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ABSTRACT

For applications such as windstorm underwriting or storm-surge forecasting, hurricane wind profiles are
often approximated by continuous functions that are zero at the vortex center, increase to a maximum in
the eyewall, and then decrease asymptotically to zero far from the center. Comparisons between the most
commonly used functions and aircraft observations reveal systematic errors. Although winds near the peak
are too strong, they decrease too rapidly with distance away from the peak. Pressure–wind relations for
these profiles typically overestimate maximum winds.

A promising alternative is a family of sectionally continuous profiles in which the wind increases as a
power of radius inside the eye and decays exponentially outside the eye after a smooth polynomial tran-
sition across the eyewall. Based upon a sample of 493 observed profiles, the mean exponent for the power
law is 0.79 and the mean decay length is 243 km. The database actually contains 606 aircraft sorties, but 113
of these failed quality-control screening. Hurricanes stronger than Saffir–Simpson category 2 often require
two exponentials to match the observed rapid decrease of wind with radius just outside the eye and slower
decrease farther away. Experimentation showed that a fixed value of 25 km was satisfactory for the faster
decay length. The mean value of the slower decay length was 295 km. The mean contribution of the faster
exponential to the outer profile was 0.10, but for the most intense hurricanes it sometimes exceeded 0.5. The
power-law exponent and proportion of the faster decay length increased with maximum wind speed and
decreased with latitude, whereas the slower decay length decreased with intensity and increased with
latitude, consistent with the qualitative observation that more intense hurricanes in lower latitudes usually
have more sharply peaked wind profiles.

1. Introduction

In the first paper of this series (Willoughby and Rahn
2004, hereafter Part I), we showed that the most com-
monly used analytical representation of hurricane
winds’ radial structure (Holland 1980) suffers from sys-
tematic errors. Comparisons between statistically fitted

profiles and nearly 500 tropical cyclones observed by
aircraft demonstrated that, although the analytical pro-
files overestimate the width of the eyewall wind maxi-
mum, the wind decreases too rapidly with distance from
the maximum both inside and outside the eye. Since
variants of Holland’s profile are fundamental to appli-
cations such as modeling storm surge (Jelesnianski
1967) or windstorm risk (e.g., Vickery and Twisdale
1995), these shortcomings highlight the need for a more
realistic alternative.

Tropical cyclones are nearly circular vortices with
damaging winds concentrated in and around the eye-
wall. The geometric center of the clear eye or the stag-
nation point inside the eye defines a vortex center that
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can be tracked objectively. Thus, the center position
and intensity, measured in terms of maximum wind or
minimum sea level pressure, provide a first-order char-
acterization of tropical cyclones. Indeed, the HURDAT
file (Jarvinen et al. 1984), which constitutes the authori-
tative long-term hurricane climatology, contains exactly
that information. The role of “parametric” profiles is to
convert position and intensity into a geographical dis-
tribution of winds. The Holland profile employs three
parameters: maximum wind, radius of maximum wind,
and B, an exponent that sets the sharpness of the eye-
wall wind maximum. A key result of Part I was that,
even for an optimally chosen B, the magnitude of the
second derivative of the wind with respect to radius is
too small near the radius of maximum wind where the
profile is concave downward and too large away from
the maximum where the profile is concave upward.
Here we propose a new family of parametric profiles
that do not suffer from these limitations. The profile
wind is proportional to a power of radius inside the eye
and decays exponentially outside the eye with a smooth
transition across the eyewall. Least squares fits of these
profiles to the same sample of aircraft observations
used in Part I validate them and provide statistical es-
timates of their parameters. Section 2 of this paper for-
mulates the new family of profiles and describes the
least squares fitting procedure. Subsequent sections
present profiles with a single outer exponential decay
length, and with a superposition of two outer exponen-
tials. Section 5 considers alternative profile formula-
tions and addresses hydrodynamic stability of the fitted
vortices. Section 6 summarizes results and draws con-
clusions.

2. Analysis

a. Profile formulation

Piecewise continuous wind profiles (e.g., Willoughby
1995) show promise as an alternative to the Holland
model. They are composed of analytical segments
patched smoothly together (Fig. 1). Inside the eye the
wind increases in proportion to a power of radius. Out-
side the eye, the wind decays exponentially with a ra-
dial e-folding distance that changes from storm to
storm. The transition across the radius of maximum
wind from the inner to outer profiles is accomplished with
a smooth, radially varying polynomial ramp function:

V�r� � Vi � Vmax� r

Rmax
�n

, �0 � r � R1�, �1a�

V�r� � Vi�1 � w� � Vow, �R1 � r � R2�, �1b�

V�r� � Vo � Vmax exp��
r � Rmax

X1
�, �R2 � r�, �1c�

where Vi and Vo are the tangential wind component in
the eye and beyond the transition zone, which lies be-
tween r � R1 and r � R2; Vmax and Rmax are the maxi-
mum wind and radius at which the maximum wind oc-
curs; X1 is the exponential decay length in the outer
vortex; and n is the exponent for the power law inside
the eye. Note that both Vi and Vo are defined through-
out the transition zone and that both are equal to Vmax

at r � Rmax.
The weighting function, w, is expressed in terms of a

nondimensional argument � � (r � R1)/(R2 � R1).
When � � 0, w � 0; when � � 1, w � 1. In the subdo-
main 0 � � � 1, the weighting is defined as the poly-
nomial

w��� � 126�5 � 420�6 � 540�7 � 315�8 � 70�9, �2�

which ramps up smoothly from zero to one between R1

and R2. As described in the appendix, the weighting
function is derived by integration of a bell-shaped poly-
nomial curve given by C[�(1 � �)]k when (0 � � � 1)

FIG. 1. (a) Schematic illustration of a sectionally continuousù
hurricane wind profile (shading) constructed by joining an inner
profile with swirling wind proportional to a power of radius and
an outer profile with swirling wind decaying exponentially with
distance outside the radius of maximum wind (darker curves). (b)
In a zone spanning the radius of maximum wind, a polynomial
ramp weighting function is used to create a smooth transition
between the inner and outer profiles.
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and zero elsewhere. The coefficient C is chosen to make
w(1) � 1, and the exponent k is the “order” of the bell
and ramp curves, even though the resulting polynomi-
als are of order 2k and 2k � 1, respectively. We have
coined the term “bellramp” functions to denote this
family of polynomials. Since the shapes of fitted pro-
files are insensitive to the order of the polynomials, we
selected fourth-order ramp functions for smoothness
and differentiability.

Based upon parameters Rmax, Vmax, X1, and n, the
full wind profile is constructed as follows. First, the
width of the transition R1 � R2 is specified a priori at a
value between 10 and 25 km. Then, the location of the
transition zone is determined by requiring the radial
derivative of (1b) to vanish at r � Rmax, recognizing
that Vi(Rmax) � Vo(Rmax) � Vmax. This condition yields
the value of w at the wind maximum:

w�Rmax � R1

R2 � R1
� �

�Vi

�r

�Vi

�r
�

�Vo

�r

�
nX1

nX1 � Rmax
, �3�

which may be solved for R1 through numerical inver-
sion of (2).

As shown subsequently, in many situations the pro-
file described by (1a)–(1c) suffers from the problem
that vexed the Holland profile in Part I. Relatively large
values of X1 chosen to generate profiles that match the
outer part of the vortex may fail to capture the rapid
decrease of wind just outside the eyewall; conversely,
smaller values of X1 generate profiles that match the
steep gradient outside the eyewall and decrease too
rapidly farther from the center. Often there is no inter-
mediate value that can fit the observations in both parts
of the domain. Although this difficulty is less pro-
nounced than for the Holland profile, it is still prob-
lematic. A remedy entails replacement of the single
exponential with the sum of two exponentials with e-
folding lengths X1 and X2:

Vo � Vmax��1 � A� exp��
r � Rmax

X1
�

� A exp��
r � Rmax

X2
��, �R1 � r�, �4)

where the parameter A sets the proportion of the two
exponentials in the profile, and the rightmost expres-
sion in (3) becomes n[(1 � A)X1 � AX2]/{n[(1 � A)X1

� AX2] � Rmax}. Figure 2 illustrates application of (4)
to Hurricane Diana of 1984. Clearly, the dual-
exponential profile captures the profile’s sharpness at
the radius of maximum wind as well as the more

gradual decrease of wind at radii farther from the eye-
wall. There is an issue of nonuniqueness in this formu-
lation. Several different combinations of X1, X2, and A
can often fit a given set of observations equally well.
This situation complicates statistical estimation of the
profile parameters, so that we generally fit A and one
variable decay length, keeping the other decay length,
usually the shorter one, fixed. Thus, most of this paper
will deal with either single-exponential profiles or dual-
exponential profiles with one predetermined decay
length.

In this formulation, unlike the Holland profile, there
is no closed-form relation for the gradient-balance geo-
potential height in terms of the vortex parameters.
Thus, the geopotential height is computed through out-
ward numerical integration of the gradient wind accel-
eration from the observed height at the vortex center of
the standard isobaric surface nearest flight level,

Z�r� � Zc �
1
g �

0

r

�V2�r��

r�
� fV�r��� dr�, �5�

where Z(r) is the height of the specified surface, Zc is
Z(0), and g is the acceleration of gravity. Setting the
upper bound on the integral to infinity in (5) produces
a gradient balance estimate of the undisturbed geopo-
tential around the storm, Ze � Z(r → �). Based upon
this integral it is possible to relate Vmax to Ze � Zc in
order to devise height–wind relations for the single-
exponential and dual-exponential profiles. A key ad-

FIG. 2. A dual-exponential profile used to approximate the ob-
served wind in Hurricane Diana on 11 Sep 1984. Here and sub-
sequent shading indicates observed winds, and the darker curves
indicate the fitted profiles.
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vantage of using exponential functions to describe the
outer profile is that it guarantees a well-behaved
height–wind relationship as well as finite values for vor-
tex total relative angular momentum and kinetic en-
ergy.

b. Profile fitting

Single-exponential profiles have four parameters
Rmax, Vmax, X1, and n. Dual-exponential profiles with
one predetermined decay length have five parameters
(Rmax, Vmax, X1, A, and n), and dual-exponential pro-
files with both decay lengths free have six parameters
(Rmax, Vmax, X1, X2, A, and n). As in Part I, Vmax and
Rmax are determined by scanning each profile for the
strongest reported wind and its radial position. This
procedure leaves the single-exponential, constrained
dual-exponential, and free dual-exponential profiles,
respectively, with two, three, and four parameters that
require least squares fitting to the data. The cost func-
tion is the same as that used in Part I,

S2 � �
k�1

K

	vo�rk� � vg�rk, n, X1, . . .�
2

� g	zo�rk� � z�rk, n, X1, . . .�
2Lz
�1. �6�

It is the summed squares of the differences between the
profile and observed tangential wind and between the
computed geopotential height (5) and the observed
height of the isobaric surface nearest the aircraft flight
level. Since the parameter space has relatively few di-
mensions and the cost function is essentially a parabola,
we use the simplex algorithm (Nelder and Mead 1965;
Press et al. 1986) to find the minimum value of S2. Here
Lz is a Lagrange multiplier that sets the strength of the
gradient balance constraint and also makes (6) dimen-
sionally homogeneous with units of velocity squared;
we set Lz � 1 km, the same value used in Part I.

Ranges of the fitted parameters are constrained with
Lagrange multipliers, for example, 0.4 � n � 2.4 or 0 �

A � 1, to prevent the algorithm from wandering into
physically unrealistic parts of the parameter space.
Typical minimum values of S2 are a few hundred to a
few thousand m2 s�2, and the penalties imposed outside
the preferred subdomain by the Lagrangian constraints
are 2–5 � 103 m2 s�2. The constraints generally have
limited effect on the fitted parameters inasmuch as the
simplex algorithm almost always finds values within the
preferred subdomain. Two exceptions to this generality
are A � 0 or 1, which characterize profiles where X1 or
X2 can represent the shape of the “dual exponential”
outer profile completely. The constraint on the mini-
mum decay lengths generally is set for values greater

than 50–100 km, but the minimization algorithm sel-
dom selects values that small. By contrast, the upper
bound on decay lengths does exert significant control
over the fitted profiles. In some tropical cyclones where
the wind remains fairly constant from just outside the
eyewall to the sampling domain boundary, the uncon-
strained algorithm will seek decay lengths �1000 km.
Since the values of Ze that result from integration of (5)
in these situations may be greater than Za, the height of
the isobaric surface in climatologically representative
soundings (Jordan 1958; Sheets 1969), we generally set
an upper bound of a few hundred kilometers on the
longer decay length. Tuning of this constraint is dis-
cussed extensively in the next two sections, since it is
important to obtaining realistic fits.

The data for the least squares fits are the same as
those used in Part I. They contain 606 logical sorties
into Atlantic and eastern Pacific tropical storms and
hurricanes flown by National Oceanic and Atmospheric
Administration (NOAA) and Air Force Reserve air-
craft between 1977 and 2000 and are representative in
terms of geographical and seasonal distribution. They
are divided into “logical sorties,” each a series of suc-
cessive transects across the tropical cyclone center at
fixed altitude, usually flown by one aircraft during the
course of a few hours. Although there are a few sorties
with 300-km domains, most extend to �150 km. The
variables are expressed in a cylindrical coordinate sys-
tem that moves along the objectively determined cy-
clone track. The observed dynamic and kinematic vari-
ables are transformed into vortex-centered coordinates
and averaged azimuthally around the vortex to produce
a profile composite (PCMP) file for each sortie. The
least squares fits use the PCMP files. Predominant
flight levels were 850 and 700 hPa (1.5 and 3 km), but
some missions (generally in weaker storms) were flown
as low as 950 hPa (500 m) and as high as 400 hPa (7
km). Although depressions and weak tropical storms
are underrepresented, the sample is reasonably repre-
sentative in terms of cyclone intensity. Of the original
sample, 113 failed quality-control (QC) criteria that
screened out profiles where the radius of maximum
wind was more than half the sampling domain or where
the data fail to describe a well-defined dynamic center
inside the eye. The 493 PCMP files that met the QC
criteria are homogeneous with the sample used in
Part I.

3. Single-exponential profile

The single-exponential profile is the simplest of the
new functional forms. Since the Lagrange multiplier
constraint on the maximum value of X1 is the only tun-
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ing required, we examine its effect first, by a series of
five least squares fits to the entire sample with X1 �

200, 400, 600, 800, and 1000 km (Fig. 3a). The mean
value of X1 increases from 203 to 249 km over this
range of upper bounds. For most individual sorties, the
constraint has no effect, but for a few the fitting algo-
rithm selects larger values of X1, increasing the sample
average, as the constrained upper bound increases. If
one compares the average difference between Ze , the
computed environmental geopotential height from (5),
and Za, the climatologically expected value, the com-
puted values are always too low, despite the problem
with too-large values of X1 for some sorties. The value
of Ze � Za increases from �18.3 m when the constraint
requires X1 � 200 km to �5.4 m when X1 � 1000 (Fig.
3b). Most of the increase happens between X1 � 200
km and X1 � 600 km. It is important to recognize that
the decrease in magnitude of the negative environmen-
tal–height bias stems from compensating errors. For
most PCMP files, the single-exponential fitting algo-
rithm selects too-small values of X1 that lead to under-
estimated values of Ze. Relaxing the upper constraint
on X1 causes a few PCMP files to produce overesti-
mates of Ze , which increases the average toward the
hoped-for zero bias. For this reason, we set the decay
length Lagrange multiplier constraint to 50 � X1 � 600
km, which produces Ze � Za � �7.4 m. This value of
the constraint produces mean parameters, n � 0.79 �
0.34 and X1 � 243 � 141 km. The mean difference
between the fitted and observed winds is essentially
zero, and the rms error is 2.5 m s�1 (dependant data).
The bias and rms errors in geopotential height are 1.3
and 10.4 m. There is a positive Z bias, largely confined
inside the 150-km domain where the curve fitting is
done. The bias reverses as the integral in (5) is contin-
ued beyond 150 km, where V decreases too rapidly with
distance from the vortex center.

For Hurricane Anita of 1977 (Fig. 4), chronologically
the first tropical cyclone in the database, the fitting
algorithm selects n � 1.16 and X1 � 100.7 km as the
optimum fit. The rms wind and height errors are larger
than average for single-exponential profiles, 4.6 m s�1

and 18.8 m, respectively, with essentially zero wind bias
and 5.4-m positive height bias. Comparison of the wind
and geopotential height variations shows a negative
height bias due to underestimation of the wind inside
the eye. The bias changes over to positive beyond about
twice the eye radius because the fitted winds are too
strong outside the eye. Farther from the center, the
negative height bias decreases in magnitude slowly be-
cause the fitted winds are too weak beyond 100-km
radius. It is disappointing to see this pattern of errors
emerge here because it is similar, though less pro-

nounced, to the one that characterized the Holland pro-
file in Part I.

The single-exponential profile depicts other tropical
cyclones with somewhat more fidelity. In Part I, Hur-
ricane Mitch of 1998 was one of the most successful
Holland-profile fits. Here, the single-exponential fit
(Fig. 5a, n � 0.69, X1 � 119 km) does about as well,
although the wind maximum is too narrow. The Hol-
land fit to Hurricane Hugo of 1989 was less successful
because the fitted wind maximum was too broad and
the wind decreased too rapidly with radius beyond 80
km. The corresponding single-exponential profile (Fig.
5b, n � 1.67, X1 � 145 km) fitted both the primary wind
maximum and the profile within 120 km of the center
closely, but could not represent the outer wind maxi-
mum present beyond 120-km radius. Despite improve-
ments with the sectionally continuous fitted profiles,

FIG. 3. Variation of (a) outer exponential decay length and (b)
difference between computed and climatological environmental
geopotential heights as functions of the Lagrange multiplier con-
straint on the maximum decay length for single-exponential pro-
files.
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both Mitch and Hugo exhibit the same pattern of errors
that appeared in Anita and in the Holland profiles.

Edouard of 1996 was another successful Holland pro-
file because its broad wind maximum and gradual de-
crease of wind outside the eye could be fitted by the
Holland profile with a relatively small value of B �
0.86. The single-exponential fit (Fig. 5c, n � 0.41, X1 �
588 km), with its small exponent inside the eye and long
decay length, captures most features of the data except
for the broad shoulder of the profile inward from the
wind maximum. Erika of 1997 was a relatively unsuc-
cessful Holland fit because the Holland profile was un-
able to match its sharp wind maximum, even with a

relatively large B � 1.17. The single-exponential profile
(Fig. 5d, n � 0.581, X1 � 178 km) was able to represent
its shape more accurately. Thus, despite some limita-
tions, the added degrees of freedom here produce sig-
nificant improvement over the Holland formulation.

Description of hurricane wind profiles in terms of the
sample-mean values of n and X1 misses systematic
variations of vortex structure because all four param-
eters of the single-exponential profile are correlated
with each other. A regression line fitted to X1 decreases
from 368 to 86 km as Vmax increases from 10 to 70 m s�1

(Fig. 6a). Over the same interval, n increases from 0.43
to 1.24 (Fig. 6b). Although the slopes of both curves
differ from zero at better than 1% significance, there is
considerable scatter around the regression lines. In Fig.
6a, the points that cluster near X1 � 600 km and Vmax

between 10 and 42 m s�1 have values limited by the
Lagrange multiplier constraint, whereas the others are
unaffected. Only a few of the n values in Fig. 6b ap-
proach the Lagrange multiplier limits. The relatively
large values of X1 found here show that real hurricane
vortices are broader than many analytical models used
in theoretical studies. This result is consistent with the
argument of Mallen et al. (2005) that hurricanes in na-
ture are more resistant to environmental shear than
these theoretical arguments lead one to expect.

The means, standard deviations, and the correlation
matrix among the parameters (Table 1a) summarize all
possible linear relations. As shown in Part I, these sta-
tistics contain enough information to prepare linear es-
timators of the parameters. The eigenvalues and eigen-
vectors of the correlation matrix (Table 1b) reveal sys-
tematic patterns of variation. The leading eigenvector,
E1, which explains 50% of the parameter standard-
ized variance, delineates increasing n and decreasing X1

correlated with increasing Vmax, decreasing latitude,
and decreasing ln Rmax. In qualitative terms, E1 depicts
shrinking of the eye and sharpening of the eyewall wind
maximum with increasing intensity and lower latitude.
It is the same physical association as the “convective
ring” leading eigenvector in Part I where decreasing
Rmax and increasing B were associated with intensifica-
tion and lower latitude. In both cases, sharpening of the
eyewall wind maximum and shrinking of the eye in
more intense hurricanes is consistent with the response
of balanced hurricane-like vortices to heating around
the eye (Smith 1981; Shapiro and Willoughby 1982;
Schubert and Hack 1982). The second eigenvector, E2,
projects almost entirely onto latitude, associated to
some extent with intensity. The qualitative impression
is that tropical cyclones in the early and late stages of
their life cycles, where intensification through convec-
tive heating is either not well established or has run its

FIG. 4. Single-exponential (a) wind and (b) geopotential height
profiles fitted to Hurricane Anita of 1977. Observed and fitted
profiles are as indicated in Fig. 2.
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course, project onto E2. Eigenvectors E1 and E2 com-
bined explain 70% of the standardized parameter
variance. It is difficult to advance physical interpreta-
tions for the remaining eigenvectors, which together
explain �30% of the standardized parameter variance.

As described in Part I, the ratio of the standard, mul-
tivariate normal probability density described by the
correlation matrix (Table 1a) to the unconditional
probability density of Vmax and � is the probability den-

sity of ln Rmax, n, and X1 conditional upon the known
values of Vmax and �. This last distribution contains
linear regression relations for the unknown parameters
in terms of the known:

Rmax � 46.4 exp��0.0155Vmax � 0.0169��, �7a�

X1 � 270.5 � 4.78Vmax � 6.176�, �7b�

n � 0.431 � 0.136Vmax � 0.006�. �7c�

FIG. 5. Single-exponential wind profiles fitted to Hurricanes (a) Mitch of 1998, (b) Hugo of 1989, (c) Edouard
of 1996, and (d) Erika of 1997. Observed and fitted profiles are indicated as in Fig. 2.
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All of the coefficients in (7a)–(7c) differ from zero with
better than 1% statistical significance. The statistical
distribution Rmax is skewed toward large values so that
it is more nearly lognormal than normal (Part I).

Substitution from (7a)–(7c) into (5) and continuation
of the integral to large (1200 km) radius for increment-
ing values of maximum wind produces a table of (Ze �
Zc) as a function of Vmax. Since an algebraic relation
between minimum height and maximum wind is more
useful than a table, we fit the tabular output with
power-law expressions similar to that used by Atkinson
and Holliday (1977). For example, at 25°N, the rela-
tion between minimum isobaric height and maximum
wind is

Vmax � 0.652�Ze � Zc�
0.724. �8�

This relation takes into account the sharpening of the
profile with intensity embodied in E1, whereas if one
substitutes mean values of Rmax, n, X1, and � into (7a)–
(7c), the profiles scale only as Vmax so that there is a
“universal” height–wind relation with wind propor-
tional to the square root of the height fall:

Vmax � 2.16�Ze � Zc. �9�

In Part I, an empirical fit of maximum wind to height
fall yielded a similar relation with a coefficient of 2.10,
based upon all the PCMP files, including the 113 pro-
files excluded here because they failed the QC criteria.
The next section will deal more completely with the
dynamically calculated height–wind relations for dual-
exponential profiles.

As in Part I, bootstrap comparisons among subsets of
the data provide an assessment of fitted profiles ability
to represent independent data. The sample is divided
into three subsets, spanning the years 1977–89, 1990–95,
and 1996–2000, inclusive. Regression relations analo-
gous to (7a)–(7c) were computed based upon all pos-
sible pairs of subsets and used to model the profiles in

FIG. 6. Scatterplots and regression lines for fitted (a) single-
exponential outer decay length and (b) power-law exponent as
functions of maximum wind. Shaded circles represent parameter
values determined for individual profiles by the fitting algorithm.

TABLE 1. (a) Mean, std dev, and correlation matrix for the single-exponential profile variables computed from the 493 sorties that
passed QC screening. For Rmax the entries are the geometric mean in kilometers and the logarithmic standard deviation. (b) Eigen-
values and eigenvectors of the correlation matrix.

(a)

Distribution Correlation matrix

Mean Std dev Z1 Z2 Z3 Z4 Z5

Z1(Vmax) 36.7 13.7 1.000 �0.398 �0.018 �0.468 0.561
Z2(ln Rmax) 39.3 0.53 �0.398 1.000 0.200 0.454 �0.602
Z3(� ) 23.9 6.15 �0.018 0.200 1.000 0.278 �0.115
Z4(X1) 242.9 141.3 �0.468 0.454 0.278 1.000 �0.424
Z5(n) 0.79 0.34 0.561 �0.602 �0.115 �0.424 1.000

(b) Eigenvector E1 E2 E3 E4 E5

Eigenvalue 2.518 1.026 0.625 0.495 0.335
Z1(Vmax) 0.470 �0.346 �0.450 0.505 �0.449
Z2(lnRmax) �0.497 �0.012 �0.598 0.372 0.507
Z3(� ) �0.197 �0.896 �0.014 �0.392 0.057
Z4(X1) �0.474 �0.184 0.565 0.602 �0.244
Z5(n) 0.518 �0.207 0.346 0.300 0.692
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the subset excluded from each pair. In Part I, compari-
son of histograms of wind speed for both dependant
and bootstrap data showed that the Holland profile ex-
aggerated the occurrence of wind speeds 50 m s�1 by
20%–50%. The Holland profile also overstated the oc-
currence of winds �10 m s�1 and understated that of
winds between 20 and 40 m s�1.

With dependant data (Fig. 7a), in which the param-
eters are applied on a profile-by-profile basis to the
data from which they were computed, the single-
exponential profile also overestimates the occurrence
of winds 40 m s�1, but by �10%. For weaker winds,
over- and underestimation are mixed, with some pre-
ponderance of the latter. With dependant-data linear
modeling of the parameters based upon all profiles that
passed QC, the pattern is much the same, although oc-
currences of winds 70 m s�1 and �10 m s�1 are un-
derestimated. Linearly modeled bootstrap parameters
applied to the complete dataset (Fig. 7b) are consistent
with the dependant-data results, but understate the oc-
currence of weak winds to a somewhat greater extent.
Use of mean values of the parameters greatly over-
states the frequency of winds 40 m s�1. Thus, while
the sectionally continuous, single-exponential profile
fixes some of the Holland profile’s limitations, there is
still room for improvement.

4. Dual-exponential profiles

Although the principle of least hypothesis makes the
single-exponential profiles seem attractive, their ten-
dency toward a too-gradual radial decrease of wind
with increasing radius just outside the eyewall and a
too-rapid decrease at large radius, their systematic un-
derestimation of the geopotential height fall from the
vortex surroundings to center, and their overstating of
the frequency of very strong and very weak winds, lead
us to seek alternatives. The simplest option is inclusion
of a second exponential in the outer vortex. Our origi-
nal idea was to include a fixed slowly decaying expo-
nential in order to flatten the profile at large radius and
then determine the faster decay length and its relative
contribution with the fitting algorithm. The difficulty
with this strategy lies in the ambiguous separation be-
tween the roles of the two exponentials in the cost-
function minimization algorithm. Section 5 summarizes
both this formulation and one where both decay lengths
are determined variationally.

After some experimentation, we found that the best
version of (4) employed these outer-vortex parameters:
X2, the fixed rapid decay length, X1, the fitted slower
decay length, and A, the fitted contribution of the faster
exponential to the profile. Subjective tuning showed

that a wider transition, 25 km instead of 10 km, was
required to avoid understating the frequency of the
strongest winds with this formulation. Since smaller val-
ues of X2 produced smaller rms differences between the
observed and fitted wind profiles and smaller relative
contributions by X2 to the fitted profile, we selected the

FIG. 7. Histograms of wind speed for observed and single-
exponential profiles: (a) dependant-data observed (gray), com-
puted from profile-specific fitted parameters (cross-hatched), and
computed from linearly estimated parameters for profiles that
passed QC (black). (b) Complete-sample observed (gray), com-
puted from linearly estimated parameters (cross-hatched), and
computed from sample mean parameters (black). Both (a) and (b)
use observed radius of maximum wind.
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most rapid decay length that seemed physically reason-
able, 25 km, and applied a Lagrange multiplier con-
straint to keep X1 � 100 km. The upper bound on X1

was adjusted experimentally to bring the average value
of (Ze � Za) close to zero (Fig. 8a). The value that met
this criterion was X1 � 450 km. As the upper constraint
on X1 relaxed, the average value increased (Fig. 8b),
but A remained essentially constant (Fig. 8c). The av-
erage fitted values of n, X1, and A are 0.85, 288.5 km,
and 0.10. The rms and bias wind and height differences
between the fitted and observed profiles are 2.03 m s�1,
�0.07 m s�1, 11.1 m, and 1.15 m. These values were
relatively insensitive to the upper bound on X1 pro-
vided that it was 400 km. Thus, use of two exponen-
tials reduces the rms wind error by about 20% relative
to the single-exponential formulation, but reduces the
wind bias and height errors by only a small amount.
Because the faster decay length can fit the rapid de-
crease of wind speed outside the eyewall, the fitting
algorithm usually selects a larger value of X1 for the
dual-exponential profile than it did with the single-
exponential profile. Thus, stronger winds that extend
farther from the center and integration of (5) to 1200-
km radius can produce zero average difference between
the calculated and climatologically expected environ-
mental geopotential height.

In only 167 of the cases that passed QC did the fitting
algorithm select A  0. In the other 326 cases—about
2/3 of the total—A � 0 produced the smallest S2 so that
the single-exponential fit was superior to the dual-
exponential fit. The average nonzero value of A was
0.26. Cyclones with nonzero A were stronger, average
Vmax � 43.8 m s�1, compared to those with A � 0,
average Vmax � 33.1 m s�1.

Despite the relatively small improvement in wind er-
rors, the qualitative appearance of many fitted profiles
was more realistic. In Hurricane Anita, where the al-
gorithm selected X1 � 301 km and A � 0.41, the fitted
and observed profiles are virtually identical (Fig. 9),
whereas the single-exponential fit with X1 � 100 km
was only slightly better than the corresponding Holland
fit. For Hurricane Mitch (Fig. 10a), the dual-exponential
fit selected X1 � 156 km and A � 0.14. The new X1 was
only 30% larger than the corresponding single-
exponential value, but the dual-exponential fit was no-
ticeably better beyond 40-km radius. In both Hugo
(Fig. 10b) and Edouard (Fig. 10c), the fitting algorithm
chose A � 0. The single-exponential fit was optimum in
these cyclones and the fitted profiles were identical to
those shown in Fig. 5, apart from the effect of the wider
transition zone. For Erika (Fig. 10d), the algorithm
again chose a relatively small value of A � 0.13, and a
relatively larger value of X1 � 318 km, approximately

FIG. 8. Variation of (a) difference between computed and cli-
matological environmental geopotential heights, (b) outer expo-
nential decay length, and (c) fraction of the profile contributed by
the shorter exponential with 25-km decay length as functions of
the Lagrange multiplier constraint on the maximum longer decay
length for dual-exponential profiles.
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double the single-exponential value in Fig. 5. Figures 9
and 10 are typical of the dual-exponential fits. For some
hurricanes, generally those with Vmax  55 m s�1, non-
zero values of A produce substantially more realistic
fits. For some weaker hurricanes, values of A between
the sample average and zero produce incremental im-
provements. A key advantage of this formulation is that
the fitting algorithm can select A � 0 for cyclones
where the single-exponential fit is optimum, as illus-
trated for Hugo and Edouard.

Scatter diagrams of A, X1, and n as functions of Vmax

are consistent with this interpretation. Values on a re-
gression line fitted to X1 decrease from 352 to 211 km
as Vmax increases from 5 to 75 m s�1. Although few

values of X1 are limited by the Lagrange multiplier
minimum constraint 100 km � X1, �25% of them clus-
ter along the maximum constraint X1 � 450 km (Fig.
11a). The reason for this difference from the single-
exponential case (Fig. 6) lies in the tighter constraint
and the dual-exponential profiles’ ability to represent
sharp gradients near the eyewall with the X2 part of the
profile while representing the outer vortex with larger
values of X1. Nonzero values of A correspond to partial
projection onto the X2 component (Fig. 11b). The re-
gression line for this parameter is not allowed to extend
to negative values so that A � 0 for Vmax � 20 m s�1

and increases to 0.29 at Vmax � 75 m s�1. Still, in
roughly two-thirds of the sorties, A � 0, so that the
single-exponential profile is actually the optimum fit, as
discussed above and illustrated in Figs. 9 and 10. The
exponent of the power-law profile inside the eye is a bit
larger than in the single-exponential profile because of
the wider transition region (Fig. 11c). Only about 4% of
the values are greater than two, but 70% of them
are �1.

The parameter correlation matrix (Table 2a) is for
the most part consistent with that for the single-
exponential and Holland profiles. Here, A, X1, and n
play the same role as B in the Holland profile. The
leading eigenvector, which explains 40% of the stan-
dardized parameter variance, is the same as the one
recognized in the previous situations. It describes
sharpening of the wind maximum and shrinking of the
radius of maximum wind in more intense tropical cy-
clones—the convective ring phenomenon. This eigen-
vector has a larger eigenvalue than the corresponding
single-exponential eigenvector, but it explains less of
the variance because the total standardized parameter
variance is 6 instead of 5. A key difference between the
single- and dual-exponential profiles is the stronger
projection of this eigenvector onto A and n compared
with X1. The second eigenvector describes simulta-
neous reduction in X1 and A associated (weakly) with
increasing intensity. It may reflect the nonuniqueness
inherent in approximation of curves by sums of expo-
nentials. That is, a smaller variable decay length with
less contribution from the fixed decay length may fit a
given profile just as well as a larger variable decay
length with more contribution from the fixed exponen-
tial. The third eigenvector is the same as the second
eigenvector identified in the Holland and single-
exponential cases. It projects almost entirely onto lati-
tude. Together, these first three eigenvectors explain
nearly 80% of the parameters’ standardized variance.

As in the single-exponential case, the correlations in
Table 2a yield linear regression relations to predict

FIG. 9. Dual-exponential (a) wind and (b) geopotential height
profiles fitted to Hurricane Anita of 1977. Observed and fitted
profiles are as indicated in Fig. 2.
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lnRmax, n, X1, and A based upon knowledge of the vari-
ables that characterize hurricanes in the HURDAT file,
Vmax and �. Since the regression relation for Rmax is
identical with (7a), it is not repeated here,

X1 � 317.1 � 2.026Vmax � 1.915�, �10a�

n � 0.4067 � 0.0144Vmax � 0.0038�, �10b�

A � 0.0696 � 0.0049Vmax � 0.0064�, �A � 0�. �10c�

The coefficients in (10a)–(10c) differ from zero at bet-
ter than 1% significance, except for the last (�) coeffi-
cients in (10a) and (10b), which are significant at 1.4%
and 16%, respectively. Alternative regression relations
that use radius of maximum wind as an independent
variable in addition to maximum wind and latitude are

X1 � 287.6 � 1.942Vmax � 7.799 lnRmax � 1.819�,

�11a�

FIG. 10. Dual-exponential wind profiles fitted to Hurricanes (a) Mitch of 1998, (b) Hugo of 1989, (c) Edouard
of 1996, and (d) Erika of 1997. Observed and fitted profiles are as indicated in Fig. 2.
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n � 2.1340 � 0.0077Vmax � 0.4522 lnRmax � 0.0038�,

�11b�

A � 0.5913 � 0.0029Vmax � 0.1361 lnRmax

� 0.0042�, �A � 0�. �11c�

As above, all of the coefficients differ from zero at
better than 1%, except for the next-to-last coefficient
(ln Rmax) in (11a), 50%, and the last (�) coefficients in

(11a) and (11b), 2.5% and 8.5%, respectively. The co-
efficients are so different between these two sets of
equations because in (10a)–(10c) variations of the de-
pendant variables that would project onto ln Rmax—if it
were an independent variable—project instead onto
Vmax and � through their correlations with ln Rmax.

Here we treat in more detail derivation of height–
wind relations based upon the regression relations for
the parameters. As in section 2, substitution from
(10a)–(10c) into (5) and integrating to 1200-km radius
produces Ze � Zc as a function of Vmax. Algebraic re-
lations between minimum height and maximum wind
are derived by fitting power-law expressions to the re-
sulting tabular data:

Vmax � 0.929�Ze � Zc�
0.659, �� � 15�N�, �12a�

Vmax � 0.661�Ze � Zc�
0.701, �� � 25�N�, �12b�

Vmax � 0.508�Ze � Zc�
0.730, �� � 35�N�, �12c�

Vmax � 0.410�Ze � Zc�
0.752, �� � 45�N�, �12d�

Vmax � 2.20�Ze � Zc �mean lnRmax, �, n, X1, and A�.

�12e�

Although the coefficients in these relations vary con-
siderably, the predicted values are surprisingly consis-
tent, both with each other and with observed Vmax as a
function of Ze � Zc (Fig. 12). The mean and rms errors
for the complete dataset computed with (12a)–(12d)
using data stratified by 10° latitude bands are 0.85 �
5.92 m s�1. With the data pooled and the square root
relationship (12e), the error is 1.48 � 5.87 m s�1. These
errors are essentially the same as those with the depen-
dant-data height–wind relations fitted to the complete
dataset in Part I. Not surprisingly, (12e), the mean-
parameter height–wind relation overestimates the
maximum wind in weaker tropical cyclones and under-
estimates it in stronger ones because it fails to account
for the statistical sharpening of the profile with inten-
sity. The scatter of the actual maximum winds as a func-
tion of height difference is greater than can be ac-
counted for by latitude differences in (12a)–(12d), and
much of it is due to random variations of the param-
eters not captured by the regression relations. The er-
rors from (12a)–(12d) are significantly smaller than the
corresponding errors with the Holland profile using lin-
early estimated B in Part I, �2.53 � 6.48 m s�1. From
the combined analysis here and in Part I, it appears
difficult to derive a height–wind relationship that can
estimate maximum wind with an rms error appreciably
smaller than 6 m s�1.

Dependant-data histograms of the observed and fit-

FIG. 11. Scatterplots and regression lines as functions of maxi-
mum wind for fitted (a) dual-exponential longer (solid) and
shorter (dashed, fixed at 25 km) decay lengths, (b) fraction that
the shorter decay length contributes to the outer profile, and (c)
inner vortex power-law exponent. Shaded circles represent pa-
rameter values determined by the fitting algorithm.
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ted-profile winds show gratifying agreement (Fig. 13a)
using both profile-specific parameters and linearly es-
timated parameters. The only noticeable problems are
overestimation of the frequency of winds between 60
and 70 m s�1 and underestimation the frequency of
winds between 70 and 80 m s�1 by �10%. Bootstrap
validation with linearly estimated parameters (Fig. 13b)
increases the overestimation of wind occurrence in the
60–70 m s�1 bin, causes underestimation in the �10
m s�1 bin, and reduces the error in the 70–80 m s�1 bin.
Consistent with the Holland and single-exponential ex-
perience, average values of the parameters overesti-
mate occurrences on both the high- and low-speed tails
of the wind distribution.

5. Discussion

a. Other formulations

Two other ways to fit dual exponentials to the outer-
profile data involve setting X2 to a fixed value of 300–
500 km and searching variationally for A and X1 with
the latter parameter limited to values �25–150 km.
This approach has five parameters, the same number as
in section 3. Alternatively, both X1 and X2 may be
sought through a free dual-exponential variational
search. This approach has a total of six parameters:
Vmax, Rmax, n, X1, A, and X2, four of which must be
sought with the fitting algorithm. Both of these ap-
proaches are compromised by the proliferation of po-
tentially spurious correlations among parameters and
the multiple ways that different combinations of param-
eters can fit the same data equally well.

Figure 14 shows scatter diagrams of the free dual-
exponential outer-vortex parameters with Lagrange
multiplier constraints 100 � X1 � 450 and 25 � X2 � 75
km. Because the constrains are “soft” in the sense that

FIG. 12. Height–wind relation computed from the dual-
exponential profiles. Shaded circles represent observed wind speed
as a function of the difference between climatological environmental
geopotential height and observed central geopotential height.
Dashed curves are power-law approximations (12a)–(12d) to the
height difference computed from the gradient-wind relation using
parameters estimated linearly from maximum wind and latitude at
15°, 25°, 35°, and 45°. The solid curve is the height–wind relation
(12e) computed with the sample-mean values of the parameters.

TABLE 2. (a) Mean, std dev, and correlation matrix for the dual-exponential profile variables computed with X2 fixed at 25 km from
the 493 sorties that passed QC screening. For Rmax the entries are the geometric mean in kilometers and the logarithmic std dev. (b)
Eigenvalues and eigenvectors of the correlation matrix.

(a)

Distribution Correlation matrix

Mean Std dev Z1 Z2 Z3 Z4 Z5 Z6

Z1(Vmax) 36.7 13.7 1.000 �0.398 �0.018 �0.254 0.479 0.421
Z2(ln Rmax) 39.3 0.53 �0.398 1.000 0.200 0.152 �0.667 �0.572
Z3(� ) 23.9 6.15 �0.018 0.200 1.000 0.112 �0.065 �0.251
Z4(X1) 288.5 112.0 �0.254 0.152 0.112 1.000 �0.143 0.165
Z5(n) 0.85 0.42 0.479 �0.667 �0.065 �0.143 1.000 0.391
Z6(A) 0.10 0.16 0.421 �0.572 �0.251 0.165 0.391 1.000

(b) Eigenvector E1 E2 E3 E4 E5 E6

Eigenvalue 2.550 1.150 1.022 0.625 0.417 0.235
Z1(Vmax) �0.443 0.246 �0.239 0.700 �0.324 0.302
Z2(lnRmax) 0.536 0.054 �0.003 0.432 �0.348 �0.663
Z3(� ) 0.180 0.150 �0.907 �0.066 0.338 �0.061
Z4(X1) 0.135 �0.835 �0.270 0.001 �0.382 0.255
Z5(n) �0.504 0.087 �0.214 �0.466 �0.520 �0.451
Z6(A) �0.460 �0.457 0.027 0.317 0.493 �0.484
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they impose cost-function penalties without prohibiting
values outside the preferred subdomains, the fitting al-
gorithm was able to select a few values that violate the
foregoing inequalities. The regression relation for X1

behaves much as it did in section 3, decreasing from
300 km to �200 km as Vmax increases from 5 to 75

m s�1 (Fig. 14a). About 14% of values are limited by
the 450 m s�1 upper Lagrange multiplier constraint,
and unlike the analysis in section 3, about 2% are lim-
ited by the lower constraint; A on the other hand be-
haves differently (Fig. 14b). Only 55% of the values are
zero, implying that here single-exponential fits are op-
timum in somewhat fewer cases than previously. The
algorithm also produces �2% of cases with A � 1,
implying that in those cases X2, which is constrained
within the domain 25 � X2 � 75 km, can completely

FIG. 13. Histograms of wind speed for observed and dual-
exponential profile with X2 � 25 km: (a) dependant-data ob-
served (gray), computed from profile-specific fitted parameters
(cross-hatched), and computed from linearly estimated param-
eters for profiles that passed QC (black). (b) Complete-sample
observed (gray), computed from linearly estimated parameters
(cross-hatched), and computed from sample mean parameters
(black). Both (a) and (b) use observed radius of maximum wind.

FIG. 14. Scatterplots and regression lines as functions of maxi-
mum wind for fitted (a) free, dual-exponential, longer decay
length, (b) fraction that the shorter decay length contributes to the
outer profile, and (c) free, dual-exponential, shorter decay length.
Shaded circles represent parameter values determined by the fit-
ting algorithm.
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describe the vortex outside the eye. Despite the lack of
a consistent pattern in the dual-exponential fit, its re-
gression relation for A is similar to that for the dual-
exponential fit with fixed X2 � 25 km, but without the
identically zero values when the previous regression
line was negative for Vmax � 20 m s�1. The X2 scatter
diagram shows erratic variation. About 47% of the X2

values are at the lower Lagrange multiplier limit, 25
km, so that the fits to these profiles are the same as in
section 3. Another 18% of the X2 values are 75 km
where they are significantly penalized by the upper X2

constraint. These instances reflect ambiguity as the
roles of the longer and shorter decay lengths overlap.

As a consequence, the regression line describes X2 as
a constant value of �45 km, independent of Vmax. De-
spite the additional degrees of freedom, the free dual-
exponential fit has larger rms wind and height errors,
2.81 m s�1 and 12.20 m, compared with 2.03 m s�1 and
11.06 m with X2 fixed at 25 m s�1. A similarly vexing
ambiguity arises with the shorter decay length when
one attempts to fit it, A, and a fixed longer decay
length. The reason for these problems lies in local
minima of the cost function that are distinct from the
global minimum. Perhaps insightful application of dif-
ferent constraints and a more sophisticated minimiza-
tion algorithm can resolve these issues, but for now, the
dual exponential profile with a fixed shorter decay
length seems to be the simplest representation of the
data.

b. Vortex stability

Since one potential application of these profiles is
theoretical studies of vortex dynamics, it is useful to
explore their hydrodynamic stability properties. Figure
15 shows the absolute vorticity and angular velocity for
the dual-exponential profile fitted to Hurricane Anita
(Fig. 9). The vorticity is everywhere 0 so that the
profile is inertially stable. It exhibits a relative mini-
mum at the center and a pronounced maximum just
inside the radius of maximum wind so that it meets the
necessary condition for barotropic instability (e.g.,
Schubert et al. 1999). The vortex angular velocity also
exhibits a maximum that causes the algebraically grow-
ing wavenumber-1 instability described by Nolan and
Montgomery (2000). The vorticity and angular velocity
maxima in Anita arise primarily because n  1, but the
way that the outer and inner profiles overlap in the
transition zone can produce local maxima of these
quantities near the eyewall even when n � 1, but not
when it is significantly smaller than unity. When n � 1,
the power-law profile has infinite angular velocity and
vorticity at the center (Fig. 16a) if it is continued to r �
0. Difficulty with the singularity can be avoided in these

cases by replacing the power-law wind profile with V�i �
(Lc�c/2)[r/Lc � (r/Lc)

3/2], which is derived from a para-
bolic radial vorticity distribution, � � �c[1 � (r/Lc)

2] for
r � Lc and � � 0 for r  Lc. This vorticity distribution
by itself would support a Rankine-like vortex with free-
vortex flow proportional r�1 outside the core (Fig. 16b).
Here Lc is chosen such that the ratio of the inner profile
vorticity at Rmax to that at Rmax/4 is the same as in the
power-law vortex, �(Rmax)/�(Rmax/4) � (1/4)1�n. Then
�c is chosen such that V�i (Rmax) � Vmax.

This formulation removes the central singularity and
produces a monotonic outward decrease of vorticity
when n � 0.55 (Fig. 16c). The vorticity decreases stead-
ily from the center outward, as in the regime 1 profiles
described by Kossin and Eastin (2001). Larger values of
n model their regime 2 profiles. The transition between
the two regimes happens over the range 0.55 � n � 1.
When n � 0.8, the Vi increases more gradually with
radius near r � Rmax, and (3) shows that the relative
contribution of Vo to the outer profile shape at and
inside Rmax is smaller. For smaller n, the smooth de-
crease and lack of a vorticity singularity at the origin
make these composite, parabolic vorticity profiles more
suitable for theoretical studies than the fitted power-
law profiles, although the fitted profiles are adequate
for studies of hurricane impacts.

Dual-exponential profiles often exhibit a relative
vorticity minimum in the strong anticyclonic shear just
outside the eye. This feature occurs where the fitted
profiles match the data closely. It is a consequence of
the modeled rapid decrease of the wind around the eye

FIG. 15. Vorticity (solid) and angular velocity (dashed) for the
dual-exponential profile with X2 � 25 km fitted to Hurricane
Anita of 1977. Here, the fitted wind profile is the shading bound-
ary.
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and the more gradual decease in the outer part of the
vortex. It raises the possibility that intense hurricanes
become barotropically unstable at the end of an epi-
sode of rapid deepening more or less at the time when
outer wind maxima normally form.

6. Conclusions

The dual-exponential profiles presented here provide
an observationally based representation of the struc-

ture of the hurricane vortex to support such diverse
undertakings as theoretical vortex dynamics, storm-
surge forecasting, and windstorm loss modeling. The
statistical estimates of the parameters given by (7a),
(10a)–(10c), and (11a)–(11c) allow construction of axi-
symmetric hurricane vortices using (1a)–(1c) and (4).
The resulting wind variations are consistent with a large
sample of aircraft observations and have latitude-
dependant height–wind relations (12a)–(12d). Al-
though these relations take into account the statistical
sharpening of the wind maximum in more intense tropi-
cal cyclones, maximum winds computed from them
have an inherent uncertainty of �6 m s�1. Outer vortex
exponential decay lengths 200 km are consistent with
the argument of Mallen et al. (2005) that real hurri-
canes are relatively broad vortices well able to resist the
effects of environmental shear. An alternative vortex
structure with only one exponential does not capture
the rapid decrease of the wind outside the eye of the
most intense hurricanes, although it can represent
weaker hurricanes adequately. Single-exponential pro-
files also fail to match the average isobaric height dif-
ference from the vortex periphery to center. For n � 1,
replacement of the power-law profile inside the eye
with one derived from a parabolic vorticity distribution
produces analytical vortices more suitable for theoret-
ical studies of hurricane dynamics.

A key limitation of this study is exclusion of tropical
cyclones that failed to meet the QC criteria because
they had large radii of maximum wind. Reanalysis, in-
cluding hurricanes that have occurred since the 2000
season, as well as using different QC criteria and dif-
ferent Lagrange multiplier constraints, promises to im-
prove this situation. Other unfinished work is calibra-
tion of the axisymmetric maximum wind in terms of the
HURDAT climatology and inclusion of secondary
wind maxima in the statistical representation.
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APPENDIX

Bellramp Functions

In section 2, the transition between the outer expo-
nential profile and the inner power-law profile was ac-
complished with a polynomial that superficially re-
sembled a hyperbolic tangent, but had finite width and
increased smoothly from zero to one as its nondimen-
sional argument, �, also increased from zero to one.
This polynomial “ramp function” was derived by inte-
gration of a polynomial “bell function” of the form

bk��� � 0, �� � 0 or 1 � ��, �A1a�

bk��� � Ck	��1 � ��
k, �0 � � � 1�. �A1b�

Here k is the order of the bell function, although bk is
a polynomial of order 2k. The k � 1st derivative of bk

is the highest derivative that remains continuous at � �
0 and � � 1. Thus, for b1 only the function itself is
continuous; for b2 the function and first derivative are
continuous; and so forth. As shown below, the bell
curves become narrower with increasing order; [�(1 �
�)]k has maximum value on (0 � � � 1) of 2�2k at � �
1/2 so that setting Ck � 22k would produce bell func-
tions with unit amplitude.

A more interesting alternative involves integration of
bk from zero to one and selection of Ck to make the
area under the bell curve unity. Here are the k � 1
through 4 ramp functions produced by integration of
b1(�) through b4(�) in a form convenient for numerical
calculation:

w1��� � �2�3 � 2��, �A2a�

w2��� � �3	10 � ��15 � 6��
, �A2b�

w3��� � �4�35 � �	84 � ��70 � 20��
�, �A2c�

w4��� � �5�126 � ��420 � �	540 � ��315 � 70��
��.

�A2d�

Here (A2a)–(A2d) incorporate C1–C4 � 6, 30, 140, and
630, chosen to make wk(1) � 1. By definition, wk(�) �
0 when � � 0, and wk(�) � 1 when 1 � �.

Figures A1a and A1b illustrate b2(�) through b4(�)
and w2(�) through w4(�), respectively. As anticipated,
the bell curves become narrower, and their amplitude
increases with increasing k while the transition de-
scribed by wk becomes sharper. Some of these polyno-
mials are familiar in other contexts. For example, (A2a)

is a Hermite shape function used in finite-element
analysis. In the limit of very large k, bk, and wk, respec-
tively, approach Dirac delta and Heaviside functions,
albeit gradually. Thus, it is possible to produce highly
differentiable, finite-width bell and ramp curves by the
method outlined here. Because these curves are effi-
cient to compute, they offer simple-to-use alternatives
to Gaussian or hyperbolic-tangents functions for con-
structing forcing functions for theoretical models, rep-
resentation of jet or shear flows, or patching together
piecewise continuous curves as we have done here.
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