Stannyl Radical-Mediated Cleavage of \(\pi \)-Deficient Heterocyclic Sulfones. Synthesis of \(\alpha \)-Fluoro Esters and the First Homonucleoside \(\alpha \)-Fluoromethylene Phosphonate

Stanislaw F. Wnuk and Morris J. Robins

Department of Chemistry and Biochemistry
Brigham Young University, Provo, Utah 84602-5700

Received October 19, 1995

Phosphonate derivatives of nucleosides have been studied extensively as analogues of biologically important nucleotides.\(^1\) Blackburn proposed that \(\alpha \)-fluoro and \(\alpha,\alpha \)-diluoro substitution on monophosphate esters should provide superior phosphate ester surrogates (closer isosteres and isopolar parallels).\(^2,3\) The bridging oxygen in di- and triphosphates has been replaced with a fluoromethyl group.\(^5\) Condensations of OS\(^-\)-activated nucleosides\(^6\) and activated \(\alpha \)-monophosphonomethylenes\(^6\) with (fluoromethylen)- and (diluoromethylen)bisphosphonic acids have given di- and triphosphate analogues with \(\alpha \) and \(\beta \) pyrophosphate oxygen replaced with CHF and CF\(_2\) units. Phosphonate homologues of nucleotides (OS\(^-\)-activated nucleosides)\(^7\) are of current interest since they are not substrates for the usual phosphatases. Established syntheses of homophosphonates with CH\(_2\) units employed Wittig\(^7\) or Arbuzov\(^8\) chemistry. Recent reports\(^9,10\) of their CF\(_2\) analogues have utilized coupling of nucleic acid bases with a previously synthesized \(\alpha,\alpha \)-diluorohomoribose phosphonate derivative\(^11\) or a carbonyl analogue.\(^10\) The \(\alpha,\beta \)-Fluoromethylenebisphosphonic acid\(^12\) has been shown to exert potent inhibition of uridine triphosphatase.\(^2\)

\(\alpha \)-Fluoro- and \(\alpha,\beta \)-diluorohomophosphonates have been prepared by Arbuzov reactions with fluorohalomethanes,\(^13\) and \(\alpha,\beta \)-diluoroheteroaryl phosphonates\(^14\) are of current interest since they are not substrates for the usual phosphatases. Fluorinated analogues of nucleosides with CHF and CF\(_2\) units have been used in medicinal chemistry and biochemistry.\(^15\)

Fluorinated analogues of nucleosides with CHF and CF\(_2\) units have been used in medicinal chemistry and biochemistry.\(^15\)

(21) Nicholls, D. J., 80, 1155–1157.
(tetrfluoroborate)18 gave the desired \(\alpha\)-fluoro sulfone phosphonate \textit{4a}, which was debenzoylated and purified to give \textit{4b}22 (47\% from \textit{3b}).

Standard procedures24 for removal of sulfonyl groups \[\text{e.g., treatment of \textit{4b} with Al(Hg) or Na(Hg)}\] or base-promoted elimination240–d failed to give \textit{5a} or its 5′,6′-unsaturated analogue. Although tributylstannane is used routinely for hydrogenolysis of carbon–halogen, carbon–sulfur, carbon–selenium, and carbon–nitro bonds,25 it is ineffective for cleavage of typical saturated sulfones. In contrast, stannodesulfonylations of vinyl sulfones (including nucleoside examples \textit{26b,c}) are known, and saturated sulfones. In contrast, stannodesulfonylations of vinyl sulfones \[\text{e.g., stannodesulfonylation/protiodestannylation (\textit{4b}) with EtOAc/KF/H}_2\text{O (5 mL/30 mg/0.3 mL). The mixture was evaporated, then the residue was chromatographed (silica, pentane} \times \text{3% EtOAc/pentane)}\] might involve successive stannodesulfonylation/protiodestannylation at the “vinyllic” C2–C3 bond of the pyrrole ring. Desulfonylations of allylic sulfones26 with tributylstannane are known, and sulfonyl radicals are versatile intermediates in organic synthesis.27 Therefore, we began an investigation of radical-mediated cleavage of \(\pi\)-deficient aryl sulfones.

Ethyl hexanoate was chosen as a model for diethyl alkylphosphonates in which C2 would simulate the phosphonate \(\pi\)-carbon. Treatment of ethyl 2-bromohexanoate (\textit{7}, Scheme 2) with pyridine-2-thione, pyrimidine-2-thione, and benzenethiol \[\text{e.g., thiolation at the “vinylic” C2–C3 bond of the pyrrole ring. Desulfonylations of allylic sulfones} \textit{26} with tributylstannane are known, and sulfonyl radicals are versatile intermediates in organic synthesis.27 Therefore, we began an investigation of radical-mediated cleavage of \(\pi\)-deficient aryl sulfones. Ethyl hexanoate was chosen as a model for diethyl alkylphosphonates in which C2 would simulate the phosphonate \(\pi\)-carbon. Treatment of ethyl 2-bromohexanoate (\textit{7}, Scheme 2) with pyridine-2-thione, pyrimidine-2-thione, and benzenethiol in solutions of NaH/THF/DMF gave the respective ethyl 2-(arylthio)hexanoates in excellent yields. Oxidation gave the corresponding sulfones \textit{8a,b}22 and \textit{8c}23a.

Treatment of ethyl 2-(phenylsulfonyl)hexanoate \textit{8c} with Bu\textsubscript{3}SnH/AlBN/benzene at reflux for 48 h caused no observed change in the starting material. However, parallel treatment of ethyl 2-(pyridin-2-ylsulfonyl)hexanoate \textit{8a} for 36 h gave ethyl hexanoate \textit{10a} (60\%) plus unchanged \textit{8a} and minor decomposition products. Analogous treatment of ethyl 2-(pyrimidin-2-ylsulfanyl)hexanoate \textit{8b} gave complete conversion to \textit{10a} within 1 h. Substitution of BuSnD for BuSnH gave ethyl 2-deuteriohexanoate \textit{10b}.

Carbanion-mediated fluorinations proceeded smoothly in the model series. The 2-(pyridin-2-ylsulfanyl) \textit{8a} and 2-(pyrimidin-2-ylsulfanyl) \textit{8b} esters were treated with potassium hydride, and the enolates were quenched with Selectfluor to give ethyl 2-fluoro-2-(pyridin-2-ylsulfanyl)hexanoate \textit{22} (9a) and ethyl 2-fluoro-2-(pyrimidin-2-ylsulfanyl)hexanoate \textit{22} (9b) in high yields. Tributylstannane-mediated desulfonylation of \textit{9a} (28 h) and \textit{9b} (1 h) gave ethyl 2-fluorohexanoate \textit{23b} (10c; 60\% and 95\%, respectively). Treatment of \textit{9b} with BuSnD gave 2-\textit{[H]}-10c.22 These reactions30 provide convenient access to biologically important \(\alpha\)-fluorocarbonyl compounds31 and their isotope-labeled derivatives. \(\pi\)-Deficient heterocyclic sulfones could be especially advantageous in reactions that involve generation of sulfonyl carbanions since acidifying effects of these pyridine and pyrimidine 2-ylsulfanyl groups on \(\pi\)-carbon are greater than that of the phenylsulfonyl group.

This methodology for sulfonyl removal was successful for our target nucleoside phosphate. Treatment of \textit{4b} with BuSnH/AlBN/benzene/\textit{Air} caused cleavage of the sulfonyl linkage \[\textit{5a} (61\%), and removal of the isopropyridine group and RP-HPLC (H\textsubscript{2}O/CH\textsubscript{3}CN; 19:1) gave pooled fractions of \textit{5b}22 enriched in each of the two 6′-fluoro diastereomers \[\sim 12:1 \text{ vs } \sim 1:6\]. Independent treatment of the enriched diastereomer mixtures with trimethylsilyl bromide and purification (DEAE Sephadex A-25; 0.01 → 0.20 M TEAB/H\textsubscript{2}O) followed by conversion to the sodium salts [Dowex 50 × 8(\text{H}+)] and then Na+]: H\textsubscript{2}O gave 6′-deoxy-6′-fluorohexanoate \textit{21} 6-phosphonato–homouridine disodium salt22 (6).

In summary, we have developed convenient and efficient methodologies for synthesis of carboxylate and phosphate heterocyclic \(\alpha\)-sulfones, their \(\alpha\)-fluorination with Selectfluor, and their desulfonylation with tributylstannane. This provides a facile new route for the preparation of \(\alpha\)-[\textit{[H]}] and \(\alpha\)-fluoro-\[\textit{[H]}\] carbonyl compounds and phosphonates. Barton thio-hydroxamic ester chemistry was used to prepare a protected 6′-(pyridin-2-ylthio)–homouridine phosphate that was oxidized (m-CPPA) to the sulfur, fluorinated (Selectfluor), desulfonylated (BuSnH/AlBN), and deprotected to give the first reported 6′-deoxy-6′-fluorohomouridine 6′-phosphonate.

Acknowledgment. We thank the American Cancer Society (Grant DHP-34) and Brigham Young University development funds for support, Air Products for a gift of Selectfluor reagent, and Mrs. Jeanny Gordon for assistance with the manuscript. We also thank Professor Stefan Kinastowski and the Academy of Agriculture, Poznan, Poland, for extensions of a faculty leave for S.F.W.