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This article studies the finite time blow-up of weak solutions to a structural acoustics 
model consisting of a semilinear wave equation defined on a bounded domain Ω ⊂
R3 which is strongly coupled with a Berger plate equation acting on the elastic 
wall, namely, a flat portion of the boundary. The system is influenced by several 
competing forces, including boundary and interior source and damping terms. We 
stress that the power-type source term acting on the wave equation is allowed to 
have a supercritical exponent, in the sense that its associated Nemytskii operator is
not locally Lipschitz from H1 into L2. In this paper, we prove the blow-up results 
for weak solutions when the source terms are stronger than damping terms, by 
considering two scenarios of the initial data: (i) the initial total energy is negative; 
(ii) the initial total energy is positive but small, while the initial quadratic energy is 
sufficiently large. The most significant challenge in this work arises from the coupling 
of the wave and plate equations on the elastic wall.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

We study the finite time blow-up of weak solutions for a structural acoustics model influenced with 
nonlinear forces. Precisely, we consider the following coupled system of nonlinear PDEs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − Δu + u + g1(ut) = f(u) in Ω × (0, T ),
wtt + Δ2w + g2(wt) + ut|Γ = h(w) in Γ × (0, T ),
u = 0 on Γ0 × (0, T ),
∂νu = wt on Γ × (0, T ),
w = ∂νΓw = 0 on ∂Γ × (0, T ),
(u(0), ut(0)) = (u0, u1), (w(0), wt(0)) = (w0, w1),

(1.1)
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where the initial data reside in the finite energy space, i.e.,

(u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω) and (w0, w1) ∈ H2
0 (Γ) × L2(Γ).

The space H1
Γ0

(Ω) defined in (2.1) consists of all H1 functions that vanish on Γ0.
Here, Ω ⊂ R3 is a bounded, open, connected domain with smooth boundary ∂Ω = Γ0 ∪ Γ, where Γ0 and 

Γ are two disjoint, open, connected sets of positive Lebesgue measure. Moreover, Γ is a flat portion of the 
boundary of Ω and is referred to as the elastic wall. The part Γ0 of the boundary ∂Ω describes a rigid wall, 
while the coupling takes place on the flexible wall Γ.

The nonlinearities f and h are source terms acting on the wave and plate equations respectively, where 
the source term f(u) is of a supercritical order, in the sense that its associated Nemytskii operator is not 
locally Lipschitz from H1

Γ0
(Ω) into L2(Ω). In the case of the 3D domain Ω, the supercritical order means 

that the exponent of the power-like function f is larger than 3. We stress that both source terms f(u) and 
h(w) are allowed to have “bad” signs which may cause instability (blow up) in finite time. In addition, the 
system is influenced by two other forces, namely g1(ut) and g2(wt) representing frictional damping terms 
acting on the wave and plate equations, respectively. The vectors ν and νΓ denote the outer normals to Γ
and ∂Γ, respectively.

Models such as (1.1) arise in the context of modeling gas pressure in an acoustic chamber which is 
surrounded by a combination of rigid and flexible walls. The pressure in the chamber is described by the 
solution to a wave equation, while vibrations of the flexible wall are described by the solution to a coupled 
Berger plate equation.

Differential equations describing structural acoustic interaction have rich history. These models are well 
known in both the physical and mathematical literature and go back to the canonical models considered in 
[6,7,22]. In particular, in a pioneering work [6], Banks et al. introduced a 2D model to describe acoustic-
structure interaction in an acoustic cavity of rectangular shape where the boundary consists of hard walls on 
three sides, and a vibrating wall on the fourth side which is modeled by an Euler-Bernoulli beam equation. 
Piezoceramic patches are attached to the beam to control structural vibrations and the acoustic pressure 
in the model. In the context of stabilization and controllability of structural acoustics models there is 
a very large body of literature. We refer the reader to the monograph by Lasiecka [26] which provides a 
comprehensive overview and quotes many works on these topics. Other related contributions include [2–5,12,
25]. However, to the best of our knowledge, the finite time blow-up for structural acoustics models under the 
influence of nonlinear forces has not been studied in the literature, and so we address this issue in this paper.

Our goal is to understand the source-damping interactions in the structural acoustics model (1.1), and 
how these interactions affect the behaviors of weak solutions. The local well-posedness of weak solutions to 
system (1.1) was proved by Becklin and Rammaha in [8], in which they also showed the global existence 
if the damping are more dominant than the source terms. In our paper [13], by using the potential well 
theory, we proved the global existence of weak solutions and estimated the energy decay rates, provided the 
initial data come from the stable part of the potential well. In the present manuscript, we shall demonstrate 
the blow-up phenomena of weak solutions when the source terms are stronger than damping terms, and 
we consider two cases of the initial data: (i) the initial total energy is negative, which means that the 
initial potential energy due to the nonlinear forces is sufficiently large; (ii) the initial total energy is positive 
but small enough, while the initial quadratic energy is large. In this case, the initial data come from the 
unstable part of the potential well. To understand these blow-up phenomena intuitively, one can imagine 
that a nonlinear force continuously acts on the elastic wall to increase its vibration and simultaneously 
another nonlinear force acts on the gas inside the acoustic chamber to increase its pressure, and these forces 
surpass the damping effects, then the system collapses at some finite time.

The difficulty for proving the blow-up of weak solutions to system (1.1) comes from the coupling of 
the wave equation and the plate equation on the elastic wall, i.e., the flat portion of the boundary. We 
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notice that the coupling of these two evolution equations in (1.1) are through the term ut|Γ where Γ is the 
elastic wall. Since we consider weak solutions of the wave equation, ut belongs to L2(Ω), while a generic L2

function may not have a well-defined trace on the boundary of Ω. In system (1.1), the term ut|Γ is defined 
in a weak sense via the plate equation. But we do not have an appropriate estimate for the L2(Γ) norm of 
ut|Γ. Therefore, throughout the proof of our blow-up results, we strive to prevent directly estimating ut|Γ, 
and the idea is to convert ut|Γ to a different term by taking advantage of the structure of the equation. 
Our basic strategy for proving the blow-up is to show the function Y (t) = G1−a(t) + εN ′(t) defined in 
(3.9) approaches infinity in finite time, by deducing a differential inequality of the form Y ′(t) ≥ Y μ(t)
with μ > 1. Such an “anti-Lyapunov” function Y (t) was originally constructed in [16] by Georgiev and 
Todorova, who paved the way to the analysis of interactions of nonlinear damping and source terms in wave 
equations. Here, G(t) = −E(t) where E(t) is the total energy. But, in [16] and many other related works in 
the literature, N(t) is usually defined as the L2 norm of the unknown function. However, in our argument, 
we use a trick by including an additional term 

∫ t

0
∫
Γ γu(τ) · w(τ)dΓdτ in N(t) (see (3.2)). This extra term 

helps us to convert the troublesome term ut|Γ in our estimate to a well-behaved term wt, where the L2(Γ)
norm of wt is part of the energy.

The reader may also refer to works by Levine and Serrin [29], and by Vitillaro [30], which provide some 
classical results on global nonexistence or finite-time blow-up for nonlinear hyperbolic problems with dissi-
pation. Moreover, Glassey [14,15], Levine [28] and Keller [23] have classical results on blow-up of nonlinear 
wave equations with no damping, using various arguments.

We must point out that in the original linear structural acoustics model, u satisfies the wave equation 
utt − Δu = 0. However, in order to resolve some technical difficulty occurred during our proof for the 
blow-up results, we add a term u to the linear part, and the linear operator in our system (1.1) becomes 
utt − Δu + u, which usually appears in a Klein-Gordon equation. The extra term u in the linear operator 
is useful when we estimate the L2(Γ) norm of the trace of u in (3.19) since it allows us to obtain precise 
coefficients on the right-hand side of the inequality, which is critical for our argument.

Source-damping interactions have important applications. On one hand, in control theory, one may use 
damping terms to stabilize the system. On the other hand, one can create instability by strengthening the 
source terms. The interesting source-damping interactions in wave equations have been illustrated by a 
pioneering work by Georgiev and Todorova [16]. Bociu and Lasiecka wrote a series of papers [9–11] to study 
wave equations with supercritical source and damping terms acting in the interior and on the boundary of 
the domain. Also, Guo [17] proved the global well-posedness of a 3D wave equation with a source term of an 
arbitrarily large exponent, as long as the frictional damping term is strong enough to suppress the growth 
of solutions due to the source term. One may also refer to papers [18–20] for source-damping interactions in 
coupled wave equations. In [31–33], Vitillaro studied the wave equation with hyperbolic dynamical boundary 
conditions, and showed local and global well-posedness and blow-up results, depending on the choice of 
different growth rates of interior and boundary nonlinear damping and sources.

Let us mention an interesting work [27] by Lasiecka and Rodrigues about a structural-acoustic wall 
problem in 3D, in which the structural wall is modeled by a 2D Kirchhoff-Boussinesq plate. The paper 
[27] addresses the competition between a Boussinesq forcing term Δ{w2} (which may lead to finite-time 
blow-up) and a restoring internal force div{|∇w|2∇w} (which has stabilizing effect for low frequencies) in 
the plate equation defined on the wall, and such a competition between these two forces determines the 
global behavior of the model.

The content of the paper is organized as follows. In Section 2, we state well-posedness results from [8]
by Becklin and Rammaha, and our previous results on global existence and energy decay of weak solutions 
in [13]. Moreover, we state main results of this manuscript, namely, finite-time blow-up of weak solutions. 
In Section 3, we prove the blow-up of weak solutions by assuming the initial total energy is negative. In 
Section 4, we show the finite-time blow-up by supposing the initial total energy is positive.
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2. Preliminaries and main results

2.1. Notation

Throughout the paper the following notational conventions for Lp space norms and standard inner prod-
ucts will be used:

||u||p = ||u||Lp(Ω), (u, v)Ω = (u, v)L2(Ω),

|u|p = ||u||Lp(Γ), (u, v)Γ = (u, v)L2(Γ).

We also use the notation γu to denote the trace of u on Γ. As is customary, C always denotes a generic 
positive constant which may change from line to line.

Further, we put

H1
Γ0

(Ω) := {u ∈ H1(Ω) : u|Γ0 = 0}, (2.1)

and ‖u‖H1
Γ0

(Ω) := (‖∇u‖2
2 + ‖u‖2

2)
1
2 . It is well-known that the standard norm ‖u‖H1

Γ0
(Ω) is equivalent to 

‖∇u‖2. For a similar reason, we put ‖w‖H2
0 (Γ) = |Δw|2.

In the proof, the following Sobolev imbeddings will be used: H1
Γ0

(Ω) ↪→ L6(Ω) and H1(Γ) ↪→ Lq(Γ) for 
any 1 ≤ q < ∞.

2.2. Well-posedness of weak solutions

Throughout the paper, we study (1.1) under the following assumptions.

Assumption 2.1.

Damping: g1, g2 : R → R are continuous and monotone increasing functions with g1(0) = g2(0) = 0. In 
addition, the following growth conditions at infinity hold: there exist positive constants α and β such 
that, for |s| ≥ 1,

α|s|m+1 ≤ g1(s)s ≤ β|s|m+1, with m ≥ 1,

α|s|r+1 ≤ g2(s)s ≤ β|s|r+1, with r ≥ 1.

Source terms: f and h are functions in C1(R) such that

|f ′(s)| ≤ C(|s|p−1 + 1), with 1 ≤ p < 6,

|h′(s)| ≤ C(|s|q−1 + 1), with 1 ≤ q < ∞.

Parameters: pm+1
m < 6.

The following assumption will be needed for establishing an uniqueness result.

Assumption 2.2. For p > 3, we assume that f ∈ C2(R) with |f ′′(u)| ≤ C(|u|p−2 + 1) for all u ∈ R.

Remark 2.3. The assumption that pm+1
m < 6 is needed for the local existence of weak solutions in the finite 

energy space, when considering the interior source term of a supercritical order, namely, p ∈ [3, 6). Here, 
the upper bound of the range of p is due to the Sobolev imbedding H1(Ω) ↪→ L6(Ω) in 3D. Notice that, if 
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the exponent p of the source term is close to 6, then the exponent m of the damping term must be very 
large to satisfy the assumption, in order to guarantee that the system is locally solvable. The original works 
that have developed the techniques of handling this scenario for wave equations are in [9–11]. On the other 
hand, regarding the exponent q of the boundary source term acting on the plate equation, q is allowed to 
be any large number, because in 2D, H1(Γ) is imbedded in Ls(Γ) for any s ≥ 2.

We begin by introducing the definition of a suitable weak solution for (1.1).

Definition 2.4. A pair of functions (u, w) is said to be a weak solution of (1.1) on the interval [0, T ] provided:

(i) u ∈ C([0, T ]; H1
Γ0

(Ω)), ut ∈ C([0, T ]; L2(Ω)) ∩ Lm+1(Ω × (0, T )),
(ii) w ∈ C([0, T ]; H2

0 (Γ)), wt ∈ C([0, T ]; L2(Γ)) ∩ Lr+1(Γ × (0, T )),
(iii) (u(0), ut(0)) = (u0, u1) ∈ H1

Γ0
(Ω) × L2(Ω),

(iv) (w(0), wt(0)) = (w0, w1) ∈ H2
0 (Γ) × L2(Γ),

(v) The functions u and w satisfy the following variational identities for all t ∈ [0, T ]:

(ut(t), φ(t))Ω − (u1, φ(0))Ω −
t∫

0

(ut(τ), φt(τ))Ωdτ +
t∫

0

(∇u(τ),∇φ(τ))Ωdτ

+
t∫

0

(u(τ), φ(τ))Ωdτ −
t∫

0

(wt(τ), γφ(τ))Γdτ +
t∫

0

∫
Ω

g1(ut(τ))φ(τ)dxdτ

=
t∫

0

∫
Ω

f(u(τ))φ(τ)dxdτ, (2.2)

(wt(t) + γu(t), ψ(t))Γ − (w1 + γu0, ψ(0))Γ −
t∫

0

(wt(τ), ψt(τ))Γdτ

−
t∫

0

(γu(τ), ψt(τ))Γdτ +
t∫

0

(Δw(τ),Δψ(τ))Γdτ

+
t∫

0

∫
Γ

g2(wt(τ))ψ(τ)dΓdτ =
t∫

0

∫
Γ

h(w(τ))ψ(τ)dΓdτ, (2.3)

for all test functions φ and ψ satisfying: φ ∈ C([0, T ]; H1
Γ0

(Ω)) ∩Lm+1(Ω ×(0, T )), ψ ∈ C
(
[0, T ];H2

0 (Γ)
)

with φt ∈ L1(0, T ; L2(Ω)), and ψt ∈ L1(0, T ; L2(Γ)).

Our work in this paper is based on the existence results which were established in [8] by Becklin and 
Rammaha. For the reader’s convenience, we first summarize the important results in [8].

Theorem 2.5 (Local and global weak solutions [8]). Under the validity of Assumption 2.1, then there exists 
a local weak solution (u, w) to (1.1) defined on [0, T0] for some T0 > 0 depending on the initial energy E(0), 
where the quadratic energy E(t) is given by

E(t) := 1 (
‖ut(t)‖2

2 + ‖∇u(t)‖2
2 + ‖u(t)‖2

2 + |wt(t)|22 + |Δw(t)|22
)
. (2.4)
2
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• (u, w) satisfies the following energy identity for all t ∈ [0, T0]:

E(t) +
t∫

0

∫
Ω

g1(ut)utdxdτ +
t∫

0

∫
Γ

g2(wt)wtdΓdτ

= E(0) +
t∫

0

∫
Ω

f(u)utdxdτ +
t∫

0

∫
Γ

h(w)wtdΓdτ. (2.5)

• In addition to Assumption 2.1, if we assume that u0 ∈ Lp+1(Ω), p ≤ m and q ≤ r, then the said solution 
(u, w) is a global weak solution and T0 can be taken arbitrarily large.

• If Assumptions 2.1 and 2.2 are valid, and if we further assume that u0 ∈ L
3(p−1)

2 (Ω), then weak solutions 
of (1.1) are unique.

• If Assumption 2.1 is valid, and if we additionally assume that u0 ∈ L3(p−1)(Ω) and m ≥ 3p − 4 when 
p > 3, then weak solutions of (1.1) are unique.

Remark 2.6. Energy equality (2.5) is critical for the proof of the blow-up results in this paper. The energy 
equality can be “formally” derived by multiplying the wave and plate equations by ut and wt respectively 
and integrating over the domains. However, since we consider weak solutions, it is not easy to justify such a 
formal derivation. The method of proving the energy equality in [8] is to approximate ut and wt by difference 
quotients. A main difficulty comes from the boundary condition ∂νu = wt on Γ, and ut|Γ, the wave velocity 
trace on Γ. These troublesome terms have been delicately handled in [8]. Please refer to [8] for the proof 
of the energy equality. Some important elements of the difference quotient method can be found in [24] by 
Koch and Lasiecka.

2.3. Potential well solutions

In this subsection we briefly discuss the potential well theory which originates from the theory of elliptic 
equations. In order to do so, we need to impose additional assumptions on the source terms f(u) and h(w).

Assumption 2.7.

• There exists a nonnegative function F (u) ∈ C1(R) such that F ′(u) = f(u), and F is homogeneous of 
order p + 1, i.e., F (λu) = λp+1F (u), for λ > 0, u ∈ R.

• There exists a nonnegative function H(s) ∈ C1(R) such that H ′(s) = h(s), and H is homogeneous of 
order q + 1, i.e., H(λs) = λq+1H(s), for λ > 0, s ∈ R.

Remark 2.8. From Euler homogeneous function theorem we infer that

uf(u) = (p + 1)F (u), wh(w) = (q + 1)H(w). (2.6)

Because of Assumption 2.1 and the homogeneity of F and H, we obtain that there exists a positive constant 
M such that

F (u) ≤ M |u|p+1, H(w) ≤ M |w|q+1. (2.7)

Moreover, due to (2.6), f is homogeneous of order p and h is homogeneous of order q satisfying

|f(u)| ≤ M(p + 1)|u|p, |h(w)| ≤ M(q + 1)|w|q. (2.8)
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Recall the quadratic energy E(t) has been introduced in (2.4). Now, we define the total energy E(t) of 
system (1.1) by

E(t) : = E(t) −
∫
Ω

F (u(t))dx−
∫
Γ

H(w(t))dΓ

= 1
2
(
‖ut(t)‖2

2 + ‖∇u(t)‖2
2 + ‖u(t)‖2

2 + |wt(t)|22 + |Δw(t)|22
)

−
∫
Ω

F (u(t))dx−
∫
Γ

H(w(t))dΓ. (2.9)

Then, the energy identity (2.5) is equivalent to

E(t) +
t∫

0

∫
Ω

g1(ut)utdxdτ +
t∫

0

∫
Γ

g2(wt)wtdΓdτ = E(0). (2.10)

With X := H1
Γ0

(Ω) ×H2
0 (Γ), we define the functional J : X → R by

J (u,w) := 1
2(‖∇u(t)‖2

2 + ‖u‖2
2 + |Δw(t)|22) −

∫
Ω

F (u(t))dx−
∫
Γ

H(w(t))dΓ, (2.11)

where J (u, w) is the potential energy of the system. Then we have

E(t) = J (u,w) + 1
2(‖ut(t)‖2

2 + |wt(t)|22). (2.12)

The Fréchet derivative of J at (u, w) ∈ X is given by

〈J ′(u,w), (φ, ψ)〉 =
∫
Ω

∇u · ∇φdx +
∫
Γ

Δw · ΔψdΓ +
∫
Ω

uφdx

−
∫
Ω

f(u)φdx−
∫
Γ

h(w)ψdΓ, (2.13)

for (φ, ψ) ∈ X. The Nehari manifold N can be defined by

N := {(u,w) ∈ X\{(0, 0)} : 〈J ′(u,w), (u,w)〉 = 0} ,

which along with (2.13) gives

N =
{

(u,w) ∈ X\{(0, 0)} : ‖∇u‖2
2 + ‖u‖2

2 + |Δw|22 = (p + 1)
∫
Ω

F (u)dx

+ (q + 1)
∫
Γ

H(w)dΓ
}
. (2.14)

By Lemma 2.8 in our paper [13] and Lemma 2.7 in [19], the depth of the potential well d is positive and 
satisfies
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d := inf
(u,w)∈N

J (u,w) = inf
(u,w)∈X\{(0,0)}

sup
λ≥0

J (λ(u,w)) > 0, (2.15)

for 1 < p ≤ 5, q > 1.
We define

W := {(u,w) ∈ X : J (u,w) < d},

W1 :=

⎧⎨
⎩(u,w) ∈ W : ‖∇u‖2

2 + ‖u‖2
2 + |Δw|22 > (p + 1)

∫
Ω

F (u)dx + (q + 1)
∫
Γ

H(w)dΓ

⎫⎬
⎭

∪ {(0, 0)},

W2 :=

⎧⎨
⎩(u,w) ∈ W : ‖∇u‖2

2 + ‖u‖2
2 + |Δw|22 < (p + 1)

∫
Ω

F (u)dx + (q + 1)
∫
Γ

H(w)dΓ

⎫⎬
⎭ .

It is obvious that W1 ∪W2 = W and W1 ∩W2 = ∅. We call W the potential well and d is the depth of the 
well. We call W1 the stable part of the potential well, and W2 the unstable part of the potential well.

For initial data coming from the stable part of the potential well, we have proved the following result of 
global solutions in [13].

Theorem 2.9 (Potential well solutions [13]). Assume that Assumption 2.1 and Assumption 2.7 hold. Let 
1 < p ≤ 5 and q > 1. Assume further (u0, w0) ∈ W1 and E(0) < d. Then system (1.1) admits a global 
solution (u, w). In addition, for any t ≥ 0, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) J (u,w) ≤ E(t) ≤ E(0),
(ii) (u,w) ∈ W1,

(iii) E(t) ≤ cd

c− 2 ,

(iv) c− 2
c

E(t) ≤ E(t) ≤ E(t),

where c = min{p + 1, q + 1} > 2.

In paper [13], we also studied the energy decay rates for potential well solutions.
It is shown in Theorem 2.9 the invariance of W1 under the dynamics. In fact we have the same result for 

W2.

Lemma 2.10. Assume that Assumption 2.1 and Assumption 2.7 hold. Let 1 < p ≤ 5 and q > 1. Assume 
further (u0, w0) ∈ W2 and E(0) < d. Then the weak solution (u(t), w(t)) is in W2 for all t ∈ [0, T ), where 
[0, T ) is the maximal interval of existence.

Proof. Please see the Appendix. �
Remark 2.11. For initial values coming from the unstable part W2 of the potential well, we shall state a 
blow-up result, namely Corollary 2.17.
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2.4. Main results

Our first result is the blow-up of solutions if the source terms are stronger than damping terms, and the 
initial energy is negative. In order to state our first blow-up result, we need additional assumptions on the 
source terms.

Assumption 2.12.

• There exists a function F (u) ∈ C1(R) such that F ′(u) = f(u). In addition, there exist c0 > 0 and c1 > 3
such that

F (u) ≥ c0|u|p+1, uf(u) ≥ c1F (u), ∀ u ∈ R. (2.16)

• There exists a function H(s) ∈ C1(R) such that H ′(s) = h(s). In addition, there exist c2 > 0 and c3 > 3
such that

H(s) ≥ c2|s|q+1, sh(s) ≥ c3H(s), ∀ s ∈ R. (2.17)

The following blow-up result shows that if the initial energy is negative, and the source terms are more 
dominant than their corresponding damping terms, then every weak solution of (1.1) blows up in finite time.

Theorem 2.13 (Blow-up with negative initial energy). Suppose that Assumption 2.1 and Assumption 2.12
hold. Assume p > m, q > r, and E(0) < 0. Then the weak solution (u(t), w(t)) of system (1.1) blows up in 
finite time. In particular,

lim sup
t→T−

(‖∇u(t)‖2
2 + |Δw(t)|22) = +∞,

for some 0 < T < ∞.

Remark 2.14. Combining the requirements p > m ≥ 1 and pm+1
m < 6 from Assumption 2.1, we obtain the 

restriction that 1 < p < 5 and 1 ≤ m < 5 for the validity of Theorem 2.13.

The second result is the blow up of potential well solutions with positive initial energy. Before stating 
this result, we shall define several constants. Let y0 > 0 be the unique solution of the equation

MK1(p + 1)(2y0)
p−1
2 + MK2(q + 1)(2y0)

q−1
2 = 1. (2.18)

The constants 0 < K1, K2 < ∞ are given by

K1 := sup
u∈H1

Γ0
(Ω)\{0}

‖u‖p+1
p+1

‖∇u‖p+1
2

, K2 := sup
w∈H2

0 (Γ)\{0}

|w|q+1
q+1

|Δw|q+1
2

, (2.19)

where K1 and K2 are well-defined when 1 ≤ p ≤ 5 and q ≥ 1. Also, we put

d̂ := y0 −MK1(2y0)
p+1
2 −MK2(2y0)

q+1
2 , (2.20)

where M > 0 has been introduced in (2.7).
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Remark 2.15. We claim that

0 < d̂ ≤ d, (2.21)

where d is the depth of the potential well, defined in (2.15). The proof of inequality (2.21) can be found in 
the Appendix.

Also, we define the positive constant

A := λ

2(6 + λ)y0, where λ := min{c1 − 3, c3 − 3} > 0. (2.22)

Then we have the following results.

Theorem 2.16 (Blow-up with positive initial energy). Suppose that Assumption 2.1, Assumption 2.7 and 
Assumption 2.12 hold. Let

E(0) > y0, and 0 ≤ E(0) < min{A, d̂}. (2.23)

Then the weak solution (u(t), w(t)) of (1.1) blows up in finite time provided p > m and q > r. In particular,

lim sup
t→T−

(‖∇u(t)‖2
2 + |Δw(t)|22) = +∞,

for some 0 < T < ∞.

Corollary 2.17. Suppose that Assumption 2.1, Assumption 2.7 and Assumption 2.12 hold. Let p > m, q > r

and

0 ≤ E(0) < min{A, d̂}.

If (u0, w0) ∈ W2, then the weak solution (u(t), w(t)) of (1.1) blows up in finite time.

3. Blow-up of solutions with negative initial energy

In this section, we prove Theorem 2.13, which says that the weak solution of system (1.1) blows up 
in finite time if the source terms are more dominant than damping terms and the initial total energy is 
negative.

Proof of Theorem 2.13. Let (u(t), w(t) be a weak solution of (1.1) in the sense of Definition 2.4. We define 
the life span T of such a solution (u(t), w(t)) to be the supremum of all T ∗ > 0 such that (u(t), w(t)) is a 
solution to system (1.1) in the sense of Definition 2.4 on [0, T ∗]. In the following, we will show that T is 
finite and obtain an upper bound for the life span of solutions.

As in [1,9,18], for any t ∈ [0, T ), we define

G(t) = −E(t), S(t) =
∫
Ω

F (u(t))dx +
∫
Γ

H(w(t))dΓ,

where the total energy E(t) has been introduced in (2.9).
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Clearly,

G(t) = −1
2(‖ut‖2

2 + |wt|22 + ‖∇u‖2
2 + ‖u‖2

2 + |Δw|22) + S(t),

which implies

‖ut(t)‖2
2 + |wt(t)|22 + ‖∇u(t)‖2

2 + ‖u(t)‖2
2 + |Δw(t)|22 = −2G(t) + 2S(t). (3.1)

We define

N(t) := 1
2
(
‖u(t)‖2

2 + |w(t)|22
)

+
t∫

0

∫
Γ

γu(τ) · w(τ)dΓdτ, (3.2)

then we have

N ′(t) =
∫
Ω

u(t)ut(t)dx +
∫
Γ

w(t)wt(t)dΓ +
∫
Γ

γu(t) · w(t)dΓ. (3.3)

It follows from Assumption 2.12 that

S(t) ≥ c0‖u(t)‖p+1
p+1 + c2|w(t)|q+1

q+1. (3.4)

Since G(t) = −E(t), the energy identity (2.10) can be written as

G(t) = G(0) +
t∫

0

∫
Ω

g1(ut)utdxdτ +
t∫

0

∫
Γ

g2(wt)wtdΓdτ.

Then from Assumption 2.1 and the regularity of (u, w), we infer that G(t) is absolutely continuous, and

G′(t) =
∫
Ω

g1(ut)utdx +
∫
Γ

g2(wt)wtdΓ ≥ α‖ut(t)‖m+1
m+1 + α|wt(t)|r+1

r+1 ≥ 0, (3.5)

a.e. on [0, T ). Then G(t) is non-decreasing. In view of G(0) = −E(0) > 0, we obtain that for any 0 ≤ t < T ,

0 < G(0) ≤ G(t) ≤ S(t). (3.6)

Due to (3.1) and (3.6), we obtain

‖ut(t)‖2
2 + |wt(t)|22 + ‖∇u(t)‖2

2 + ‖u(t)‖2
2 + |Δw(t)|22 < 2S(t). (3.7)

We introduce a constant a satisfying

0 < a < min
{

1
m + 1 − 1

p + 1 ,
1

r + 1 − 1
q + 1 ,

p− 1
2(p + 1) ,

q − 1
2(q + 1)

}
. (3.8)

Define

Y (t) := G1−a(t) + εN ′(t), (3.9)
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where 0 < ε ≤ min{1, G(0)} will be determined later. The function Y (t) is adopted from the important 
work [16] by Georgiev and Todorova.

We aim to show that Y (t) approaches infinity in finite time.
First we claim that

Y ′(t) = (1 − a)G−a(t)G′(t) + εN ′′(t), (3.10)

where

N ′′(t) = ‖ut(t)‖2
2 + |wt(t)|22 − (‖∇u(t)‖2

2 + |Δw(t)|22 + ‖u(t)‖2
2) −

∫
Ω

g1(ut(t))u(t)dx

−
∫
Γ

g2(wt(t))w(t)dΓ +
∫
Ω

u(t)f(u(t))dx +
∫
Γ

w(t)h(w(t))dΓ

+ 2
∫
Γ

γu(t) · wt(t)dΓ, a.e. on [0, T ). (3.11)

We remark that N ′′(t) can be obtained formally by differentiating N ′(t) in (3.3) and using equations in 
(1.1). But this formal procedure needs to be justified as follows.

By Definition 2.4, ut ∈ Lm+1(Ω ×(0, T )). Since u0 ∈ H1
Γ0

(Ω) ↪→ L6(Ω), then u0 ∈ Lm+1(Ω) for 1 ≤ m < 5
by referring to Remark 2.14. Then we have

T∫
0

∫
Ω

|u|m+1dxdt =
T∫

0

∫
Ω

∣∣∣∣∣∣
t∫

0

ut(τ)dτ + u0

∣∣∣∣∣∣
m+1

dxdt

≤ C(Tm+1‖ut(t)‖m+1
Lm+1(Ω×(0,T )) + T‖u0‖m+1

m+1) < ∞. (3.12)

This implies u(t) ∈ Lm+1(Ω × (0, T )) for all T ≥ 0. We can use the same argument to obtain w(t) ∈
Lr+1(Γ × (0, T )). Then u(t) and w(t) enjoy the regularity restrictions imposed on the test functions φ(t)
and ψ(t), respectively, in Definition 2.4. Then we can replace φ by u in (2.2), ψ by w in (2.3) and use (3.3)
to obtain

N ′(t) = (u, ut)Ω + (w,wt)Γ + (γu,w)Γ

=
∫
Ω

u0u1dx +
∫
Γ

(w0w1 + γu0w0)dΓ +
t∫

0

(‖ut‖2
2 + |wt|22)dτ

−
t∫

0

(‖∇u‖2
2 + |Δw|22 + ‖u‖2

2)dτ + 2
t∫

0

∫
Γ

γu · wtdΓdτ −
t∫

0

∫
Ω

g1(ut)udxdτ

−
t∫

0

∫
Γ

g2(wt)wdΓdτ +
t∫

0

∫
Ω

uf(u)dxdτ +
t∫

0

∫
Γ

wh(w)dΓdτ. (3.13)

In the following, we show that N ′(t) is absolutely continuous, and therefore it can be differentiated.
Recall the fact u ∈ C([0, t]; H1

Γ0
(Ω)) and the embedding H1

Γ0
(Ω) ↪→ L6(Ω). By Remark 2.14, we know 

1 < p < 5. Hence, for all t ∈ [0, T ),
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t∫
0

∣∣∣∣∣∣
∫
Ω

uf(u)dx

∣∣∣∣∣∣ dτ ≤ C

t∫
0

∫
Ω

(|u|p + 1)|u|dxdτ < ∞. (3.14)

Also, since w ∈ H2
0 (Γ) ↪→ L∞(Γ), we have

t∫
0

∣∣∣∣∣∣
∫
Γ

wh(w)dΓ

∣∣∣∣∣∣ dτ ≤ CT

t∫
0

∫
Γ

|w|q+1dΓdτ < ∞. (3.15)

By using the trace theorem, we see that

2
t∫

0

∣∣∣∣∣∣
∫
Γ

γu · wtdΓ

∣∣∣∣∣∣ dτ ≤ C

t∫
0

‖∇u‖2
2dτ +

t∫
0

|wt|22dτ < ∞. (3.16)

Because of (3.12) and the regularity ut ∈ Lm+1(Ω × (0, T )), we deduce that for all t ∈ [0, T ),

t∫
0

∣∣∣∣∣∣
∫
Ω

g1(ut)udx

∣∣∣∣∣∣ dτ +
t∫

0

∣∣∣∣∣∣
∫
Γ

g2(wt)wdΓ

∣∣∣∣∣∣ dτ < ∞. (3.17)

Then (3.14)-(3.17) and the regularity of (u, w) imply that all terms on the right-hand side of (3.13) are 
absolutely continuous, and thus we can differentiate (3.13) to conclude that the claimed formula (3.11) for 
N ′′(t) holds true.

In the following, we aim to find a lower bound for N ′′(t).
By using Young’s inequality, we see that

2

∣∣∣∣∣∣
∫
Γ

γu · wt dΓ

∣∣∣∣∣∣ ≤ 2|wt|22 + 1
2 |γu|

2
2. (3.18)

Now we estimate the term |γu|22. Without loss of generality, we assume the flat portion Γ of the boundary 
is horizontal, and thus the unit normal vector to Γ is n = (0, 0, 1). Recall that ∂Ω = Γ0 ∪ Γ and u|Γ0 = 0. 
We define a vector field F = (0, 0, u2) and use the Divergence Theorem to get that

|γu|22 =
∫
Γ

u2dΓ =
∫

Γ∪Γ0

u2d(Γ ∪ Γ0) =
∫

Γ∪Γ0

F · n d(Γ ∪ Γ0) =
∫
Ω

divF dx

=
∫
Ω

(u2)zdx = 2
∫
Ω

uuzdx ≤ ‖u‖2
2 + ‖uz‖2

2 ≤ ‖u‖2
2 + ‖∇u‖2

2. (3.19)

It follows from (3.18) and (3.19) that

2

∣∣∣∣∣∣
∫
Γ

γu · wtdΓ

∣∣∣∣∣∣ ≤ 2|wt|22 + 1
2‖u‖

2
2 + 1

2‖∇u‖2
2. (3.20)

Then (3.11) and (3.20) yield
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N ′′(t) ≥ ‖ut‖2
2 − |wt|22 −

3
2(‖∇u‖2

2 + |Δw|22 + ‖u‖2
2) −

∫
Ω

g1(ut)udx

−
∫
Γ

g2(wt)wdΓ +
∫
Ω

uf(u)dx +
∫
Γ

wh(w)dΓ. (3.21)

Noting ‖∇u‖2
2 + |Δw|22 + ‖u‖2

2 = −(‖ut‖2
2 + |wt|22) + 2S(t) − 2G(t) due to (3.1), and using the assumption 

uf(u) ≥ c1F (u), wh(w) ≥ c3H(w) from (2.16)-(2.17), we infer from (3.21) that

N ′′(t) ≥ 5
2‖ut‖2

2 + 1
2 |wt|22 − 3S(t) + 3G(t) −

∫
Ω

g1(ut)udx−
∫
Γ

g2(wt)wdΓ

+ c1

∫
Ω

F (u)dx + c3

∫
Γ

H(w)dΓ

≥ 5
2‖ut‖2

2 + 1
2 |wt|22 + 3G(t) −

∫
Ω

g1(ut)udx−
∫
Γ

g2(wt)wdΓ + λS(t), (3.22)

where we let λ := min{c1 − 3, c3 − 3} > 0.
By using g1(s)s ≤ β|s|m+1, Hölder’s inequality and p > m, we have

∫
Ω

g1(ut)udx ≤ β

∫
Ω

|ut|m|u|dx ≤ β‖u‖m+1‖ut‖mm+1 ≤ β|Ω|
p−m

(p+1)(m+1) ‖u‖p+1‖ut‖mm+1,

which along with (3.4) yields
∫
Ω

g1(ut)udx ≤ β|Ω|
p−m

(p+1)(m+1) c
− 1

p+1
0 S

1
p+1 (t)‖ut‖mm+1 = R1S

1
p+1 (t)‖ut‖mm+1, (3.23)

where the constant R1 := β|Ω|
p−m

(p+1)(m+1) c
− 1

p+1
0 .

Then by using Young’s inequality, (3.5) and (3.6), we obtain from (3.23) that for any δ1 > 0,
∫
Ω

g1(ut)udx ≤ R1S
1

p+1− 1
m+1 (t)S

1
m+1 (t)‖ut‖mm+1

≤ G
1

p+1− 1
m+1 (t)

[
δ1S(t) + Cδ1R

m+1
m

1 ‖ut‖m+1
m+1

]

≤ δ1G
1

p+1− 1
m+1 (t)S(t) + Cδ1

R
m+1
m

1
α

G′(t)G−a(t)Ga+ 1
p+1− 1

m+1 (t)

≤ δ1G
1

p+1− 1
m+1 (0)S(t) + Cδ1

R
m+1
m

1
α

G′(t)G−a(t)Ga+ 1
p+1− 1

m+1 (0), (3.24)

where a > 0 satisfying (3.8), and thus a + 1
p+1 − 1

m+1 < 0. Similarly, we can obtain for any δ2 > 0,

∫
Γ

g2(wt)wdΓ ≤ δ2G
1

q+1− 1
r+1 (0)S(t) + Cδ2

R
r+1
r

2
α

G′(t)G−a(t)Ga+ 1
q+1− 1

r+1 (0), (3.25)

where R2 := β|Γ|
q−r

(q+1)(r+1) c
− 1

q+1
2 .
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Inserting (3.24) and (3.25) into (3.22), we obtain

N ′′(t) ≥ 5
2‖ut‖2

2 + 1
2 |wt|22 + 3G(t) +

[
λ− δ1G

1
p+1− 1

m+1 (0) − δ2G
1

q+1− 1
r+1 (0)

]
S(t)

−
[
Cδ1

R
m+1
m

1
α

Ga+ 1
p+1− 1

m+1 (0) + Cδ2

R
r+1
r

2
α

Ga+ 1
q+1− 1

r+1 (0)
]
G′(t)G−a(t). (3.26)

Let us introduce the constants δ1 = λ

4G
1

m+1− 1
p+1 (0) and δ2 = λ

4G
1

r+1− 1
q+1 (0). Consequently, we infer 

from (3.10) and (3.26) that

Y ′(t) ≥
[
(1 − a) − εCδ1

R
m+1
m

1
α

Ga+ 1
p+1− 1

m+1 (0) − εCδ2

R
r+1
r

2
α

Ga+ 1
q+1− 1

r+1 (0)
]
G′(t)G−a(t)

+ 5
2ε‖ut‖2

2 + 1
2ε|wt|22 + 3εG(t) + λ

2 εS(t). (3.27)

Noting that 0 < a < 1
2 , we take 0 < ε < 1 sufficiently small such that

ρ := (1 − a) − εCδ1

R
m+1
m

1
α

Ga+ 1
p+1− 1

m+1 (0) − εCδ2

R
r+1
r

2
α

Ga+ 1
q+1− 1

r+1 (0) ≥ 0,

to obtain from (3.27) that

Y ′(t) ≥ ρG′(t)G−a(t) + 5
2ε‖ut‖2

2 + 1
2ε|wt|22 + 3εG(t) + λ

2 εS(t) > 0. (3.28)

This shows that Y (t) is increasing on [0, T ), with

Y (t) = G1−a(t) + εN ′(t) > Y (0) = G1−a(0) + εN ′(0).

If N ′(0) ≥ 0, then we do not need any further condition on ε. But, if N ′(0) < 0, we further take ε such that 
0 < ε ≤ −G1−a(0)

2N ′(0) . In any case, we have

Y (t) ≥ 1
2G

1−a(0) > 0, for t ∈ [0, T ). (3.29)

Finally, we shall prove that the following inequality holds:

Y ′(t) ≥ Cε1+σY μ(t), for t ∈ [0, T ), (3.30)

where C > 0 is a generic constant independent of ε, and

1 < μ = 1
1 − a

< 2, σ = max{σ1, σ2} > 0,

and

σ1 = 1 − 2
(1 − 2a)(p + 1) > 0, σ2 = 1 − 2

(1 − 2a)(q + 1) > 0,

due to (3.8).
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Indeed, if N ′(t) ≤ 0 for some t ∈ [0, T ), then for such value of t, we get

Y μ(t) = [G1−a(t) + εN ′(t)]μ ≤ G(t). (3.31)

Then we infer from (3.28) and (3.31) that

Y ′(t) ≥ 3εG(t) ≥ 3ε1+σG(t) ≥ 3ε1+σY μ(t).

If N ′(t) > 0 for some t ∈ [0, T ), we first note that Y (t) = G1−a(t) + εN ′(t) ≤ G1−a(t) + N ′(t), then

Y μ(t) ≤ C
[
G(t) + [N ′(t)]μ

]
. (3.32)

Applying Hölder’s inequality, Young’s inequality, trace theorem and using 1 < μ < 2, we conclude from 
(3.3) that

[N ′(t)]μ ≤
(
‖ut‖2‖u‖2 + |wt|2|w|2 + |γu|2|w|2

)μ

≤ C
(
‖ut‖μ2‖u‖

μ
2 + |wt|μ2 |w|

μ
2 + |γu|μ2 |w|

μ
2

)
≤ C

(
‖ut‖2

2 + ‖u‖
2μ

2−μ

p+1 + |wt|22 + |w|
2μ

2−μ

q+1 + ‖∇u‖2
2 + |w|

2μ
2−μ

q+1

)
. (3.33)

Since μ = 1
1−a and σ1 > 0, it follows that

2μ
(2 − μ)(p + 1) − 1 = 2

(1 − 2a)(p + 1) − 1 = −σ1 < 0. (3.34)

Noting ε ≤ G(0), we infer from (3.4), (3.6) and (3.34) that

‖u(t)‖
2μ

2−μ

p+1 = (‖u(t)‖p+1
p+1)

2μ
(2−μ)(p+1) ≤ CS(t)

2μ
(2−μ)(p+1)

≤ CS(t)
2μ

(2−μ)(p+1)−1S(t) ≤ CG−σ1(0)S(t) ≤ Cε−σ1S(t). (3.35)

In the same way, we have

|w(t)|
2μ

2−μ

q+1 ≤ Cε−σ2S(t). (3.36)

Recall σ = max{σ1, σ2} > 0 and ε−σ > 1. By substituting (3.35) and (3.36) into (3.33), we get

[N ′(t)]μ ≤ C
(
‖ut‖2

2 + |wt|22 + ‖∇u‖2
2 + ε−σS(t)

)
≤ C

(
‖ut‖2

2 + |wt|22 + S(t) + ε−σS(t)
)

≤ Cε−σ
(
‖ut‖2

2 + |wt|22 + S(t)
)
, (3.37)

where (3.7) is used. Combining (3.28), (3.32) and (3.37), we derive that

Y ′(t) ≥ Cε
[
G(t) + ‖ut‖2

2 + |wt|22 + S(t)
]

≥ Cε
[
G(t) + εσ[N ′(t)]μ

]
≥ Cε1+σ

[
G(t) + [N ′(t)]μ

]
≥ Cε1+σY μ(t),
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for all values of t ∈ [0, T ) for which N ′(t) > 0. Then in any case, (3.30) holds true.
It follows from (3.29) and (3.30) that the maximum life span T is necessarily finite with

T < Cε−(1+σ)Y − a
1−a (0) ≤ Cε−(1+σ)G−a(0). (3.38)

Notice that, at the blow-up time T , the quadratic energy must approach infinity:

lim sup
t→T−

E(t) = +∞. (3.39)

We claim

lim sup
t→T−

(‖∇u(t)‖2
2 + |Δw(t)|22) = +∞. (3.40)

In fact, (3.1) shows that

E(t) = −G(t) + S(t) < S(t), (3.41)

because G(t) > 0 on [0, T ). It follows from (3.40)-(3.41) that

lim sup
t→T−

S(t) = +∞. (3.42)

Recall p < 5 from Remark 2.14, then we have

‖∇u(t)‖2
2 + |Δw(t)|22 ≥ C(‖u‖p+1

p+1 + |w|q+1
q+1) ≥ CS(t),

and along with (3.42), we obtain (3.40). The proof is completed. �
4. Blow-up of solutions with positive initial energy

This section is devoted to proving Theorem 2.16 and its corollary. These results state that the weak 
solution of system (1.1) blows up in finite time if the source terms dominate the damping terms, and the 
initial total energy E(0) is positive but sufficiently small, and the initial quadratic energy E(0) is sufficiently 
large. The basic idea comes from the potential well theory.

4.1. Proof of Theorem 2.16

Proof of Theorem 2.16. We use some ideas from [16,21,30]. We define the life span T of such a solution 
(u(t), w(t)) to be the supremum of all T ∗ > 0 such that (u(t), w(t)) is a solution to system (1.1) in the sense 
of Definition 2.4 on [0, T ∗].

By using (2.7) and (2.19), we have that for t ∈ [0, T ),

E(t) = E(t) −
∫
Ω

F (u)dx−
∫
Γ

H(w)dΓ

≥ E(t) −M‖u(t)‖p+1
p+1 −M |w(t)|q+1

q+1

≥ E(t) −MK1‖∇u‖p+1
2 −MK2|Δw|q+1

2

≥ E(t) −MK1(2E(t))
p+1
2 −MK2(2E(t))

q+1
2 , for all t ∈ [0, T ). (4.1)
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We define the function F1 : R+ → R by

F1(y) := y −MK1(2y)
p+1
2 −MK2(2y)

q+1
2 , (4.2)

where the positive constants K1, K2 were given in (2.19) and M > 0 was introduced in (2.7). Then (4.1) is 
equivalent to the following form:

E(t) ≥ F1(E(t)), ∀ t ∈ [0, T ). (4.3)

In view of p, q > 1, we see that F1(y) is continuously differentiable, concave and has its maximum at 
y = y0 > 0, where y0 satisfies

MK1(p + 1)(2y0)
p−1
2 + MK2(q + 1)(2y0)

q−1
2 = 1. (4.4)

We define

d̂ := sup
[0,∞)

F1(y) = F1(y0) = y0 −MK1(2y0)
p+1
2 −MK2(2y0)

q+1
2 . (4.5)

Since the function F1(y) has its maximum value at y = y0, then F1(y) is decreasing if y > y0. As 
0 ≤ E(0) < d̂ = F1(y0), then there exists a unique constant y1 such that

F1(y1) = E(0), with y1 > y0 > 0. (4.6)

Then it follows from (4.3) that

d̂ = F1(y0) > F1(y1) = E(0) ≥ E(t) ≥ F1(E(t)), ∀ t ∈ [0, T ). (4.7)

Note that F1(y) is continuous and decreasing if y > y0, and E(t) is also continuous. Since we assume 
E(0) > y0, we infer from (4.7) that

E(t) ≥ y1 > y0, ∀ t ∈ [0, T ). (4.8)

As in Section 3, we define

N(t) := 1
2
(
‖u(t)‖2

2 + |w(t)|22
)

+
t∫

0

∫
Γ

γu(τ) · w(τ)dΓdτ,

and

S(t) :=
∫
Ω

F (u(t))dx +
∫
Γ

H(w(t))dΓ. (4.9)

Let us define

G(t) := A− E(t), (4.10)

where the constant A has been introduced in (2.22).
Due to the energy identity (2.10), we know E ′(t) ≤ 0, and thus G′(t) ≥ 0, i.e., G(t) is non-decreasing in 

time. Since we assume E(0) < A, then G(0) := A − E(0) > 0. Therefore, we have
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G(t) ≥ G(0) > 0, for all t ∈ [0, T ). (4.11)

We consider the function

Y (t) := G1−a(t) + εN ′(t), (4.12)

for some a ∈ (0, 12 ) satisfying (3.8) and ε > 0. We plan to show that Y (t) approaches infinity in finite time, 
by choosing ε sufficiently small. Adopting the same arguments as (3.10), we see that

Y ′(t) = (1 − a)G−a(t)G′(t) + εN ′′(t), (4.13)

where

N ′′(t) = ‖ut(t)‖2
2 + |wt(t)|22 − (‖∇u(t)‖2

2 + ‖u(t)‖2
2 + |Δw(t)|22) −

∫
Ω

g1(ut(t))u(t)dx

−
∫
Γ

g2(wt(t))w(t)dΓ +
∫
Ω

u(t)f(u(t))dx +
∫
Γ

w(t)h(w(t))dΓ

+ 2
∫
Γ

γu(t) · wt(t)dΓ, a.e. on [0, T ). (4.14)

Following the same estimates as in (3.12)-(3.21), we obtain

N ′′(t) ≥ ‖ut‖2
2 − |wt|22 −

3
2(‖∇u‖2

2 + |Δw|22 + ‖u‖2
2) −

∫
Ω

g1(ut)udx

−
∫
Γ

g2(wt)wdΓ +
∫
Ω

uf(u)dx +
∫
Γ

wh(w)dΓ. (4.15)

Since

‖∇u‖2
2 + |Δw|22 + ‖u‖2

2 = 2A− ‖ut‖2
2 − |wt|22 + 2S(t) − 2G(t),

and noting uf(u) ≥ c1F (u), wh(w) ≥ c3H(w), then we conclude from (4.15) that

N ′′(t) ≥ 5
2‖ut‖2

2 + 1
2 |wt|22 − 3A + 3G(t) + λS(t) −

∫
Ω

g1(ut)udx−
∫
Γ

g2(wt)wdΓ,

where λ := min{c1 − 3, c3 − 3} > 0. Because of (4.9), (4.10) and (2.9), we have

S(t) = G(t) −A + E(t).

Then

N ′′(t) ≥ 5
2‖ut‖2

2 + 1
2 |wt|22 −

(
3 + λ

2

)
A +

(
3 + λ

2

)
G(t) + λ

2E(t) + λ

2S(t)

−
∫
Ω

g1(ut)udx−
∫
Γ

g2(wt)wdΓ, for t ∈ [0, T ).

By recalling (4.8) and (2.22), one has
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λ

4E(t) > λ

4 y0 =
(

3 + λ

2

)
A, for all t ∈ [0, T ).

It follows that

N ′′(t) ≥ 5
2‖ut‖2

2 + 1
2 |wt|22 +

(
3 + λ

2

)
G(t) + λ

4E(t) + λ

2S(t)

−
∫
Ω

g1(ut)udx−
∫
Γ

g2(wt)wdΓ, for t ∈ [0, T ). (4.16)

Recalling λ = min{c1 − 3, c3 − 3} > 0, we have A = λ
12+2λy0 < y0. Then it is concluded from (4.8) that

G(t) = A− E(t) = A− E(t) + S(t) < y0 − y1 + S(t) < S(t), (4.17)

for t ∈ [0, T ). Moreover, we infer from (4.10) and the energy inequality (2.10) that

G′(t) = −E ′(t) =
∫
Ω

g1(ut)utdx +
∫
Γ

g2(wt)wtdΓ ≥ α‖ut‖m+1
m+1 + α|wt|r+1

r+1 ≥ 0, (4.18)

for all t ∈ [0, T ). Then, we use the same arguments as in (3.24) and (3.25) to obtain from (4.17)-(4.18) that

∫
Ω

g1(ut)udx ≤ δ1G
1

p+1− 1
m+1 (0)S(t) + Cδ1

R
m+1
m

1
α

G′(t)G−a(t)Ga+ 1
p+1− 1

m+1 (0), (4.19)

∫
Γ

g2(wt)wdΓ ≤ δ2G
1

q+1− 1
r+1 (0)S(t) + Cδ2

R
r+1
r

2
α

G′(t)G−a(t)Ga+ 1
q+1− 1

r+1 (0), (4.20)

for any δ1, δ2 > 0, where the constant a satisfies (3.8).
Substituting (4.16), (4.19) and (4.20) into (4.13), we obtain

Y ′(t) = (1 − a)G−a(t)G′(t) + εN ′′(t)

≥
[
(1 − a) − εCδ1

R
m+1
m

1
α

Ga+ 1
p+1− 1

m+1 (0) − εCδ2

R
r+1
r

2
α

Ga+ 1
q+1− 1

r+1 (0)
]
G−a(t)G′(t)

+ ε

[
5
2‖ut‖2

2 + 1
2 |wt|22 +

(
3 + λ

2

)
G(t) + λ

4E(t)
]

+ ε

[
λ

2 − δ1G
1

p+1− 1
m+1 (0) − δ2G

1
q+1− 1

r+1 (0)
]
S(t). (4.21)

At this point, we select δ1, δ2 > 0 such that

λ

2 − δ1G
1

p+1− 1
m+1 (0) − δ2G

1
q+1− 1

r+1 (0) ≥ λ

4 .

For these fixed values of δ1, δ2 > 0, we choose ε > 0 sufficiently small that

(1 − a) − εCδ1

R
m+1
m

1
α

Ga+ 1
p+1− 1

m+1 (0) − εCδ2

R
r+1
r

2
α

Ga+ 1
q+1− 1

r+1 (0) ≥ 1
2(1 − a).

Then, from (4.21) we obtain
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Y ′(t) ≥ ε

[
5
2‖ut‖2

2 + 1
2 |wt|22 +

(
3 + λ

2

)
G(t) + λ

4E(t)
]

+ λ

4 εS(t) > 0, (4.22)

for all t ∈ [0, T ). Therefore, Y (t) is increasing on [0, T ), with

Y (t) = G1−a(t) + εN ′(t) > Y (0) = G1−a(0) + εN ′(0).

Similar to (3.29), one can choose ε sufficiently small such that

Y (t) ≥ 1
2G

1−a(0) > 0, for t ∈ [0, T ). (4.23)

Now, we claim

Y ′(t) ≥ Cε1+σY μ(t), for t ∈ [0, T ), (4.24)

where μ := 1
1−a ∈ (1, 2) and σ := max{σ1, σ2} > 0 with σ1 = 1 − 2

(1−2a)(p+1) > 0 and σ2 = 1 − 2
(1−2a)(q+1) >

0. By solving differential inequality (4.24) with (4.23), we deduce that the maximum life span T is necessarily 
finite with

T < Cε−(1+σ)Y − a
1−a (0) ≤ Cε−(1+σ)G−a(0).

To prove (4.24), we use the following argument. If N ′(t) ≤ 0 for some t ∈ [0, T ), then for such value of t, 
we get

Y μ(t) = [G1−a(t) + εN ′(t)]μ ≤ G(t). (4.25)

Then we infer from (4.22) and (4.25) that

Y ′(t) ≥ 3εG(t) ≥ 3ε1+σG(t) ≥ 3ε1+σY μ(t),

for any value of t such that N ′(t) ≤ 0.
If N ′(t) > 0 for some t ∈ [0, T ), then

Y μ(t) ≤ C
[
G(t) + [N ′(t)]μ

]
. (4.26)

We know that S(t) > G(t) ≥ G(0) > 0 by (4.17) and (4.11). Let ε ≤ G(0). Then, following estimates 
(3.33)-(3.36), we can derive

[N ′(t)]μ ≤ C(‖ut‖2
2 + |wt|22 + ‖∇u‖2

2 + ε−σS(t)) ≤ Cε−σ(E(t) + S(t)). (4.27)

Combining (4.22), (4.27) and (4.26), we arrive at

Y ′(t) ≥ Cε
[
‖ut‖2

2 + |wt|22 + G(t) + E(t) + S(t)
]

≥ Cε
[
G(t) + εσ[N ′(t)]μ

]
≥ Cε1+σ

[
G(t) + [N ′(t)]μ

]
≥ Cε1+σY μ(t),

for any value of t such that N ′(t) > 0. As a result, we conclude that (4.24) holds for all values of t ∈ [0, T ).
Finally, by using the same argument as in Section 3, we conclude lim supt→T−(‖∇u(t)‖2

2 + |Δw(t)|22) =
+∞. This completes the proof. �
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4.2. Proof of Corollary 2.17

Corollary 2.17 states that the weak solution of system (1.1) blows up in finite time if the source terms 
exceed the damping terms, and the initial total energy E(0) is positive but sufficiently small, and the initial 
data are from W2, i.e., the unstable part of the potential well.

Proof of Corollary 2.17. It suffices to show that if (u0, w0) ∈ W2, then E(0) > y0.
Since (u0, w0) ∈ W2, then by the definition of W2, we get

‖∇u0‖2
2 + |Δw0|22 + ‖u0‖2

2 < (p + 1)
∫
Ω

F (u0)dx + (q + 1)
∫
Γ

H(w0)dΓ,

which together with (2.7) implies

‖∇u0‖2
2 + |Δw0|22 + ‖u0‖2

2 < M(p + 1)‖u0‖p+1
p+1 + M(q + 1)|w0|q+1

q+1. (4.28)

Let X := H1
Γ0

(Ω) ×H2
0 (Γ) and recall the definition of K1, K2 in (2.19). Then we obtain from (4.28) that

‖(u0, w0)‖2
X < M(p + 1)K1‖∇u0‖p+1

2 + M(q + 1)K2|w0|q+1
2

≤ M(p + 1)K1‖(u0, w0)‖p+1
X + M(q + 1)K2‖(u0, w0)‖q+1

X . (4.29)

We divide both sides of (4.29) by ‖(u0, w0)‖2
X to reach

M(p + 1)K1‖(u0, w0)‖p−1
X + M(q + 1)K2‖(u0, w0)‖q−1

X > 1.

This along with (2.18) gives

MK1(p + 1)
(
‖(u0, w0)‖2

X

) p−1
2 + MK2(q + 1)

(
‖(u0, w0)‖2

X

) q−1
2

> 1 = MK1(p + 1)(2y0)
p−1
2 + MK2(q + 1)(2y0)

q−1
2 .

Since p, q > 1, then we have

‖(u0, w0)‖2
X > 2y0, (4.30)

which implies that E(0) > y0. Then, using Theorem 2.16, we obtain the blow-up of weak solutions in finite 
time. �
5. Appendix

5.1. Proof of Lemma 2.10

Proof of Lemma 2.10. Because of energy equality (2.10) and (2.12), we have

J (u,w) ≤ E(t) ≤ E(0) < d, for t ∈ [0, T ). (5.1)

Then (u(t), w(t)) ∈ W. To prove (u(t), w(t)) ∈ W2, we argue by contradiction. We assume that there exists 
t1 ∈ (0, T ) such that (u(t1), w(t1)) /∈ W2. Recalling W1 ∪W2 = W and W1 ∩W2 = ∅, then we obtain that 
(u(t1), w(t1)) ∈ W1.
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By (2.8) and the mean value theorem, we can get that for any t0 ∈ [0, T ),
∫
Ω

|F (u(t)) − F (u(t0))|dx ≤ C

∫
Ω

(|u(t)|p + |u(t0)|p)|u(t) − u(t0)|dx

≤ C(‖u(t)‖pp+1 + ‖u(t0)‖pp+1)‖u(t) − u(t0)‖p+1.

Noting p ≤ 5, and using the embedding H1
Γ0

(Ω) ↪→ L6(Ω) and the regularity of the weak solution u ∈
C([0, T ); H1

Γ0
(Ω)), we conclude that 

∫
Ω F (u(t))dx →

∫
Ω F (u(t0))dx as t → t0, which implies that the 

function t �→
∫
Ω F (u(t))dx is continuous on [0, T ). Similarly, the continuity of the function t �→

∫
Γ H(w(t))dΓ

is obtained on [0, T ).
Since (u(0), w(0)) ∈ W2 and (u(t1), w(t1)) ∈ W1, then by the continuity and the intermediate value 

theorem, we know that there exists s ∈ (0, t1] such that

‖∇u(s)‖2
2 + |Δw(s)|22 + ‖u(s)‖2

2 = (p + 1)
∫
Ω

F (u(s))dx + (q + 1)
∫
Γ

H(w(s))dΓ. (5.2)

Define t∗ be the infinimum point over s ∈ (0, t1] satisfying (5.2). Then t∗ ∈ (0, t1] and (u(t), w(t)) ∈ W2 for 
any t ∈ [0, t∗). Two cases are considered as follows:
Case 1. (u(t∗), w(t∗)) �= (0, 0). Since (5.2) holds for t∗, then (u(t∗), w(t∗)) ∈ N . We can get from (2.15) that 
J (u(t∗), w(t∗)) ≥ d. Since E(t) ≥ J (u(t), w(t)) for any t ∈ [0, T ), E(t∗) ≥ d is obtained. This contradicts 
(5.1).
Case 2. (u(t∗), w(t∗)) = (0, 0). Note that (u(t), w(t)) ∈ W2 for any t ∈ [0, t∗). We conclude from (2.7) that 
for any t ∈ [0, t∗),

‖∇u(t)‖2
2 + |Δw(t)|22 + ‖u(t)‖2

2 ≤ C(‖u(t)‖p+1
p+1 + |w(t)|q+1

q+1) ≤ C(‖∇u(t)‖p+1
2 + |Δw(t)|q+1

2 ),

which implies

‖(u(t), w(t))‖2
X < C(‖(u(t), w(t))‖p+1

X + ‖(u(t), w(t))‖q+1
X ), t ∈ [0, t∗),

where X = H1
Γ0

(Ω) ×H2
0 (Γ). Then, for any t ∈ [0, t∗), we see that

‖(u(t), w(t))‖p−1
X + ‖(u(t), w(t))‖q−1

X >
1
C
.

This gives us ‖(u(t), w(t))‖X > s0, for any t ∈ [0, t∗), where s0 > 0 is the unique positive solution of 
sp−1 + sq−1 = 1

C , where p, q > 1. It follows from the continuity of the weak solution (u(t), w(t)) that 
‖(u(t∗), w(t∗))‖X ≥ s0 > 0. This contradicts that (u(t∗), w(t∗)) = (0, 0). Therefore, (u(t), w(t)) ∈ W2 for all 
t ∈ [0, T ). �
5.2. Proof of inequality (2.21)

Proof of (2.21). We justify that 0 < d̂ ≤ d. Indeed, by using (2.20) and (2.18), we have

d̂ = y0 −MK1(2y0)
p+1
2 −MK2(2y0)

q+1
2

= y0 −
2y0

p + 1 ·MK1(p + 1)(2y0)
p−1
2 − 2y0

q + 1 ·MK2(q + 1)(2y0)
q−1
2

≥ y0 − max
{

2y0
,

2y0
}[

MK1(p + 1)(2y0)
p−1
2 + MK2(q + 1)(2y0)

q−1
2

]

p + 1 q + 1
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= y0 − max
{

2y0

p + 1 ,
2y0

q + 1

}
= y0 · min

{
p− 1
p + 1 ,

q − 1
q + 1

}
,

which, using the fact p, q > 1, implies d̂ > 0.
Let X = H1

Γ0
(Ω) ×H2

0 (Γ). It follows from (2.7), (2.11) and (2.19) that

J (u,w) ≥ 1
2(‖∇u‖2

2 + ‖u‖2
2 + |Δw|22) −M(‖u‖p+1

p+1 + |w|q+1
q+1)

≥ 1
2(‖∇u‖2

2 + ‖u‖2
2 + |Δw|22) −MK1‖∇u‖p+1

2 −MK2|Δw|q+1
2

≥ 1
2‖(u,w)‖2

X −MK1‖(u,w)‖p+1
X −MK2‖(u,w)‖q+1

X

:= Λ(‖(u,w)‖X), (5.3)

with

Λ(y) = 1
2y

2 −MK1y
p+1 −MK2y

q+1.

Since p, q > 1, then

Λ′(y) = y[1 −MK1(p + 1)yp−1 −MK2(q + 1)yq−1],

has only one positive zero at y∗, where y∗ satisfies

MK1(p + 1)(y∗)p−1 + MK2(q + 1)(y∗)q−1 = 1. (5.4)

It is easy to verify that Λ(y) has maximum value at y = y∗, i.e.,

Λ(y∗) = sup
[0,∞)

Λ(y) = 1
2(y∗)2 −MK1(y∗)p+1 −MK2(y∗)q+1.

It follows from (2.18) and (5.4) that (y∗)2 = 2y0. Therefore,

Λ(y∗) = y0 −MK1(2y0)
p+1
2 −MK2(2y0)

q+1
2 = d̂. (5.5)

From (5.3), we obtain

J (λ(u,w)) ≥ Λ(λ‖(u,w)‖X), for all λ ≥ 0.

It follows that

sup
λ≥0

J (λ(u,w)) ≥ Λ(y∗).

Then we infer from (2.15) and (5.5) that

d = inf
(u,w)∈X\(0,0)

sup
λ≥0

J (λ(u,w)) ≥ Λ(y∗) = d̂.

This shows that d̂ is not larger than the depth d of the potential well. �
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