2 are means of 100 randomizations
of sample order. The estimator stabilizes after only about 30 samples
have been pooled. When all 121 samples have been pooled (34
species detected), the estimator suggests that one or two additional
species still remain undetected.

biological applications, for capture–recapture meth-
ods of population size estimation. The number of
samples that include Species X in a set of bio-
diversity samples corresponds to the number of
recaptures of marked Individual X in a capture–
recapture study. In species richness estimation, the
full assemblage of species, including those species
not detected in the set of samples (but susceptible
to detection), corresponds, in population size esti-
mation, to the total population size, including those
individuals never captured (but susceptible to cap-
ture) (Boulinier et al. 1998; Chao 2001, 2004).

Behind the disarming simplicity of Chao1 and
Chao2 lies a rigorous body of statistical theory
demonstrating that both are robust estimators of
minimum richness (Shen et al. 2003). ACE and ICE
are based on estimating sample coverage—the pro-
portion of assemblage richness represented by the
species in a single abundance sample (ACE) or in a
set of replicated incidence samples (ICE). The esti-
mators are adjusted to the ‘spread’ of the empirical
species abundance (or incidence) distribution by a
coefficient of variation term (Chao 2004). The Chao1
and Chao2 estimators also provide a heuristic, intu-
itive ‘stopping rule’ for biodiversity sampling: no
additional species are expected to be found when all
species in the sample are represented by at least two
individuals (or samples). Extending this approach,
Chao et al. (2009) provide equations and simple
spreadsheet software for calculating how many

additional individuals would be needed to sample
100% (or any other percentage) of the asymptotic
species richness of a region based on the samples
already in hand. Pan et al. (2009) have recently
extended the Chao1 and Chao2 indices to provide
an estimate of the number of shared species in mul-
tiple assemblages.

The jackknife is a general statistical technique for
reducing the bias of an estimator by removing sub-
sets of the data and recalculating the estimator with
the reduced sample. In this application of the tech-
nique, the observed number of species is a biased
(under-) estimator of the complete assemblage rich-
ness (Burnham & Overton 1979; Heltshe & Forrester
1983; Chao 2004). For a set of m replicate incidence
samples, the kth order jackknife reduces the bias by
estimating richness from all sets of m–k samples.
The first-order jackknife (Jackknife1) thus depends
only on the uniques (species found in only one sam-
ple) because the richness estimate is changed only
when a sample that contains one of these species
is deleted from a subset of samples. Likewise, the
second-order jackknife (Jackknife2) depends only
on the uniques and the duplicates (species found
in exactly two samples). Similar expressions for
abundance-based jackknife estimators are based on
the number of singletons (species represented by
exactly one individual) and doubletons (species
represented by exactly two individuals; Burnham &
Overton (1979)). These estimators can be derived by
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letting the number of samples m tend to infinity in
the equations for the incidence-based estimators.

4.2.9 Comparing estimators of asymptotic
species richness

Given the diversity of asymptotic estimators that
have been proposed, which one(s) should ecologists
use with their data? The ideal estimator would be
unbiased (it neither over- or under-estimates asymp-
totic species richness), precise (replicates samples
from the same assemblage produce similar esti-
mates), and efficient (a relatively small number of
individuals or samples is needed). Although there
are many ways to estimate bias, precision, and
efficiency (Walther & Moore 2005), none of the
available estimators meet all these criteria for all
datasets. Most estimators are biased because they
chronically under-estimate true diversity (O’Hara
2005). The Chao1 estimator was formally derived
as a minimum asymptotic estimator (Chao 1984),
but all of the estimators should be treated as esti-
mating the lower bound on species richness. Esti-
mators of asymptotic species richness are often
imprecise because they typically have large vari-
ances and confidence intervals, especially for small
data sets. This imprecision is inevitable because, by
necessity, these estimators represent an extrapola-
tion beyond the limits of the data. In contrast, rar-
efaction estimators usually have smaller variances
because they are interpolated within the range of
the observed data. However, as noted earlier, the
unconditional variance of richness as estimated by
rarefaction is always larger than the variance that is
conditional on a single sample (or set of samples).
Finally, most estimators are not efficient and often
exhibit ‘sampling creep’: the estimated asymptote
itself increases with sample size, suggesting that the
sample size is not large enough for the estimate to
stabilize (e.g. Longino et al. (2002)).

Two strategies are possible to compare the per-
formance of different estimators. The first strategy
is to use data from a small area that has been
exhaustively sampled (or nearly so), and to define
that assemblage as the sampling universe. As in
rarefaction, a random subsample of these data can
then be used to calculate asymptotic estimators
and compare them to the known richness in the

plot (a method first suggested by Pielou (1975),
but popularized by Colwell & Coddington (1994)).
For example, Butler & Chazdon (1998) collected
seeds from 121 soils samples from a 1 ha plot, on
a 10 × 10 m grid in tropical rainforest in Costa
Rica, yielding 952 individual seedlings represent-
ing a total of 34 tree species (Figure 4.1). Col-
well & Coddington (1994) randomly rarefied these
data, by repeatedly pooling m∗ samples (1 ≤ m∗ ≤
M), and found that the Chao2 index (illustrated
in Fig. 4.4) and the second-order jackknife estima-
tors were least biased for small m∗, followed by
the first-order jackknife and the Michaelis–Menten
estimator. Walther & Morand (1998) used a similar
approach with nine parasite data sets and found
that Chao2 and the first-order jackknife performed
best. Walther & Moore (2005), using different quan-
titative measures of bias, precision, and accuracy,
compiled the results of 14 studies that compared
estimator performance, and concluded that, for
most data sets, non-parametric estimators (mostly
the Chao and jackknife estimators) performed bet-
ter than extrapolated asymptotic functions or other
parametric estimators.

In a second strategy for comparing diversity esti-
mators, the investigator specifies the true species
richness, the pattern of relative abundance, and
the spatial pattern of individuals in a computer-
simulated landscape. The program then randomly
samples individuals or plots, just as an ecologist
would do in a field survey. The estimators are then
calculated and compared on the basis of their abil-
ity to estimate the ‘true’ species richness of the
region. This kind of simulation can also be used
to explore the effects of spatial aggregation and
segregation, sampling efficiency, and the size and
placement of sampling plots. Brose et al. (2003) car-
ried out the most extensive analysis of this kind
to date. In their analyses, which estimator per-
formed best depended on the relative evenness
of the rank abundance distribution, the sampling
intensity, and the true species richness. As in the
empirical surveys (Walther & Moore 2005), non-
parametric estimators performed better in these
model assemblages than extrapolated asymptotic
curves (parametric estimators based on truncated
distributions were not considered). One encourag-
ing result was that environmental gradients and
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spatial autocorrelation (which characterize all bio-
diversity data at some spatial scales) did not have a
serious effect on the performance of the estimators.
These results are consistent with the findings of
Hortal et al. (2006), who aggregated empirical data
sets at different spatial grains and found that non-
parametric estimators were not greatly affected by
the spatial scale of the sampling.

O’Hara (2005) took a hybrid approach that used
both empirical data and simulated assemblages. He
first fit negative binomial and Poisson log-normal
distributions to two very extensive (but incomplete)
sets of survey data for moths. He used these fitted
models to generate sample data for comparing non-
parametric estimators, parametric estimators, and
extrapolated asymptotic curves. As in other studies,
true species richness was greater than predicted by
the estimators. In each comparison, only one of the
parametric estimators had a 95% confidence inter-
val that encompassed the true richness. The catch is
that this method worked well only when the ‘cor-
rect’ species abundance distribution was used. In
other words, the investigator would need to know
ahead of time that the negative binomial, Poisson
log-normal, or some other distribution was the cor-
rect one to use (which rather defeats the value of
using non-parametric estimators). Unfortunately, in
spite of decades of research on this topic, there is
still no agreement on a general underlying form of
the species abundance distribution, and there are
difficult issues in the fitting and estimation of these
distributions from species abundance data (see
Chapter 10). We hope that future work may lead to
better species richness estimators. At this time, the
non-parametric estimators still give the best perfor-
mance in empirical comparisons, and they are also
simple, intuitive, and relatively easy to use.

4.2.10 Software for estimating species
richness from sample data

Free software packages with tools for estimating
species richness from sample data include:

� EstimateS (Colwell 2009): http://purl.oclc.org/
estimates

� EcoSim (Gotelli & Entsminger 2009): http://
garyentsminger.com/ecosim/index.htm

� SPADE: http://chao.stat.nthu.edu.tw/software
CE.html

� VEGAN (for R): http://cc.oulu.fi/∼jarioksa/
softhelp/vegan.html.

4.3 Prospectus

Estimates of species richness require special sta-
tistical procedures to account for differences in
sampling effort and abundance. For comparing
species richness among different assemblages, we
recommend sample-based rarefaction using uncon-
ditional variances, with adjustments for the number
of individuals sampled. Rarefaction methods for
data that represent sampling from nature with-
out replacement are still needed, for small assem-
blages, as are additional estimators for the number
of shared species in multiple samples (A. Chao,
personal communication). For many datasets, all
existing methods for estimating undetected species
seem to substantially under-estimate the number
of species present, but the best methods nonethe-
less reduce the inherent undersampling bias in
observed species counts. Non-parametric estima-
tors (e.g. Chao1, Chao2) perform best in empirical
comparisons and benchmark surveys, and have a
more rigorous framework of sampling theory than
parametric estimators or curve extrapolations.

4.4 Key points

1. Biodiversity sampling is a labour-intensive activ-
ity, and sampling is often not sufficient to detect
all or even most of the species present in an
assemblage.

2. Species richness counts are highly sensitive to
the number of individuals sampled, and to
the number, size, and spatial arrangement of
samples.

3. Sensitivity to sampling effort cannot be
accounted for by scaling species richness as a
ratio of species counts to individuals, samples,
or any other measure of effort.

4. Sample-based and individual-based rarefaction
methods allow for the meaningful comparison of
diversity samples based on equivalent numbers
of individuals and samples.
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5. Non-parametric estimators of species richness,
which use information on the rare species in
an assemblage to adjust for the number species
present but not detected, are the most promising
avenue for estimating the minimum number of
species in the assemblage.
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