# Nucleic Acid Related Compounds. 93. A Solution for the Historic Problem of Regioselective Sugar-Base Coupling To Produce 9-Glycosylguanines or 7-Glycosylguanines ${ }^{\mathbf{1}}$ 

Morris J. Robins,* Ruiming Zou, ${ }^{\dagger}$ Zhiqiang Guo, and Stanislaw F. Wnuk<br>Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700, and<br>Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada

Received September 4, $1996^{*}$


#### Abstract

Per(trimethylsilyl)-2-N-acylguanine derivatives and tetra-O-acylpentofuranoses were coupled [tin(IV) chloride or titanium(IV) chloride catalysis] to give predominant formation of 7-glycosylguanines. With $\mathrm{TiCl}_{4}$, a fortuitous organic/aqueous partitioning allowed isolation of 7 -glycosylguanines from the 7/9 isomer mixtures. Per(trimethylsilyl)-2-N-acyl-6-O-(diphenyl carbamoyl)guanine derivatives and tetra-O-acylpentofuranoses underwent regioselective coupling (trimethylsilyl trifluoromethanesulfonate catalysis) to give 9 -glycosyl guanines. The 6-O-(diphenylcarbamoll)peracyl-9- $\beta$-D-ribofuranosyl isomer was shown to be both the kinetic and thermodynamic coupling product. Deprotection of all of the peracyl coupling products was effected under mild conditions to give good to high yields of guanine nucleoside analogues. These methodologies provide solutions for the regioselective synthesis of 7 - and 9 -glycosylguanine nucleosides.


## Introduction

The most problematic chemistry and greatest difficulties with manipulation of the five common bases found in DNA and RNA occurs with the polyfunctional guanine ( $\mathrm{pK} \mathrm{a}_{\mathrm{a} 1} \sim 1.7, \mathrm{pK}_{\mathrm{a} 2} \sim 9.2$ ) nucleosides and nucleotides. Coupling of guanine-type bases with protected sugar derivatives produces N7/N9 isomeric mixtures of nucleosides that are frequently difficult to separate. ${ }^{2,3}$ Coupling of "directly protected" derivatives of guanine have consistently produced 7/9 isomer mixtures, whereas constriction of the guanine system into " 6 -enolate" derivatives can result in enhancement of $9 / 7$ isomer ratios. ${ }^{3}$ The Vorbrüggen procedures overcame many difficulties with base-sugar couplings, and high regioselectivities were obtained with most bases. It was reported that coupling per(trimethylsilyl)-2-N-acetylguanine and 1-O-acetyl-2,3,5-tri-O-benzoyl- $\beta$-D-ribofuranose [trimethylsilyl trifluoromethanesulfonate (TMSOTf) catalysis] at elevated temperature, followed by deprotection and recrystallization, afforded pure guanosine (66\%). ${ }^{4}$

However, Dudycz and Wright observed that 7-i somers were formed as kinetic products of glycosylation of per-(trimethylsilyl)-2-N-(substituted)guanines, and mixtures rich in the more thermodynamically stable 9 -isomers were obtained upon heating. ${ }^{5}$ Garner and Ramakanth also found that coupling of glycosyl acetates with per-(trimethylsilyl)-2-N-acetylguanine gave 7-glycosyl products (7/9, ~95:1 with a ribose derivative) under kinetic conditions ( $\mathrm{SnCl}_{4} / \mathrm{CH}_{3} \mathrm{CN} /$ room temperature), whereas

[^0]9-isomers predominated (7/9, ~1:6) under thermodynamic conditions (TMSOTf/1,2-dichloroethane (DCE)// $)$. ${ }^{6}$ Similar results (with variable isomer ratios) have been observed by others. ${ }^{7,8}$ It was recently suggested that initial glycosylation of 2-N-acetylguanine and 2-N,9diacetylguanine occurs at the unsubstituted imidazole ring nitrogen. Reversible 7/9 acetyl tautomerization and transglycosylation occur under different reaction conditions to give observed product ratios. ${ }^{9}$ It is undisputed that Vorbrüggen's procedure ${ }^{4}$ gives naturally occurring guanosine in good yiel ds by fortuitous crystallization of the 9 -isomer from aqueous solutions of the $7 / 9$ mixtures. ${ }^{3,10}$ However, this facile fractional crystallization has not been demonstrated with other anal ogues derived from different sugars or with biologically relevant acyclic side chains such as the (2-hydroxyethoxy)methyl moiety of acyclovir and related antiviral agents.
We now report studies on regioselective kinetic formation of 7 -(D-pentofuranosyl) guanine derivatives by ambient temperature coupling of per(trimethylsilyl)-2-Nacetylguanine and tetra-O-acetyl-D-pentofuranoses [tin(IV) chloride or titanium(IV) chloride catalysis]. With $\mathrm{TiCl}_{4}$, fortuitousorganic/aqueous partitioning resulted in isola-

[^1]
## Scheme 1a



Sug =



a Key: (a) BSA/DCE/A; (b) TMSOTf or $\mathrm{SnCl}_{4}$ or $\mathrm{TiCl}_{4}$; (c) 1,2,3,5-tetra-O-acetyl-d-pentofuranose; (d) $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / \Delta$.
tion of 7-isomers. We also have developed glycosyl couplings with per(trimethylsilyl)-2-N-acetyl-6-O-(diphenylcarbamoyl) guanine (TMSOTf catalysis) to give highyield preparations of 9-(D-pentofuranosyl)guanines, without contamination by 7 -isomers, ${ }^{10}$ and a completely regioselective synthesis of guanosine with per(trimeth-ylsilyl)-2-N-isobutyryl-6-O-(diphenyl carbamoyl)guanine and 1,2,3,5-tetra-O-acetyl- $\beta$-d-ribofuranose.

## Results and Discussion

Trimethylsilylation of 2-N-acetylguanine ${ }^{11}$ (1a) [hexamethyldisilazane (HMDS)/( $\left.\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ ] and coupling of the derivative [tris(trimethylsilyl)] with 1,2,3,5-tetra-O-acetyl- (or 1-O-acetyl-2,3,5-tri-O-benzoyl)- $\beta$-D-ribofuranose under Vorbrüggen's conditions ${ }^{4 a}$ [TMSOTf/DCE/80 ${ }^{\circ} \mathrm{C}$ overnight] gave mixtures of protected guanosine $\mathbf{2 a}$ and its 7-isomer 3a (or the $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri-O-benzoyl derivatives) (2-5:1, respectively) ${ }^{6,10 b}$ in high yields (Scheme 1). Anal ogous coupling with the 1,2,3,5-tetra-O-acetyl-D-xyloand -arabinofuranose derivatives gave similar mixtures of 9/7-isomers ( $\mathbf{2 c} / \mathbf{3 c}$ and $\mathbf{2 e} / \mathbf{3 e}$ ). ${ }^{10 b}$ Workup conditions alter the relative amounts of minor isomers retained, especially when emulsions result with $\mathrm{SnCl}_{4}$ catalysis. Small differences in integrated intensity measurements ( ${ }^{1} \mathrm{H}$ NMR) for the minor-isomer peaks cause amplified differences in normalized isomer ratios since the values for the minor isomers are in the denominator. However, the relative percentages reported for major and minor isomers are quite similar. ${ }^{3 a, 5-8,10}$

Treatment of a suspension of 1a with bis(trimethylsilyl)acetamide (BSA)/DCE/80 ${ }^{\circ} \mathrm{C}$ gave a solution that was then cooled, and $\geq 2$ equiv of $\mathrm{SnCl}_{4}$ was added to give an active organometallic complex. A solution of the respective tetra-O-acetylpentofuranose in DCE was added to this complex, and the mixture was stirred overnight at ambient temperature. ${ }^{1} \mathrm{H}$ NMR analysis of crude coupling mixtures indicated maximum normalized $7 / 9$ isomer ratios of $\sim 13: 1$ (3a/2a), $\sim 15: 1$ (3c/2c), and $\sim 18: 1$ (3e/ 2e). Ratios varied somewhat, but isolated yields of the 7-isomers were quite consistent when emulsions were allowed to separate adequately. Flash chromatography gave purified 7 -isomers 3a (70\%), 3c [76\%; plus the isolated 9-isomer 2c (3\%)], and 3e (72\%). Deprotection
(11) Hrebabecky, H.; Farkas, J. In Nudeic Acid Chemistry; Townsend, L. B., Tipson, S., Eds.; Wiley: New York, 1978; Part I, pp 13-15.
( $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ ) and crystallization gave analytically pure hemihydrates of the 7-(D-pentofuranosyl)guanines 5b ( $78 \%, \beta$-ribo), 5d (86\%, $\beta$-xylo), and $5 \mathbf{f}$ ( $85 \%, \alpha$-arabino).

Analogous coupling of silylated 2-N-isobutyrylguanine ${ }^{12}$ ( $\mathbf{1 b}$ ) with the tetra-O-acetyl ribo- and xylofuranose derivatives in $\mathrm{CH}_{3} \mathrm{CN}$ or DCE with $\mathrm{TiCl}_{4}$ as catalyst resulted in isolation of the 7-isomers 7a and 7c in moderate yields (43-67\%, after workup and chromatography) without detected contamination by the 9 -isomers $\mathbf{6 a}$ and $\mathbf{6 c}$. We were surprised to discover that only the 7-isomers were isolated after the initial reaction mixtures were heated at $80{ }^{\circ} \mathrm{C}$ for 3 h . However, the aqueous layers after workup contained 7/9 isomer mixtures. Apparently, stronger complexation between the guanine base and $\mathrm{TiCl}_{4}$ (and/or hydrolysis products) occurs with the 9-isomers, which results in clean partitioning of the 9 -regioisomers 6a and 6c into the water layer. It is noteworthy, in harmony with prior results, ${ }^{6}$ that solvent and reaction temperature changes failed to alter the 7/9 isomer compositions significantly. Therefore, acceleration of the coupling reaction rate by reflux and fortuitous enhanced partitioning of the 9-isomers into the aqueous layer provides a convenient selective procedure for preparation of the 7-isomers 7a and 7c. Deprotection of 7a and 7c and crystallization gave the hemihydrates of 5b (78\%) and 5d (76\%), respectively.

Literature precedents indicated that coupling of 2,6disubstituted purines with protected sugars generally gave enhanced 9/7 isomer ratios, and the 9-i somer was sometimes the only product isolated. ${ }^{3,13}$ We reasoned that nucleoside regioisomers derived from appropriate "lactim" structures (masked guanine precursors) might have sufficiently different thermodynamic stabilities to strongly favor formation of the 9-isomer. Attachment of a bulky electron-withdrawing group at O 6 of $\mathbf{1}$ (peri to N7) might also favor kinetic coupling at N9 to directly produce the more thermodynamically stable regioisomer. Several 2-amino-6-(substituted)purine derivatives were prepared and subjected to coupling with glycosyl acetate derivatives. ${ }^{10 d}$ We found that 2-N-acetyl-6-O-(diphenylcarbamoyl)guanine (8a, Scheme 2), prepared readily from guanine in high yield, gave excellent results in coupling reactions under controlled conditions. ${ }^{10}$ The 6-O-(diphenylcarbamoyl) (DPC) group was quite stable in aprotic coupling media and was removed by mild deacylation procedures. It is crucial to avoid cleavage of the (diphenylcarbamoyl)oxy function during coupling reactions, since the resulting 2-N-acetylguanine derivatives give 7/9 isomer mixtures (vide supra). Treatment of $2-\mathrm{N}, 9-$ diacetylguanine ${ }^{10 a}$ with DPC chloride/ethyldiisopropylamine/pyridine at ambient temperature ${ }^{14}$ followed by solvolysis of the 9 -acetyl group ${ }^{11}$ gave crystalline $2-\mathrm{N}$ -acetyl-6-O-(diphenyl carbamoyl)guanine (8a, 92\%).

Per(trimethylsilyl)-8a (BSA/DCE) and tetra-O-acetylribofuranose ( 1.2 equiv) were coupled (TMSOTf/anhydrous toluene/ $80^{\circ} \mathrm{C} / 1 \mathrm{~h}$ ) to give 9 -isomer 9 ( $91 \%$ after chromatography). No 7-isomer was detected ( ${ }^{1} \mathrm{H}$ NMR) in purified 9a, or in the crude coupling mixture, but a

[^2]
## Scheme 2a


a Key: (a) the structures of "Sug" are in Scheme 1; (b) BSA/ DCE/D; (c) 1,2,3,5-tetra-O-acetyl-d-pentofuranose/TMSOTf/toluene/ $\Delta$; (d) $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{D}$; (e) $\mathrm{AcOCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Br} /$ toluene; (f) $\mathrm{Ph}_{2} \mathrm{NCOCl} / \mathrm{EtN}(\mathrm{i}-\mathrm{Pr})_{2} /$ pyridine; (g) TMSOTf/toluene/ $\Delta$.
trace byproduct 10a (second sugar residue at N2) was present. Excess (2.5 equiv) tetra-O-acetylribofuranose gave enhanced formation of the bis(ribosyl) byproduct 10a, whose composition was analyzed by NMR and FAB MS. Coupling of the tetra-O-acetyl derivatives of xylose and arabinose produced 9c ( $86 \%, 9-\beta$ ) and $9 \mathbf{e}(82 \%, 9-\alpha)$, respectively. Trace bis(glycosyl) byproducts were detected, and 10c was isolated (4\%) in one experiment, but no 7-isomers were observed. The ${ }^{1} \mathrm{H}$-coupled ${ }^{13} \mathrm{C}$ NMR spectrum of the bis(xylosyl) byproduct 10c had threebond coupling to C2 of the guanine base in harmony with attachment of the second sugar residue at N2. Deprotection ( $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / 60{ }^{\circ} \mathrm{C}$ ) of 9a, 9c, and $\mathbf{9 e}$ and crystallization gave analytically pure hemihydrates of guanosine (4b, 75\%), 4d (67\%), and $4 \mathbf{f}$ (84\%), respectively. Analogous treatment of 10c gave 4d. This demonstrated that the bis(sugar) byproduct was cleaved during deprotection and did not interfere with overall regioselective production of the desired 9-isomer.

Treatment ${ }^{14}$ of 2-N-acetyl-2', $3^{\prime}, 5^{\prime}$-tri-O-acetylguanosine (2a) with DPC chloride gave a compound that was identical to the coupling product 9a. This verified the same site of attachment of the DPC group, and X-ray crystallographic analysis of $\mathbf{1 3}$ proved that site to be 06. ${ }^{10 a, b}$

We considered that a more bulky acyl group on N2 might impede formation of the bis(sugar) byproduct. Guanine was readily converted into 2-N-isobutyryl-6-O(diphenylcarbamoyl)guanine (8b, 87\%). Coupling of per-(trimethylsilyl)-8b and tetra-O-acetylribofuranose under standard conditions gave the 9-isomer 11a (89\%). No bis(sugar) byproduct, or 7-isomer, was detected in crude coupling mixtures or in a control reaction with excess sugar derivative. Deprotection $\left(\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / 60^{\circ} \mathrm{C}\right)$ of 11a gave 4b (80\%).

We then investigated mechanistic aspects of this synthesis. Diphenylcarbamoylation of synthetic tetraacetyl 7-isomer 3a occurred without difficulty to give the corresponding 6-O-DPC derivative 12a. Treatment of 12a by the standard coupling conditions (TMSOTf/ anhydrous toluene $/ 80^{\circ} \mathrm{C}$ ) required $\sim 2 \mathrm{~h}$ for its complete
rearrangement to the 9-glycosyl isomer 9a. Stirring a solution of per(trimethylsilyl)-8a, tetra-O-acetylribofuranose, and TMSOTf in anhydrous toluene at ambient temperature for 4 days resulted in progressive formation of the 9-glycosyl isomer 9a, without observed formation of its 7-isomer 12a. These two experiments indicate that 9 -isomer 9a is both the kinetic and thermodynamic product. Absence of detected 7-isomer 12a in the ambient temperature coupling indicates kinetic formation of 9a, and this also is supported indirectly by the longer time ( $\sim 2 \mathrm{~h}$ ) required for the rearrangement of 12a $\rightarrow \mathbf{9 a}$ at $80^{\circ} \mathrm{C}$ relative to the standard N 9 glycosylation (1 h). Complete isomerization of $\mathbf{1 2 a} \boldsymbol{\mathbf { a }} \mathbf{9}$ under the standard coupling conditions, however, demonstrated the enhanced thermodynamic stability ( $\mathbf{9 a} \gg \mathbf{1 2 a}$ ) of the 9-isomer of this 6-O-DPC pair relative to that of the 6-oxo pair (2a $>3 a)$.

The broader generality of our methodology was demonstrated by coupling per(trimethylsilyl)-8a and (2acetoxyethoxy)methyl bromide ${ }^{15 a}$ at $80^{\circ} \mathrm{C}$ in anhydrous toluene (no catalyst required). The "acyclovir"15 derivative $\mathbf{1 3}$ (63\%) was produced plus traces of the $2-\mathrm{N}, 9$-bis(acetoxyethoxymethyl) byproduct 14. Deprotection of 13 and crystallization gave the hemihydrate of acyclovir (15, 91\%).

In summary, we have discovered a fortuitous organid aqueous partitioning that allows isolation of 7-glycosylguanines from 7/9 isomer mixtures obtained by coupling per(trimethylsilyl)-2-N-acylguanine derivatives and tetra-O-acylpentofuranoses ( $\mathrm{TiCl}_{4}$ catalysis). A completely regioselective synthesis of 9-glycosylguanine isomers has been developed by coupling per(trimethylsilyl)-2-N-acyl-6-O-(diphenylcarbamoyl)guanine derivatives and tetra-O-acylpentofuranoses (TMSOTf catalysis). The protected 9 -isomer, 2-N-acetyl-2', 3',5'-tri-O-acetyl-6-O(diphenyl carbamoyl)guanosine (9a), was shown to be both the kinetic and thermodynamic coupling product. Quantitative deprotection of all of the per(acyl) coupling products occurred under mild conditions to give good to high yields (recrystallization recovery) of guanine nucleoside analogues. These methodol ogies provide generally applicable solutions to the prior absence ${ }^{2-9}$ of demonstrated regioselective syntheses of 7- and 9-glycosylguanine nucleosides in the cases we have investigated.

## Experimental Section

Uncorrected melting points were obtained with a hot stage apparatus. UV spectra were determined with solutions in MeOH unless otherwise noted. Table $1\left({ }^{1} \mathrm{H}\right)$ and Table $2\left({ }^{(33} \mathrm{C}\right)$ contain NMR spectral data (solutions in $\mathrm{Me}_{4} \mathrm{Si} / \mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$ ). Mass spectra (EI MS, CI, FAB) were determined with direct probe techniques at 20 or 70 eV . Solvents were purified, dried $\left(\mathrm{CaH}_{2}\right.$ or $\mathrm{LiAlH}_{4}$ ), and distilled before use. Pyridine was dried by refluxing with and distillation from $\mathrm{CaH}_{2}$. Reagent-grade chemicals were used without further purification. TLC was performed with silica gel $60 \mathrm{~F}_{254}$ sheets, and silica gel (200425 mesh) was used for column chromatography. General "procedures" are illustrated with specific examples and can be applied to other compounds with minor noted modifications.

2-N-Acetyl-2, $\mathbf{3}^{\prime}, 5^{\prime}$-tri-O-acetylguanosine (2a). Guanosine (4b; $283 \mathrm{mg}, 1 \mathrm{mmol}$ ) was acetylated as described ${ }^{14}$ ( $\mathrm{Ac}_{2} \mathrm{O}: 1.42 \mathrm{~mL}, 1.54 \mathrm{~g}, 15 \mathrm{mmol}$ ) to give a residue that was chromatographed $\left(\mathrm{CHCl}_{3} \rightarrow 3 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$ to give 2 a ( 255

[^3]Table 1. ${ }^{1} \mathrm{H}$ NMR Spectral Data ${ }^{\mathrm{a}, \mathrm{b}}$

| compd | $\begin{gathered} \mathrm{HI}^{\prime \mathrm{c}} \\ \left(\mathrm{I}_{1^{\prime}-2^{\prime}}\right) \end{gathered}$ | $\begin{aligned} & \mathrm{H} 2^{\prime} \mathrm{d} \\ & \left(\mathrm{z}^{\prime}-3^{\prime}\right) \end{aligned}$ | $\begin{gathered} \mathrm{H} 3^{\prime} \mathrm{d} \\ \left(\mathrm{~J}_{3^{\prime}-4^{\prime}}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H} 4^{\prime} \mathrm{e} \\ \left(4^{\prime}-5^{\prime}, 5^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H} 5^{\prime}, 5^{\prime \prime} \mathrm{e} \\ \left(5_{\left.5^{\prime}-5^{\prime \prime}\right)}\right. \end{gathered}$ | H8 ${ }^{\text {f }}$ | $\begin{gathered} \left(N^{1} \mathrm{H}\right. \\ \text { or } \left.\mathrm{N}^{2} \mathrm{H}\right)^{9} \end{gathered}$ | others ${ }^{\text {f }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2c | $\begin{gathered} 5.97 \\ (3.0) \end{gathered}$ | $\begin{aligned} & 5.58^{h} \\ & (2.5) \end{aligned}$ | $\begin{gathered} 5.52 \\ (4.5) \end{gathered}$ | $\begin{aligned} & 4.56 \\ & (4.5,7.0) \end{aligned}$ | $\begin{aligned} & 4.28-4.56 \\ & (11.5) \end{aligned}$ | 8.18 | 11.70, 12.10 | 2.02, 2.08, 2.10, 2.18 (Ac's) |
| 3a | $\begin{gathered} 6.31 \\ (6.0) \end{gathered}$ | $\begin{aligned} & 5.80^{h} \\ & (6.0) \end{aligned}$ | $\begin{gathered} 5.44 \\ (5.0) \end{gathered}$ | $\begin{aligned} & 4.32 \\ & (4.0,6.0) \end{aligned}$ | $\begin{aligned} & 4.24^{\mathrm{d}} \\ & (12.0) \end{aligned}$ | 8.52 | 11.66, 12.24 | 2.04, 2.11, 2.17 (Ac's) |
| 3c | $\begin{gathered} 6.36 \\ (3.0) \end{gathered}$ | $\begin{aligned} & 5.58^{h} \\ & (2.5) \end{aligned}$ | $\begin{gathered} 5.48 \\ (4.5) \end{gathered}$ | $\begin{aligned} & 4.61 \\ & (4.5,7.0) \end{aligned}$ | $\begin{gathered} 4.34 \\ (12.0) \end{gathered}$ | 8.40 | 11.63, 12.20 | 2.05, 2.06, 2.102 .18 (Ac's) |
| 3e | $\begin{aligned} & 6.36 \\ & (5.0) \end{aligned}$ | $\begin{aligned} & 5.93 \\ & (5.0) \end{aligned}$ | $\begin{array}{r} 5.37 \\ (6.0) \end{array}$ | $\begin{aligned} & 4.83 \\ & (3.5,6.0) \end{aligned}$ | $\begin{aligned} & 4.18,{ }^{\mathrm{d}} 4.28^{\mathrm{d}} \\ & (12.0) \end{aligned}$ | 8.44 | 11.66, 12.23 | 2.03, 2.04, 2.06, 2.16 (Ac's) |
| 5b | $\begin{aligned} & 5.98 \\ & (5.5) \end{aligned}$ | $\begin{aligned} & 4.36 \\ & (5.5) \end{aligned}$ | $\begin{aligned} & 4.07^{\mathrm{e}} \\ & (4.0) \end{aligned}$ | $\begin{gathered} 3.89 \\ (4.0,4.0) \end{gathered}$ | $\begin{aligned} & 3.53,3.66 \\ & (12.0) \end{aligned}$ | 8.30 | 10.96, 6.25 | 5.01, ${ }^{\text {, } 5.10, ~}{ }^{\text {c } 5.36, ~}{ }^{\text {c ( }}$ ( ${ }^{\text {H 's }}$ ) |
| 5d | $\begin{gathered} 6.08 \\ (1.0) \end{gathered}$ | $\begin{aligned} & 4.23{ }^{3} \\ & (1.5) \end{aligned}$ | $\begin{aligned} & 4.01^{\mathrm{e}} \\ & (3.5) \end{aligned}$ | $\begin{aligned} & 4.15 \\ & (5.0,6.5) \end{aligned}$ | $\begin{aligned} & 3.67,3.74 \\ & (12.0) \end{aligned}$ | 8.12 | 10.98, 6.25 | $4.73,{ }^{\text {h }} 5.45,{ }^{\text {c }} 5.80^{\text {c ( }}$ ( $\mathrm{OH}^{\prime} \mathrm{s}$ ) |
| $5 f$ | $\begin{gathered} 5.91 \\ (5.0) \end{gathered}$ | $\begin{aligned} & 4.49^{\prime} \\ & (5.5) \end{aligned}$ | $\begin{gathered} 3.93 \\ (6.5) \end{gathered}$ | $\begin{aligned} & 4.19 \\ & (3.5,5.5) \end{aligned}$ | $\begin{aligned} & 3.47,3.58 \\ & (12.0) \end{aligned}$ | 8.16 | 10.92, 6.24 | 4.84, 5.45, 5.68 (OH's) |
| 7a | $\begin{gathered} 6.30 \\ (6.0) \end{gathered}$ | $\begin{gathered} 5.80 \\ (6.5) \end{gathered}$ | $\begin{gathered} 5.44 \\ (6.0) \end{gathered}$ | 4.19-4.44 | $\begin{aligned} & 4.19-4.44 \\ & (11.0) \end{aligned}$ | 8.51 | 11.62, 12.24 | 1,11, ${ }^{\text {c }} 2.74{ }^{\text {i }}$ (i-Pr), 2.03, 2.10 (Ac's) |
| 7c | $\begin{array}{r} 6.37 \\ (3.0) \end{array}$ | $\begin{aligned} & 5.58^{h} \\ & (2.5) \end{aligned}$ | $\begin{array}{r} 5.49 \\ (5.0) \end{array}$ | $\begin{aligned} & 4.62^{\mathrm{d}} \\ & (5.0,5.0) \end{aligned}$ | $4.34{ }^{\text {c }}$ | 8.41 | 11.24, 11.63 | 1.13, ${ }^{\text {c }} 2.76{ }^{\text {i }}$ (i-Pr), 2.05, 2.11 (Ac's) |
| 9a | $\begin{aligned} & 6.26 \\ & (5.0) \end{aligned}$ | $\begin{aligned} & 5.95^{\text {h }} \\ & (5.5) \end{aligned}$ | $\begin{aligned} & 5.78^{h} \\ & (5.5) \end{aligned}$ | $\begin{aligned} & 4.38 \\ & (3.5,6.0) \end{aligned}$ | $\begin{aligned} & 4.33, \mathrm{~d} 4.43^{\mathrm{d}} \\ & (11.0) \end{aligned}$ | 8.61 | 10.77 | 1.99, 2.05, 2.12, 2.18 (Ac's), 7.28-7.54e $\left(\mathrm{Ph}_{2}\right)$ |
| 9c | $\begin{gathered} 6.18 \\ (3.5) \end{gathered}$ | $\begin{aligned} & 5.81^{h} \\ & (2.5) \end{aligned}$ | $\begin{array}{r} 5.55 \\ (4.5) \end{array}$ | $\begin{aligned} & 4.61 \\ & (4.0,7.0) \end{aligned}$ | $\begin{array}{r} 4.29 \\ (12.0) \end{array}$ | 8.59 | 10.74 | 2.01, 2.09, 2.10, 2.22 (Ac's), 7.28-7.56 ${ }^{\mathrm{e}}\left(\mathrm{Ph}_{2}\right)$ |
| 9e | $\begin{gathered} 6.32 \\ (4.0) \end{gathered}$ | $\begin{aligned} & 6.04^{h} \\ & (5.0) \end{aligned}$ | $\begin{gathered} 5.40 \\ (6.5) \end{gathered}$ | $\begin{aligned} & 5.00 \\ & (3.5,5.5) \end{aligned}$ | $\begin{aligned} & 4.20, \mathrm{~d} 4.32^{\mathrm{d}} \\ & (12.0) \end{aligned}$ | 8.59 | 10.76 | 2.04, 2.22 (Ac's), 7.26-7.56 ${ }^{\text {e }}\left(\mathrm{Ph}_{2}\right)$ |
| 11a | $\begin{gathered} 6.29 \\ (5.0) \end{gathered}$ | $\begin{aligned} & 5.99 \mathrm{~h} \\ & (5.5) \end{aligned}$ | $\begin{gathered} 5.80 \\ (6.0) \end{gathered}$ | $\begin{aligned} & 4.34-4.48 \\ & (4.0,4.0) \end{aligned}$ | $\begin{aligned} & 4.34-4.48 \\ & (12.0) \end{aligned}$ | 8.66 | 10.78 | $\begin{aligned} & 1.11,{ }^{c} 2.81^{\mathrm{i}} \text { (i-Pr), 2.01, 2.10, } 2.25 \text { (Ac's), } \\ & 7.36-7.61^{\mathrm{e}}\left(\mathrm{Ph}_{2}\right) \end{aligned}$ |
| 12a | $\begin{gathered} 6.09 \\ (6.0) \end{gathered}$ | $\begin{aligned} & 5.68^{\text {h }} \\ & (6.5) \end{aligned}$ | $\begin{aligned} & 5.44^{\mathrm{h}} \\ & (4.5) \end{aligned}$ | $\begin{aligned} & 4.47 \\ & (3.5,6.0) \end{aligned}$ | $\begin{aligned} & 4.21, \mathrm{~d} 4.32^{\mathrm{d}} \\ & (12.0) \end{aligned}$ | 8.91 | 10.70 | 1.95, 2.00, 2.16, 2.20 (Ac's), 7.30-7.65 ${ }^{\text {( }} \mathrm{Ph}_{2}$ ) |

${ }^{\text {a }}$ Chemical shifts ( $\delta ; 400$ or 200 MHz ). " "Apparent" first-order coupling constants ( Hz ; in parentheses). c Doublet unless otherwise
 ${ }^{\mathrm{h}}$ Triplet. ${ }^{\text {i Septet. }}$

Table 2. ${ }^{13} \mathrm{C}$ NMR ${ }^{\mathrm{a}, \mathrm{b}}$

| compd | C2 | C4 | C5 | C6 | C8 | C1' | C2' | C3' | C4' | C5' |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2c ${ }^{\text {c }}$ | 147.97 | 148.33 | 119.81 | 154.50 | 136.98 | 85.58 | 78.82 | 73.86 | 77.74 | 60.92 |
| $3 \mathrm{a}^{\text {c }}$ | 147.35 | 158.26 | 110.49 | 152.07 | 143.85 | 87.50 | 73.00 | 69.58 | 79.40 | 62.79 |
| $3{ }^{\text {c }}$ | 147.00 | 157.35 | 110.55 | 152.10 | 142.02 | 88.16 | 79.35 | 73.89 | 77.96 | 60.96 |
| $3{ }^{\text {c }}$ | 147.48 | 158.42 | 110.45 | 152.48 | 143.80 | 88.18 | 79.01 | 74.54 | 79.86 | 63.08 |
| 5b | 152.87 | 160.63 | 107.67 | 154.31 | 142.36 | 89.10 | 74.39 | 69.69 | 85.17 | 61.12 |
| 5d | 152.60 | 159.98 | 107.41 | 154.36 | 141.75 | 91.11 | 81.39 | 75.11 | 83.44 | 59.31 |
| $5 f$ | 152.83 | 160.66 | 107.49 | 154.28 | 142.44 | 90.33 | 80.26 | 75.03 | 84.82 | 61.13 |
| $7 \mathbf{a}^{\text {c,d }}$ | 148.01 | 158.66 | 110.84 | 152.46 | 144.45 | 87.78 | 73.32 | 69.93 | 79.77 | 63.27 |
| 7c ${ }^{\text {c,d }}$ d | 147.76 | 157.87 | 111.00 | 152.63 | 142.73 | 89.69 | 79.73 | 74.27 | 78.54 | 61.64 |
| $9 \mathbf{a}^{\text {c, }}$ | 152.16 | 153.98 | 120.26 | 155.25 | 144.10 | 86.27 | 72.16 | 70.25 | 79.76 | 63.04 |
| 9c ${ }^{\text {c,e }}$ | 152.33 | 154.23 | 119.69 | 155.12 | 143.18 | 86.15 | 78.25 | 73.98 | 77.69 | 61.11 |
| $9 \mathbf{e l}^{\text {c, }}$ | 152.18 | 153.99 | 120.09 | 155.18 | 143.95 | 86.71 | 78.26 | 74.87 | 80.18 | 62.56 |
| 11a ${ }^{\text {c-e }}$ | 152.69 | 154.49 | 120.84 | 155.57 | 144.60 | 86.29 | 72.58 | 70.74 | 80.29 | 63.54 |
| 12ace | 149.19 | 164.84 | 110.59 | 152.33 | 147.73 | 87.21 | 72.86 | 69.87 | 80.00 | 62.95 |

${ }^{\text {a }}$ Chemical shifts ( $\delta ; 100$ or 50 MHz ). ${ }^{\text {b }}$ Proton-decoupled singlets. ${ }^{\mathrm{c}}$ Also peaks at $\delta 19.80-24.40$ and $168.50-173.50$ (Ac's). d Also peaks at $\delta 19.00-19.20,34.90-35.10$, and $175.00-180.40$ ( $\mathrm{i}-\mathrm{PrCO}$ ). ${ }^{\mathrm{e}}$ Also peaks at $\delta 126.60-141.80$ and $149.70-150.40\left(\mathrm{Ph}_{2} \mathrm{NCO}\right)$.
mg, 57\%; whitefoam): MS m/z $451.1348\left(11, \mathrm{M}^{+}\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{9}\right]\right.$ $=451.1339$ ) with spectral data as reported. ${ }^{16}$

7-( $\beta$-d-Ribofuranosyl)guanine (5b). Method A. Procedure A. A suspension of 2-N-acetylguanine ${ }^{11}$ ( $\mathbf{1 a} ; 193 \mathrm{mg}$, 1 mmol ) and BSA ( $0.5 \mathrm{~mL}, 407 \mathrm{mg}, 2 \mathrm{mmol}$ ) in dried DCE ( 10 mL ) was stirred in a stoppered flask at $80^{\circ} \mathrm{C}$ until a clear solution was obtained ( $\sim 2.5 \mathrm{~h}$ ). The solution was cooled, $\mathrm{SnCl}_{4}$ ( $0.25 \mathrm{~mL}, 550 \mathrm{mg}, 2.1 \mathrm{mmol}$ ) was added, and stirring was continued at ambient temperature for 30 min . A solution of tetra-O-acetyl- $\beta$-D-ribofuranose ( $350 \mathrm{mg}, 1.1 \mathrm{mmol}$ ) in DCE ( 5 mL ) was added, and stirring was continued for 1 day. MeOH ( 5 mL ) was added, the reaction mixture was diluted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, and the solution was washed [brine ( 50 mL ), saturated $\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL} \times 2)$, brine $(50 \mathrm{~mL})$ ]. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, and the filtrate was evaporated. The residue was chromatographed ( $\mathrm{Et}_{2} \mathrm{O} \rightarrow$ $10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ ) to give 2-N-acetyl-7-(2,3,5-tri-O-acetyl- $\beta$-dribofuranosyl) guanine (3a; $317 \mathrm{mg}, 70 \%$; white foam) with data
(16) Reese, C. B.; Saffhill, R. J . Chem. Soc., Perkin Trans. 1 1972, 2937.
as reported: ${ }^{6}$ UV max 263 nm ; MS m/z 451.1331 (6, M+$\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{9}\right]=451.1339$ ).

Method B. Procedure B. A suspension of $2-\mathrm{N}-\mathrm{i}$ sobutyrylguanine ${ }^{12}$ ( $\mathbf{1 b} ; 221 \mathrm{mg}, 1 \mathrm{mmol}$ ) and BSA ( $0.5 \mathrm{~mL}, 407$ $\mathrm{mg}, 2 \mathrm{mmol}$ ) in dried $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ under argon until a clear solution was obtained ( $\sim 1.5 \mathrm{~h}$ ). The solution was cooled to ambient temperature, $\mathrm{TiCl}_{4}(0.23 \mathrm{~mL}$, $398 \mathrm{mg}, 2.1 \mathrm{mmol}$ ) was added, and stirring was continued for 30 min . A solution of tetra-O-acetyl- $\beta$-d-ribofuranose ( 350 mg , 1.1 mmol ) in dried $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was added, the reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 3 h and cooled to ambient temperature, and MeOH ( 5 mL ) was added. Volatiles were evaporated, and the residue was dissolved (EtOAc, 150 mL ). The sol ution was washed [brine ( 50 mL ), saturated $\mathrm{NaHCO}_{3} /$ $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, brine ( 50 mL )], dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and chromatographed (3\% MeOH/EtOAc) to give 7-(2,3,5-tri-O-acetyl- $\beta$-D-ribofuranosyl)-2-N-isobutyrylguanine (7a; 320 mg , 67\%; white foam): UV $\max 264 \mathrm{~nm}(\epsilon 13600)$; MS (FAB) m/z 480.1728 ( $100, \mathrm{MH}^{+}\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{9}\right]=480.1731$ ).

Analogous coupling with $\mathbf{1 b}$ ( $\mathrm{TiCl}_{4} / \mathrm{DCE}$ ) and workup gave 7a (43\%). Combined aqueous wash layers were evaporated,
and the residue was subjected to procedure C. Volatiles were evaporated, and the residue was extracted ( MeOH ). The combined extracts were evaporated, and the residue was crystallized $\left(\mathrm{H}_{2} \mathrm{O}\right)$ to give 4b/5b ( $\sim 1.5: 1,29 \%$ ). Treatment of 1b by procedure A (with $\mathrm{TiCl}_{4}$ as catalyst instead of $\mathrm{SnCl}_{4}$ ) gave 7a/6a (~16:1, 44\%).

Deprotection. Procedure C. A solution of 3 a ( 451 mg , 1 mmol ) in $\mathrm{NH}_{3} / \mathrm{MeOH}\left(20 \mathrm{~mL}\right.$; saturated at $-10{ }^{\circ} \mathrm{C}$ ) in a sealed flask was stirred at ambient temperature for 24 h . Volatiles were evaporated, and the residue was washed ( $2 \times$ $\mathrm{CHCl}_{3}$ ) and then crystallized $\left(\mathrm{H}_{2} \mathrm{O}\right)$ to give $\mathbf{5 b}$ hemihydrate ( $228 \mathrm{mg}, 78 \%$ ): $\mathrm{mp} \sim 275{ }^{\circ} \mathrm{C}$ dec (lit. $.^{17} \mathrm{mp} 230-260{ }^{\circ} \mathrm{C}$ dec, lit..$^{6} \mathrm{mp} 298{ }^{\circ} \mathrm{C}$ dec); UV ( $\mathrm{H}_{2} \mathrm{O}$ ) max $286 \mathrm{~nm}(\epsilon 6800)$; MS m/ z $283.0910\left(1, \mathrm{M}^{+}\left[\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{5}\right]=283.0917\right.$ ), ( FAB ) m/z 284 (12, $\mathrm{MH}^{+}$).

Analogous treatment of $\mathbf{7 a}(240 \mathrm{mg}, 0.5 \mathrm{mmol})$ [the residue was dissolved $\left(\mathrm{H}_{2} \mathrm{O}\right)$, the solution was washed $\left(\mathrm{CHCl}_{3}\right)$, the aqueous layer was evaporated, and the residue was crystallized $\left(\mathrm{H}_{2} \mathrm{O}\right)$ ] gave $\mathbf{5 b}$ hemi hydrate ( $110 \mathrm{mg}, 78 \%$ ) with identical data.

7-( $\beta$-d-Xylofuranosyl)guanine (5d). Method A. Tetra-O-acetyl-d-xyl ofuranose ( $350 \mathrm{mg}, 1.1 \mathrm{mmol}$ ) was subjected to procedure A to give a residue that was chromatographed $\left(\mathrm{CHCl}_{3} \rightarrow 2 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$ to give 2-N-acetyl-7-(2,3,5-tri-O-acetyl- $\beta$-D-xylofuranosyl)guanine (3c; $341 \mathrm{mg}, 76 \%$; white foam): UV max $264 \mathrm{~nm} ; \mathrm{MS} \mathrm{m} / \mathrm{z} 451.1338\left(9, \mathrm{M}^{+}\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{9}\right]\right.$ $=451.1339)$. Further elution gave $2-\mathrm{N}$-acetyl-9-(2,3,5-tri-O-acetyl- $\beta$-D-xylofuranosyl)guanine (2c; $13 \mathrm{mg}, 3 \%$ ): UV max 258 and 280 nm .

Method B. Treatment of $\mathbf{1 b}$ ( 1 mmol ) and tetra-O-acetyl-$\beta$-D-xyl ofuranose ( $350 \mathrm{mg}, 1.1 \mathrm{mmol}$ ) by procedure B gave 7-(2,3,5-tri-O-acetyl- $\beta$-D-xylofuranosyl)-2-N-isobutyrylguanine ( $\mathbf{7 c}$; $56 \%$ with $\mathrm{CH}_{3} \mathrm{CN} ; 59 \%$ with DCE): UV max 264 nm ( $\epsilon 12$ 900); MS (FAB) m/ z 480.1725 (100, $\mathrm{MH}^{+}\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{9}\right]=$ 480.1731).

Deprotection. Procedure D. $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}(28-30 \% ; 20 \mathrm{~mL})$ was added to a stirred solution of $3 \mathrm{c}(451 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$. The flask was sealed and heated at $60^{\circ} \mathrm{C}$ for 1 day. Volatiles were evaporated, and the residue was washed $\left(2 \times \mathrm{CHCl}_{3}\right)$ and crystallized $\left(\mathrm{H}_{2} \mathrm{O}\right)$ to give 5 d hemihydrate ( $251 \mathrm{mg}, 86 \%$; two crops): $\mathrm{mp} \sim 285{ }^{\circ} \mathrm{C}$ dec (Lit. ${ }^{8 a} \mathrm{mp}>220$ ${ }^{\circ} \mathrm{C}$ dec); UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \max 285(\epsilon 7300)$; MS (FAB) m/ z 284 (26, $\mathrm{MH}^{+}$). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 41.10 ; \mathrm{H}, 4.83$; N, 23.96. Found: C, 41.01; H, 4.58; N, 23.78.

Deprotection of $\mathbf{7 c}(479 \mathrm{mg}, 1 \mathrm{mmol})$ by procedure C and crystallization $\left(\mathrm{H}_{2} \mathrm{O}\right)$ gave 5d ( $215 \mathrm{mg}, 76 \%$; white powder) with identical data.

7-( $\alpha$-D-Arabinofuranosyl)guanine (5f). Tetra-O-acetyl-D-arabinofuranose ( $350 \mathrm{mg}, 1.1 \mathrm{mmol}$ ) was subjected to procedure $A$ to give a residue that was chromatographed ( $\mathrm{Et}_{2} \mathrm{O}$ $\rightarrow 10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ ) to give 2-N-acetyl-7-(2,3,5-tri-O-acetyl-$\alpha$-d-arabinofuranosyl) guanine (3e; $326 \mathrm{mg}, 72 \%$; white foam): UV max 263 nm ; MS m/z 451.1328 (4, $\mathrm{M}^{+}\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{9}\right]=$ $451.1339)$. Deprotection of $\mathbf{3 e}(451 \mathrm{mg}, 1 \mathrm{mmol})$ by procedure C and crystallization $\left(\mathrm{H}_{2} \mathrm{O}\right)$ gave $5 f$ hemihydrate $(249 \mathrm{mg}$, $85 \%$ ): mp $250^{\circ} \mathrm{C}$ dec; UV ( $\mathrm{H}_{2} \mathrm{O}$ ) max $286 \mathrm{~nm}(\epsilon 7500)$; MS (FAB) m/z $284\left(12, \mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{5}$. $0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 41.10 ; \mathrm{H}, 4.83 ; \mathrm{N}, 23.96$. Found: C, 41.35; H, 4.83; N, 24.18.

2-N-Acetyl-6-O-(diphenylcarbamoyl)guanine (8a). Procedure E. Diphenylcarbamoyl chloride ( $6.37 \mathrm{~g}, 2.75 \mathrm{mmol}$ ) was added portionwise to a suspension of 2-N,9-diacetylguanine ${ }^{10 \mathrm{a}}(5.88 \mathrm{~g}, 25 \mathrm{mmol})$ in EtN (i-Pr) $2(8.7 \mathrm{~mL}, 6.46 \mathrm{~g}, 50$ $\mathrm{mmol})$ and dried pyridine ( 120 mL ), and stirring was continued at ambient temperature for $1 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, stirring was continued for 10 min , and volatiles were evaporated. The residue was coevaporated (toluene, $3 \times 20 \mathrm{~mL}$ ) and then was heated (steam bath) with EtOH/H $\mathrm{H}_{2} \mathrm{O}$ (1:1, 300 mL ) for 1.5 h . The cooled suspension was filtered, and the product was washed ( $98 \% \mathrm{EtOH}$ ) until the washings were col orless. 8a ( $8.93 \mathrm{~g}, 92 \%$; white powder): $\mathrm{mp} \sim 254-256^{\circ} \mathrm{C}$ (dec; fast heating); UV max $278 \mathrm{~nm} ; \mathrm{MS} \mathrm{m/z} 388.1283$ (8, M+$\left[\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{3}\right]=388.1284$ ); ${ }^{1} \mathrm{H}$ NMR $\delta 2.18$ ( $\mathrm{s}, 3$ ), 7.26-7.56
(17) Rousseau, R. J.; Robins, R. K.; Townsend, L. B. J. Am. Chem. Soc. 1968, 90, 2661.
(m, 10), 8.46 (s, 1), 10.66 (br s, 1), 13.02 (br s, 1). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{3}$ : C, $61.85 ; \mathrm{H}, 4.15 ; \mathrm{N}, 21.64$. Found: $\mathrm{C}, 61.84$; H, 4.24; N, 21.51.

6-O-(Diphenylcarbamoyl)-2-N-isobutyrylguanine (8b). Treatment of 9-acetyl-2-N-isobutyrylguanine ${ }^{12}(2.63 \mathrm{~g}, 10$ mmol) by procedure E gave $\mathbf{8 b}$ ( $3.71 \mathrm{~g}, 87 \%$; white powder): $\mathrm{mp} \sim 218-220^{\circ} \mathrm{C}$ dec; UV max 278 ( $\epsilon 12600$ ); MS (FAB) m/z $417.1693\left(100, \mathrm{MH}^{+}\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{6} \mathrm{O}_{3}\right]=417.1675\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.03$ (d, J $=6 \mathrm{~Hz}, 6$ ), 2.78 (septet, 1), 7.28-7.54 (m, 10), $8.44(\mathrm{~s}, 1)$, 10.59 (br s, 1), $13.58(\mathrm{br} \mathrm{s}, 1) ;{ }^{13} \mathrm{C}$ NMR ( $10 \mathrm{~mol} \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} /$ DMSO-d 6 ) $\delta$ 19.53, 34.75, 118.81* (C5), 127.49, 129.23, 129.65, 141.90, 144.87* (C8), 150.52 (6-COO), 152.34 (C2), 154.19* (C4), 157.41* (C6), 174.81 (signals followed by an asterisk were observed only after adding TFA). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3}$. $0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.11 ; \mathrm{H}, 4.98 ; \mathrm{N}, 19.75$. Found: C, 62.13; H, 4.86; N, 19.65.

Guanosine (4b). Method A. Procedure F. BSA ( 0.5 $\mathrm{mL}, 407 \mathrm{mg}, 2 \mathrm{mmol}$ ) was added to a suspension of 8 a ( 388 $\mathrm{mg}, 1 \mathrm{mmol}$ ) in dried DCE ( 10 mL ), and stirring was continued in a stoppered flask at $80^{\circ} \mathrm{C}$ for 15 min . The clear solution was evaporated, the residue was dissolved in dried toluene (5 $\mathrm{mL})$, and TMSOTf ( $0.24 \mathrm{~mL}, 289 \mathrm{mg}, 1.3 \mathrm{mmol}$ ) and a solution of tetra-O-acetyl- $\beta$-D-ribofuranose ( $382 \mathrm{mg}, 1.2 \mathrm{mmol}$ ) in dried tol uene ( 5 mL ) were added. The sol ution was stirred at $80^{\circ} \mathrm{C}$ for 1 h and cooled, and EtOAc ( 50 mL ) was added. The organic phase was washed [saturated $\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL} \times 2)$, brine $(50 \mathrm{~mL})$ ], dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was chromatographed ( $\mathrm{Et}_{2} \mathrm{O} \rightarrow 20 \% \mathrm{Me}_{2} \mathrm{CO} / \mathrm{Et}_{2} \mathrm{O}$ ) to give 2-N-acetyl-9-(2,3,5-tri-O-acetyl- $\beta$-D-ribofuranosyl)-6-O-(diphenylcarbamoyl) guanine (9a; $589 \mathrm{mg}, 91 \%$; white foam): UV max 278 nm; MS (FAB) m/ z 647 (3, MH ${ }^{+}$).

Method B. Treatment of $\mathbf{2 a}(177 \mathrm{mg}, 0.39 \mathrm{mmol})$ by procedure E [chromatography $\left(\mathrm{CHCl}_{3} \rightarrow 1 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$ ] gave $9 \mathrm{a}(194 \mathrm{mg}, 77 \%)$ with NMR $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ and UV spectra identical with those of 9a from method A. The two samples comigrated in three TLC systems.

Method C. Treatment of $\mathbf{8 a}$ ( $388 \mathrm{mg}, 1 \mathrm{mmol}$ ) in DCE ( 15 mL ) with BSA ( $0.5 \mathrm{~mL}, 407 \mathrm{mg}, 2 \mathrm{mmol}$ ) followed by tetra-O-acetyl- $\beta$-d-ribofuranose ( $796 \mathrm{mg}, 2.5 \mathrm{mmol}$ ) and TMSOTf ( 0.38 $\mathrm{mL}, 467 \mathrm{mg}, 2.1 \mathrm{mmol})$ by procedure $\mathrm{F}\left(80^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$ gave a residue that was chromatographed ( $3 \rightarrow 10 \% \mathrm{Me}_{2} \mathrm{CO} / \mathrm{CHCl}_{3}$ ). Early fractions contained $2-\mathrm{N}$-acetyl-2-N,9-bis(2,3,5-tri-O-acetyl- $\beta$-D-ribofuranosyl)-6-O-(di phenyl carbamoyl) guanine (10a; $26 \mathrm{mg}, 3 \%$; white foam): UV max 263 (sh) nm; MS (FAB) m/z 905 (1, MH ${ }^{+}$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.60,1.95,2.04,2.06,2.12,2.14$ ( $6 \times$ $\mathrm{s}, 21), 3.83,4.18,4.23,4.37(4 \times \mathrm{m}, 6), 5.28,5.60,5.80,5.97$ ( 4 $\times \mathrm{m}, 4), 6.11,6.36(2 \times \mathrm{d}, 2), 7.30-7.60(\mathrm{~m}, 10), 8.55(\mathrm{~s}, 1)$. Intermediate fractions contained 9a and 10a (115 mg), and later fractions contained 9a ( $160 \mathrm{mg}, 25 \%$ ).

Method D. Treatment of $\mathbf{8 b}(416 \mathrm{mg}, 1 \mathrm{mmol})$ by procedure F gave 9-(2,3,5-tri-O-acetyl- $\beta$-d-ribofuranosyl)-6-O-(diphenyl-carbamoyl)-2-N-isobutyrylguanine (11a; 619 mg , 89\%; white foam): UV max 278 nm ( $\epsilon 13$ 400); MS (FAB) m/ z 675.2420 (100, $\mathrm{MH}^{+}\left[\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{10}\right]=675.2415$ ). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{34^{-}}$ $\mathrm{N}_{6} \mathrm{O}_{10} \cdot 1.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.85 ; \mathrm{H}, 5.28 ; \mathrm{N}, 12.05$. Found: C, 56.83 ; H, 5.24; N, 11.79.

Deprotection. Treatment of 9a ( $647 \mathrm{mg}, 1 \mathrm{mmol}$ ) (or 9a plus 10a) by procedure C gave $\mathbf{4 b}$ hemihydrate (from $\mathrm{H}_{2} \mathrm{O}$ ) ( $220 \mathrm{mg}, 75 \%$ ): $\mathrm{mp} \sim 265^{\circ} \mathrm{C}$ dec (authentic sample, $\mathrm{mp} \sim 250$ ${ }^{\circ} \mathrm{C}$ dec); UV $\left(\mathrm{H}_{2} \mathrm{O}\right)$ max $252 \mathrm{~nm}(\epsilon 13800)$, ( 0.1 M HCl ) max $255 \mathrm{~nm}(\epsilon 12300)$, ( 0.1 M KOH ) max $264 \mathrm{~nm}(\epsilon 11500$ ); MS (FAB) m/z $284\left(23, \mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{5}$. $0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 41.10 ; \mathrm{H}, 4.83 ; \mathrm{N}, 23.96$. Found: C, 41.03; H, 4.63; N, 23.99.

Analogous deprotection of 11a gave $\mathbf{4 b}$ ( $80 \%$ ).
9-( $\beta$-d-Xylofuranosyl) guanine (4d). Treatment of tetra-O-acetyl-D-xylofuranose ( 1.2 mmol ) by procedure F [chromatography $\left(\mathrm{CHCl}_{3} \rightarrow 1 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$ ] gave $2-\mathrm{N}$-acetyl-9-(2,3,5-tri-O-acetyl- $\beta$-d-xyl ofuranosyl)-6-O-(diphenyl carbamoyl)guanine (9c; 553 mg , 86\%; white foam): UV max 278 $\mathrm{nm} ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 647\left(4, \mathrm{MH}^{+}\right)$plus $2-\mathrm{N}$-acetyl-2-N, 9 -bis-(2,3,5-tri-O-acetyl- $\beta$-D-xyl ofuranosyl)-6-O-(di phenyl carbamoyl)guanine (10c; 40mg, 4\%): UV max 263 nm (sh); MS (FAB) $\mathrm{m} / \mathrm{z} 905\left(6, \mathrm{MH}^{+}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.43,1.90,1.96,2.02,2.10(5 \times$ $\mathrm{s}, 21), 3.88,4.03,4.30,4.62(4 \times \mathrm{m}, 6), 5.22,5.52,5.75,5.80(4$ $\times \mathrm{m}, 4), 6.14,6.29(2 \times \mathrm{d}, 2), 7.30-7.60(\mathrm{~m}, 10), 8.83(\mathrm{~s}, 1)$;
${ }^{13} \mathrm{C}$ NMR $\delta$ 19.27, 20.15, 20.28, 23.28, 61.02, 61.20, 74.13, $74.79,75.54,76.94,78.07,78.40,86.83,87.72,122.59,126.72$, 127.21, 129.24, 141.35, 145.73, 149.62, 151.82 (C2), 154.12, 155.17, 168.83, 169.09, 169.63, 169.75, 170.13.

Deprotection. Treatment of 9c ( $647 \mathrm{mg}, 1 \mathrm{mmol}$ ) (or 9c and 10c) by procedureD gave 4d hemihydrate (from $\mathrm{H}_{2} \mathrm{O}$ ) (197 $\mathrm{mg}, 67 \%$; two crops): $\mathrm{mp} \sim 250^{\circ} \mathrm{C}$ dec (lit. $.^{8 a} \mathrm{mp} 241-243{ }^{\circ} \mathrm{C}$ dec); UV ( $\mathrm{H}_{2} \mathrm{O}$ ) max $252 \mathrm{~nm}(\epsilon 13700$ ); MS (FAB) m/ z 284 (14, $\mathrm{MH}^{+}$). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 41.10 ; \mathrm{H}$, 4.83; N, 23.96. Found: C, 40.97; H, 4.52; N, 23.83.

9-( $\alpha$-D-Arabinofuranosyl)guanine (4f). Treatment of tetra-O-acetyl-D-arabinofuranose ( $382 \mathrm{mg}, 1.2 \mathrm{mmol}$ ) by procedure F [chromatography ( $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{Et}_{2} \mathrm{O}, 1: 4$ )] gave 2- N -acetyl-9-(2,3,5-tri-O-acetyl- $\alpha$-D-arabinofuranosyl)-6-O-(diphenylcarbamoyl)guanine (9e; $531 \mathrm{mg}, 82 \%$; white foam): UV max 278 $\mathrm{nm} ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 647\left(1, \mathrm{MH}^{+}\right)$. Deprotection of 9 e ( 647 mg , 1 mmol ) by procedure D gave $\mathbf{4 f}$ hemihydrate (from $\left.\mathrm{H}_{2} \mathrm{O}\right)(246$ $\mathrm{mg}, 84 \%)$ : $\mathrm{mp} \sim 290^{\circ} \mathrm{C}$ dec (lit. $.^{18} \mathrm{mp}>300^{\circ} \mathrm{C}$ dec); UV $\left(\mathrm{H}_{2} \mathrm{O}\right)$ $\max 252 \mathrm{~nm}(\epsilon 13000) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 284\left(16, \mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 41.10 ; \mathrm{H}, 4.83 ; \mathrm{N}, 23.96$. Found: C, 41.23; H, 4.57; N, 24.08.

Rearrangement of 2-N-Acetyl-7-(2,3,5-tri-O-acetyl- $\beta$-D-ribofuranosyl)-6-O-(diphenylcarbamoyl)guanine (12a) To Give 9a. Treatment of $3 \mathrm{a}(226 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) by procedure E (ambient temperature, 3 h ) [chromatography ( $\mathrm{CHCl}_{3} \rightarrow 2 \%$ $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ )] gave 12a ( $264 \mathrm{mg}, 82 \%$ ): MS ( FAB ) m/z 647 $\left(25, \mathrm{MH}^{+}\right)$. Subjection of 12a to the conditions of procedure F for 2 h (TMSOTf/dried toluene $/ 80^{\circ} \mathrm{C} / 2 \mathrm{~h}$ ) resulted in its complete conversion to 9 a.

9-[(2-Hydroxyethoxy)methyl]guanine (Acyclovir) (15). Treatment of 8a ( $388 \mathrm{mg}, 1 \mathrm{mmol}$ ) and (2-acetoxyethoxy)methyl bromide ${ }^{15 a}(0.158 \mathrm{~mL}, 236 \mathrm{mg}, 1.2 \mathrm{mmol})$ by procedure F (ambient temperature, 1.5 h ; no TMSOTf) gave a residue
(18) Lee, W. W.; Martinez, A. P.; Blackford, R. W.; Bartuska, V. J .; Reist, E. J.; Goodman, L. J. Med. Chem. 1971, 14, 819.
that was chromatographed ( $\mathrm{Et}_{2} \mathrm{O} \rightarrow 30 \% \mathrm{Me}_{2} \mathrm{CO} / \mathrm{Et}_{2} \mathrm{O}$ ). Evaporation of later fractions gave a white foam that was recrystallized ( $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ ) to give 9-[(2-acetoxyethoxy)methyl]-2-N-acetyl-6-O-(diphenylcarbamoyl)guanine (13; $319 \mathrm{mg}, 63 \%$ ): mp $136-138{ }^{\circ} \mathrm{C}$; UV max 278 nm ( $\epsilon 13600$ ); MS m/z 504.1770 (1, $\mathrm{M}^{+}\left[\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6}\right]=504.1757$ ), (FAB) m/ z $505\left(25, \mathrm{MH}^{+}\right.$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.91(\mathrm{~s}, 3), 2.22(\mathrm{~s}, 3), 3.78(\mathrm{~m}, 2), 4.08(\mathrm{~m}, 2), 5.62$ ( $\mathrm{s}, 2$ ), $7.30-7.56(\mathrm{~m}, 10), 8.60(\mathrm{~s}, 1), 10.76$ (br s, 1); ${ }^{13} \mathrm{C}$ NMR $\delta 20.16,24.27,62.44,67.20,72.47,119.54,126.64,126.97$, 129.08, 141.43, 145.36, 149,81, 152.33, 154.88, 155.04, 168.62, 169.83. Evaporation of earlier fractions gave 2-N,9-bis[(2-acetoxyethoxy)methyl]-2-N-acetyl-6-O-(di phenyl carbamoyl)guanine (14; $20 \mathrm{mg}, 3 \%$ ) [repurified on a silica plate ( $5 \times 20$ cm , developed twice with $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{Et}_{2} \mathrm{O}$ (3:7) before NMR analysis]: ${ }^{1} \mathrm{H}$ NMR $\delta 1.85,1.86,2.28(3 \times \mathrm{s}, 9), 3.66,3.74(2$ $\times \mathrm{m}, 4), 4.03(\mathrm{~m}, 4), 5.42,5.68(2 \times \mathrm{s}, 4), 7.30-7.60(\mathrm{~m}, 10)$, 8.73 (s, 1).

Deprotection. Treatment of crystalline 13 ( $504 \mathrm{mg}, 1$ mmol) by procedure D gave $\mathbf{1 5}$ hemihydrate (from $\mathrm{H}_{2} \mathrm{O}$ ) ( 212 $\mathrm{mg}, 91 \%$; two crops): $\mathrm{mp} 250-253^{\circ} \mathrm{C}$ (lit. $.^{15 \mathrm{a}} \mathrm{mp} 265-266^{\circ} \mathrm{C}$, lit. $\left..^{5 \mathrm{~b}} \mathrm{mp} 247-248{ }^{\circ} \mathrm{C}\right)$; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \max 251 \mathrm{~nm}(\epsilon 13200)$; MS $\mathrm{m} / \mathrm{z} 225.0865\left(7, \mathrm{M}^{+}\left[\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3}\right]=225.0862\right)$, ( FAB ) m/z 226 (80, MH ${ }^{+}$); ${ }^{1} \mathrm{H}$ NMR $\delta 3.46$ (s, 4), 4.67 (br s, 1), 5.35 (s, 2), 6.51 (br s, 2), 7.81 (s, 1), 10.64 (br s, 1); ${ }^{13} \mathrm{C}$ NMR $\delta 59.88,70.34$, $72.01,116.43$ (C5), 137.71 (C8), 151.39 (C4), 153.78 (C2), 156.76 (C6).

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada, the University of Alberta, and Brigham Young University development funds for support and Mrs. J eanny Gordon for assistance with the manuscript.

J O9617023


[^0]:    * Author to whom inquiries should be addressed at Brigham Young University.
    ${ }^{\dagger}$ Present address: Gilead Sciences, Foster City, CA.
    ${ }^{\otimes}$ Abstract published in AdvanceACS Abstracts, December 15, 1996.
    (1) Part 92: Robins, M. J .; Guo, Z.; Samano, M. C.; Wnuk, S. F. J . Am. Chem. Soc. 1996, 118, 11317.
    (2) Shabarova, Z. A.; Polyakova, Z. P.; Prokof'ev, M. A. J . Gen. Chem. USSR 1959, 29, 218.
    (3) (a) F or a discussion of prior methods and limitations see: Robins, M. J.; Zou, R.; Hansske, F.; Madej, D.; Tyrrell, D. L. J. Nucleosides Nucleotides 1989, 8, 725 and references cited therein. (b) J enny, T. F.; Benner, S. A. Tetrahedron Lett. 1992, 33, 6619.
    (4) (a) Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Chem. Ber. 1981, 114, 1234. (b) Vorbrüggen, H. Acta Biochim. Pol. 1996, 43, 25.
    (5) (a) Dudycz, L. W.; Wright, G. E. Nucleosides Nucleotides 1984, 3, 33. (b) Wright, G. E.; Dudycz, L. W. J. Med. Chem. 1984, 27, 175.

[^1]:    (6) Garner, P.; Ramakanth, S. J. Org. Chem. 1988, 53, 1294.
    (7) Coupling catalyzed by TMSOTf: (a) Mikhailopulo, I. A.; Poopeiko, N. E.; Pricota, T. I.; Sivets, G. G.; Kvasyuk, E. I.; Balzarini, J .; De Clercq, E. J. Med. Chem. 1991, 34, 2195. (b) Sheppard, T. L.; Rosenblatt, A. T.; Breslow, R. J. Org. Chem. 1994, 59, 7243. (c) Chamberlain, S. D.; Biron, K. K.; Dornsife, R. E.; Averett, D. R.; Beauchamp, L.; K oszalka, G. W. J. Med. Chem. 1994, 37, 1371.
    (8) Coupling catalyzed by $\mathrm{SnCl}_{4}$ : (a) Poopeiko, N. E.; K vasyuk, E. I.; Mikhailopulo, I. A.; Lidkas, M. J. Synthesis 1985, 605. (b) Rao, T. S.; Durland R. H.; Revenkar G. R. J. Heterocycl. Chem. 1994, 31, 935. (c) Hunziker, J.; Priestley, E. S.; Brunar, H.; Dervan, P. B. J. Am. Chem. Soc. 1995, 117, 2661. (d) Reference 7b.
    (9) (a) Boryski, J.; Manikowski, A. Nucleosides Nucleotides 1995, 14, 287. (b) Boryski, J. Nucleosides Nucleotides 1996, 15, 771.
    (10) (a) Zou, R.; Robins, M. J. Can. J. Chem. 1987, 65, 1436. (b) Zou, R. Ph.D. Dissertation, University of Alberta, 1986. (c) ${ }^{13} \mathrm{C}$ NMR correlations for 7/9 isomer structures and examples of couplings to give anomeric 2'-deoxyguanosines and arabino analogues are in ref 10b. (d) Difficulties were encountered during preliminary investigations with preparation of and/or coupling reactions with derivatives of 2-amino-6-[benzyloxy, (dimethyl carbamoyl)oxy, (2,4,6-triisopropylbenzenesulfonyl) oxy, and 2-(4-nitrophenyl) ethoxy]purine ${ }^{100}$ and derivatives of 2-amino-6-(alkyl and aryl)thiopurines, their sulfone oxidation products, and 2-amino-6-[(diisopropylcarbamoyl)oxy]purine (Zou, R.; Guo, Z. unpublished results).

[^2]:    (12) J enny, T. F.; Schneider, K. C.; Benner, S. A. Nucleosides Nucleotides 1992, 11, 1257.
    (13) Lee, W. W.; M artinez, A. P.; Goodman, L.; Henry, D. W. J . Org. Chem. 1972, 37, 2923.
    (14) Kamimura, T.; Tsuchiya, M.; Urakami, K.-I.; Koura, K.; Sekine, M.; Shinozaki, K.; Miura, K.-I.; Hata, T. J . Am. Chem. Soc. 1984, 106, 4552.

[^3]:    (15) (a) Robins, M. J.; Hatfield, P. W. Can. J. Chem. 1982, 60, 547. (b) Shiragami, H.; Koguchi, Y.; Tanaka, Y.; Takamatsu, S.; Uchida, Y.; Ineyama, T.; Izawa, K. Nucleosides Nucleotides 1995, 14, 337.

