
Temperature Gradient

Derivation of dT/dr

In Modern Physics it is shown that the pressure of a photon gas in thermodynamic equilib-

rium (the radiation pressure PR) is given by the equation

PR =
1

3
aT 4, (1)

with a the radiation constant, which is related to the Stefan-Boltzman constant, σ, and the

speed of light in vacuum, c, via the equation

a =
4σ

c
= 7.565731× 10−16 J m−3 K−4. (2)

Hence, the radiation pressure gradient is

dPR
dr

=
4

3
aT 3dT

dr
. (3)

Referring to our our discussion of opacity, we can write

dF

dr
= −〈κ〉ρF, (4)

where F = F (r) is the net outward flux (integrated over all wavelengths) of photons at a

distance r from the center of the star, and 〈κ〉 some properly taken average value of the

opacity. The flux F is related to the luminosity through the equation

F (r) =
L(r)

4πr2
. (5)

Considering that pressure is force per unit area, and force is a rate of change of linear

momentum, and photons carry linear momentum equal to their energy divided by c, PR and

F obey the equation

PR =
1

c
F (r). (6)

Differentiation with respect to r gives

dPR
dr

=
1

c

dF

dr
. (7)

Combining equations (3), (4), (5) and (7) then gives

−1

c
〈κ〉ρL(r)

4πr2
=

4

3
aT 3dT

dr
, (8)
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which finally leads to
dT

dr
= − 3〈κ〉ρ

16πac

1

T 3

1

r2
L(r). (9)

Equation (9) gives the local (i.e. at a distance r from the center of the star) temperature

gradient that is required to maintain the local energy flow L(r). The latter will be determined

by how much energy is generated inside the sphere of radius r (through the quantity ε(r)

discussed in class). Inside a star, the ratio T 3/ρ does not vary enormously, and the required

dT/dr will be determined primarily by the opacity 〈κ〉 and the luminosity L(r). Large values

of either of these two may require large dT/dr’s, and the question then arises whether

the temperature gradient can increase without bound. The answer is it cannot. Once the

temperature gradient that is needed to carry energy outward by radiative diffusion were

to exceed (in absolute value) the adiabatic temperature gradient, large macroscopic cells of

gas will develop that rise a certain distance, cool, and sink again, thereby heating higher

layers in the star. We then have transport of energy through moving cells of gas, a process

called convection. The criterion (developed by Karl Schwarzschild in 1906) to decide whether

energy will be carried by convection is, if the absolute value of the local temperature gradient

exceeds the absolute value of the local adiabatic temperature gradient, the layer becomes

convective and energy will be carried outward through convective motions of blobs of gas.

In a convective layer, the actual temperature gradient will no longer be given by equation

(9), but by the adiabatic temperature gradient itself, given by the equation(
dT

dr

)
adiabatic

= (1− 1

γ
)
T

P

dP

dr
, (10)

with γ the ratio of specific heats at constant pressure and at constant volume,

γ =
cP
cV
. (11)

For a monatomic, ideal gas, γ is equal to 5/3.

Note that calculating the mean opacity 〈κ〉 is complicated. To a good first approximation,

this quantity is proportional to the density ρ and inversely proportional to the temperature

raised to a power 3.5. As a result, you will sometimes see the following approximation for

the mean opacity:

〈κ〉 = κ0Z(1 +X)ρT−3.5, (12)

with κ0 a constant, Z the fraction by mass of heavy elements, X the fraction by mass of

hydrogen, ρ the density and T the temperature. Equation (12) is called a Kramers opacity

law, named after H. A. Kramers who developed this expression in 1923 using classical physics.
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Adiabatic Temperature Gradient

Consider a gas at pressure P and temperature T , occupying a volume V . From thermody-

namics, for an adiabatic change of state, it follows that

PV γ = constant, (13)

with γ given by (11). Logarithmic differentiation gives

dP

P
+ γ

dV

V
= 0, (14)

or,
dP

P
− γ dρ

ρ
= 0. (15)

The equation of state of an ideal gas,

P =
ρ

µmp

kT, (16)

gives, after logarithmic differentiation,

dP

P
=
dρ

ρ
+
dT

T
. (17)

Equations (15) and (17) give equation (10), after some algebra.


