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These Notes were compiled by the author with the intent to be used by his students as a main
text for the course MAS 4203 Number Theory taught at the Department of Mathematics and Statis-
tics of FIU. The material included covers both the standard topics for an undergraduate course on
the subject as well as some additional topics which form a glimpse into more advanced and modern
facts and techniques in the area. The presentation emphasizes the algebraic nature of the results
proved, and is based on four important facts: the Fundamental Theorem of the Arithmetic of Z
(this ring is a UFD), the Chinese Remainder Theorem, the Hensel’s Lifting Lemma, and the Law of
Quadratic Reciprocity. The motivation for studying the topics included in the Notes comes from the
need to solve equations over Z, Q, and Z/nZ. The questions answered in discussing such equations
are: when do solutions exist, and, in case there are such, how to find all solutions? In connection
with these, in special sections, called Vistas,the p-adic numbers are introduced and their role in
solving equations over Q explained. The Law of Quadratic Reciprocity is thoroughly discussed in its
Legendre-Gauss, Jacobi’s, Euler’s, and Hilbert’s versions (the latter one - in a Vista). The primitive
root theory is based on the Hensel’s Lifting Lemma, allowing a direct proof of existence of such for
a power of an odd prime, and is treated as result on the structure of the group of units of the ring
Z/nZ. A chapter of the Notes is devoted to the basic arithmetic functions, their properties, and
applications to classical number theoretical problems. The last chapter of the Notes is devoted to
elementary analytic methods used in studying prime numbers.

Please send comments and corrections to the author at yotovm@fiu.edu .

©2016, 2017, 2020, 2022 M.Yotov. Single paper copies for noncommercial personal use may be
made without explicit permission from the copyright holder.

2



Contents

1 A Motivational One 5

1.1 Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Common Factors, and Relatively Prime Natural Numbers . . . . . . . . . . . . . . . 9

1.3 The Integers, the Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Pythagorean Triplets 12

2.1 Reduction to Solving in Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 A Geometric Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Vista: The Equation ax2 + by2 + cz2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The Division Algorithm in Z, Applications 19

3.1 Division with Quotient and Remainder in Z . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 The Greatest Common Divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 The Least Common Multiple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 The Fundamental Theorem of Z 30

4.1 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Canonical Decomposition, Applications . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Infinitude of the Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 An Interpretation through Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Linear Diophantine Equations 37

5.1 The Equation a · x+ b · y = c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 The General Linear Diophantine Equation . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Modular Arithmetic, the Ring Z/nZ 44

6.1 Congruences Modulo n ∈ N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 The Ring Z/nZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Fermat, Euler, and Wilson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5 Vista: Proof of Legendre’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.6 Multiplicativity of φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Polynomial Equations Modulo n 61

7.1 Linear Equations in Z/nZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Equations of Higher Degree in Z/nZ . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.3 Equations of Higher Degree in Z/pkZ . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4 Vista: p-adic Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.5 Equations of Higher Degree in Z/pZ . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.6 Two Important Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3



Contents Contents

8 Quadratic Equations Modulo n 78
8.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.2 Quadratic Residues Modulo p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3 Gauss’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.4 Eisenstein’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.5 The Law of Quadratic Reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.6 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.7 Vista: Local-to-Global Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.8 The Generalized Law of Quadratic Reciprocity . . . . . . . . . . . . . . . . . . . . . 101
8.9 Vista: Laws of Reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9 Binomial Equations mod n, the Structure of (Z/nZ)× 108
9.1 Orders Modulo n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2 Primitive Roots Modulo n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.3 The Structure of (Z/nZ)× . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.4 Solving Xd ≡ a mod n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10 Sums of Two Squares 124
10.1 Primes Representable as a Sum of Two Squares . . . . . . . . . . . . . . . . . . . . . 124
10.2 Natural Numbers Which are Sums of Two Squares . . . . . . . . . . . . . . . . . . . 127
10.3 Number of Presentations as a Sum of Two Squares . . . . . . . . . . . . . . . . . . . 128
10.4 An Application of the Method of Descent . . . . . . . . . . . . . . . . . . . . . . . . 131

11 Arithmetic Functions; Applications 135
11.1 Arithmetic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.2 Important Arithmetic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

12 Applications to Designing Cryptosystems 142
12.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
12.2 Exponential Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
12.3 The RSA Encryption System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

13 A Bit More on Primes 145
13.1 Infinitude of Primes Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
13.2 Bertrand, Goldbach, and Twin Primes . . . . . . . . . . . . . . . . . . . . . . . . . . 151
13.3 Functions with Values Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Index 156

4



Chapter 1

A Motivational One

In this chapter, we are discussing some preliminaries, and giving a motivation for what we are doing
in this course.

1.1 Natural Numbers

This section recalls some concepts and facts known to the students from the course of Intro to
Advanced Mathematics.

1.1.1 Operations and Relations on the Natural Numbers

In this course, we will be interested in the properties of natural numbers related to the two operations
on them: addition and multiplication. We denote the set of natural numbers by N

N = {0, 1, 2, . . . , n, . . . }.

The two operations on N are commutative, associative, have neutral elements, and the addition
distributes over the multiplication. That is, for all m,n, p ∈ N

m+ n = n+m m+ (n+ p) = (m+ n) + p 0 + n = n

m · n = n ·m m · (n · p) = (m · n) · p 1 · n = n.

Natural numbers can be compared as well: m ≤ n if n = m+ p for some p ∈ N. The relation ≤ is
a total order on N, that is, for every m,n, p ∈ N

m ≤ m (m ≤ n ∧ n ≤ m)⇒ m = n (m ≤ n ∧ n ≤ p)⇒ m ≤ p m ≤ n ∨ n ≤ m.

The relation ≤ on N is a well order. That is, ≤ has the property, called The Least Element
Principle (LEP), that every non-empty subset of N has a least element. In more professional
notations

(∀Σ ⊆ N)(Σ ̸= ∅ ⇒ (∃s0 ∈ Σ)(∀s ∈ Σ)(s0 ≤ s)).

As we know from Intro to Advanced Math, the LEP lays the ground for using the method of proof
by (finite) induction. We will often be using this method of proof in this course.

Example 1.1.1 The first example of proof by induction one can see in any book discussing induc-
tion is the following one. Prove that

(∀n ∈ N)(0 + · · ·+ n = n(n+ 1)/2).

The proof by induction includes two steps: first we show that the claim is true for the smallest natural
number, that is for n = 0 (the so called base case), and then we prove that if the proposition is
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Chapter 1. A Motivational One 1.1. Natural Numbers

true for n, it is true for n+ 1 as well (the so called inductive step). For the base case, we have to
verify that 0 = 0(0 + 1)/2 which is obviously true. For the inductive step, assuming the claim for n
is true, we have

0 + · · ·+ n+ (n+ 1) = (0 + · · ·+ n) + (n+ 1)

= n(n+ 1)/2 + (n+ 1) = ((n+ 1)/2) · (n+ 2).

So, indeed,

0 + · · ·+ n+ (n+ 1) = (n+ 1)((n+ 1) + 1)/2

and therefore the claim is true for n+ 1 as well. 2

The relation ≤ defines a strict total order on N: for m,n ∈ N we define

m < n if m ≤ n ∧ m ̸= n.

This strict order is trichotomous: for every m,n ∈ N exactly one of the following propositions is
true

m < n n < m m = n.

1.1.2 Prime and Composite Natural Numbers

The first interesting thing one observes related to the operation multiplication, ·, is that some natural
numbers divide others.

Definition 1.1.1 For m,n ∈ N we say that n divides m, or that m is divisible by n, if there is
a natural number p such that m = n · p. In such a case, we write n |m. The number n is called the
divisor, and the number m is called the dividend .

Exercise 1.1 1) Prove that if a | b and a | c, then a | (b+ c).
[We have: b = ab1, c = ac1, and so b+ c = a(b1 + c1).]

2) Suppose a, b, c ∈ N such that a ̸= 0. Prove that ab | ac if, and only if, b | c.
[(⇒) ab | ac means that ac = abd for some natural number d which, since a ̸= 0, is equivalent to
c = bd, that is, equivalent to b | c.]

3) Suppose a, b ∈ N such that b < a. Prove that a | b if, and only if, b = 0.

4) Prove that for every three natural numbers m,n, p the following holds true

n |n (n |m ∧ m |n)⇒ m = n (m |n ∧ n | p)⇒ m | p.

In other words, divisibility of natural numbers defines a partial order on N. This partial order is
not a total order (Why?) 2

A number n is called even if 2 |n, and is called odd otherwise. It’s obvious, for instance, that of two
consecutive natural numbers, exactly one is even (Why is that true?). We can do the same using 3
instead of 2, and define all the numbers divisible by 3. It is also obvious that of three consecutive
natural numbers, one is always divisible by 3.

Exercise 1.2 It is easy to do the same for any natural number n instead of 2 or 3. Prove that of
any n consecutive numbers, one is divisible by n. Furthermore, prove that there is only one such
number.

[Hint: Consider n consecutive natural numbers: m + 0,m + 1, · · · ,m + (n − 1) where m ∈ N.
Prove by induction on m that for some 0 ≤ i ≤ n − 1 the number m + i is divisible by n. For
the uniqueness, notice that if n divides m + i and m + j for 0 ≤ i < j ≤ n − 1, then n divides
(m + j) − (m + i) = j − i. But the latter divisibility is impossible, because j − i is a too small
positive integer. Fill in the gaps of this argument.] 2
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1.1. Natural Numbers Chapter 1. A Motivational One

We will prove soon that a non-zero natural number is divisible by finitely many natural numbers
only. With this in mind we see that the number 0 is special: it is divisible by all natural numbers.
The number 1 is also special in this respect. Note that if 1 < n, then n has at least two divisors,
while the number 1 has only one! So, the neutral elements of the operations + and · stand out. By
the way, these two have other features which make them special: the number 0 divides only one
natural number, 0, while the number 1 divides all natural numbers. Every integer which is bigger
than 1 divides infinitely many natural numbers, but not all of them. So, from the point of view
of divisibility, the natural numbers bigger than 1 are more interesting. Here is how we label these
natural numbers.

Definition 1.1.2 The natural number n is called prime if it has only two divisors. It is called
composite if it is bigger than 1 and is not prime.

The first several prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, . . . . Only one of the prime numbers is
even, of course. Some people say that the even prime number is the oddest prime number! There
is a reason for that saying, but we will not be able to appreciate it in our (quite elementary) course
on Number Theory.

Exercise 1.3 1) Is the number 999991 prime?
2) Is it true that 3 never divides n2 + 1, and that 5 never divides n2 + 2? Give arguments for your
answer.

[RAA: suppose 3 |n2 + 1; then n2 + 1 = 3m for some natural number m. From n2 = 3m− 1 we
get that 3 ∤ n2, and so, 3 ∤ n. Therefore n = 3k + 1 or n = 3k + 2. We have that n2 = 3A+ 1
where A = 3k2 + 2k in the former case, and n2 = 3B + 1 where B = 3k2 + 4k + 1 in the latter
case. Since neither 3A+ 1 = 3m− 1 nor 3B + 1 = 3m− 1 is possible, we get a contradiction.
The second claim of the Exercise is treated similarly.]

3) Let N be a two digit natural number, and let M be the number obtained by reordering the digits
of N . Show that 9 | |M −N |, and find all N such that |N −M | = 18.
4) Show that the product of three consecutive integers is divisible by 6, and that the product of four
consecutive integers is divisible by 24.
5)* Generalize the the claim in 4) to the following: for every positive integer k, and for every integer
n, k! |n(n+ 1) · · · (n+ k − 1).

[For n ∈ N the claim can be proved by (double) induction or using that binomial coefficients are
integers. For −(k − 1) ≤ n < 0 the claim is obvious. The case n ≤ −k is reduced to the first case
considering n′ = −(n+ k − 1) > 0. ]
6) Prove that, for n ∈ N, we have that 6 |n(n− 1)(2n− 1).

[ Notice that n(n− 1)(2n− 1) = n(n− 1)(2n− 4 + 3) = n(n− 1)(2n− 4) + 3n(n− 1) =
2n(n− 1)(n− 2) + 3n(n− 1), and that the summands in the last expressions are divisible by 6. ]

7) Prove that if neither 2 |n nor 3 |n, then 24 | (n2 + 23).
[Prove first that 3 and 8 divide n2 − 1 for n non-divisible by 2 and 3.]

8) Find all natural numbers n such that n+ 1 |n2 + 1.
9) How many natural numbers, less than 100, are there such that neither 2, nor 3, nor 5 divides
them?
10) Find ten consecutive composite natural numbers. For every n > 1, find n consecutive composite
natural numbers.

1.1.3 Other Special Types of Natural Numbers

The natural numbers have been partitioned in subsets according to a variety of features that they
may or may not posses. Examples of such are prime/composite numbers or even/odd numbers. We
list in this sub-section other examples.
• Squares (numbers of the type n2 for a natural n), cubes (n3 for n ∈ N), kth powers (nk for

k, n ∈ N);
•Square-free numbers, that is numbers which are not divisible by the square of any non-identity

natural number. For instance, 6 is square-free, while 12 is not;
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• Triangular, and square numbers. These have more geometric flavour in their definitions.
Arithmetically, the former are natural numbers of the form n(n + 1)/2, and the latter - natural
numbers of the form n2 where n ∈ N;
• Perfect numbers: these have a property which “balances” the two operations, addition and

multiplication, on them. More specifically, these are natural numbers which are the sum of their
proper divisors! Notice that divisors are defined by using multiplication, and the perfect numbers
are the sum of their proper divisors! Examples are 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14;
• Prime numbers of type “one-mod-four” (1-mod-4). These are numbers which appear

naturally in different considerations in Number Theory.
• Fibonacci numbers. The consideration of these numbers is inspired by natural sciences, such

as Biology. The story goes that Fibonacci got interested in these numbers watching how the number
of rabbits in consecutive generations grows. Later on Fibonacci numbers were associated with many
other patterns appearing in Nature. Arithmetically, these numbers are defined inductively as follows

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn.

Often numbers are considered in pairs or in triplets. Here are some examples.
• Twin primes. Looking in the sequence of primes,

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . . ,

we see that there are pairs of prime numbers the difference between which is 2. Examples are:

(3, 5), (5, 7), (17, 19), (29, 31), etc.

A prime number p is called a twin prime if either p− 2 or p+ 2 is a prime number as well.
• Prime triplets. These are triplets, such as (3, 5, 7), consisting of two pairs of twin primes.
• Pythagorean triplets. These are triplets of natural numbers (a, b, c) such that a2 + b2 = c2.

There are infinitely many such triplets. The most celebrated among these is, may be, (3, 4, 5) for the
reason that, using it, people in ancient Egypt could construct a right angle, and divide the fertile
lands around Nile River into rectangular pieces, and return it to the people working on it, after
the seasonal flooding of the river. The importance of the Pythagorean triplets stems also from the
way they inspired Pierre de Fermat to consider triplets (a, b, c) such that an + bn = cn for a natural
number n ≥ 3. The attempts to prove that there are NO such triplets (fact claimed by Fermat, and
known as The Last Fermat Theorem), led to the development of modern Algebra, and Algebraic
Geometry!

Exercise 1.4 1) Prove that if x and y are odd natural numbers, then x2 + y2 is never a perfect
square.

[We have x = 2u+1, y = 2v+1. Therefore x2+ y2 = 4(u(u+1)+ v(v+1))+2 which is an even
number not divisible by 4...]

2) Prove that no natural number, bigger than 1, whose expression in base 10 has only 1s as digits is
a perfect square.

[If the number has n digits, then it is equal to 1 + 10 + · · ·+ 10n−1 = (10n − 1)/9. Prove that
10n = (3m)2 + 1 is an impossible relation for any natural numbers m, and n ≥ 2. ]

3) Prove that every odd prime number can be written as a difference of two squares: p = a2 − b2.
Prove also that this presentation is unique. Is such a presentation possible if p is just an odd natural
number? Can 2 be represented this way?
4) Prove that for no n ∈ N is the number 3n2 − 1 a perfect square.
5) Find all natural numbers m,n such that 1/m+ 1/n is a natural number.
6) Show that the product of any two, three, four, or five consecutive positive integers is never a
perfect square. (It is true that no product on n ≥ 2 consecutive positive integers is a square (P.
Erdös, 1935). Moreover, no such a product is even a perfect m ≥ 2 power (Erdös-Selfridge, 1975).)
7) Prove that, for every ±1 ̸= n ∈ Z, the number n4 + 4 is composite.
8) Compute the value of the expression

(104 + 324)(224 + 324)(344 + 324)(464 + 324)(584 + 324)

(44 + 324)(164 + 324)(284 + 324)(404 + 324)(524 + 324)
.
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1.1.4 Some Number Theoretical Questions

Despite the elementary level of our knowledge of numbers at the moment, we may still ask questions
about them, some of which are quite non-elementary! Here are some examples:

Q1 : Are the prime numbers infinitely many?

The answer is yes, and was known to Euclid. We will address this question in Chapter 4.

Q2 : Are the twin primes infinitely many?

Q3 : Are the triplets of primes infinitely many?

The answer to Q3 is easily NO. On the other hand, Q2 is still a very widely open question! The
experts do not have a doubt that the twin primes are infinitely many!

Q4 : How often do the prime numbers appear in the sequence of natural numbers?

Notice that, for any natural n, there is a sequence of n consecutive natural numbers, none of which
is prime!

Q5 : A natural question is which square numbers are triangular as well? In other words, are there
non-zero natural numbers m,n such that m2 = n(n+ 1)/2?

There is a way to find all such numbers, but we will not discuss it in this course.

Q6 : Which natural numbers are sums of two squares? As an intermediate question: which primes
are sums of two squares? For example, 2 = 12 + 12, 5 = 12 + 22, 13 = 22 + 32. But 3, 7 and 11 are
NOT sums of two squares!

Q7 : Which numbers can be the third component in a Pythagorean triplet (a, b, c)?

Chapter 10 of these Notes is devoted to answering Q6 and Q7 in full.

Q8 : Are the perfect numbers infinitely many?

The last question is still open.

1.2 Common Factors, and Relatively Prime Natural Num-
bers

In this course we will be comparing different natural numbers from the point of view of their divisors.
This leads to the notion of common divisors of two or more numbers.

Definition 1.2.1 The natural number d is a common divisor of the natural numbers n1, · · · , nk if
it divides all of them: d |n1, . . . , d |nk. We say in this case that n1, . . . , nk have/share a common
factor.

Obviously, the number 1 is a common divisor of any two natural numbers.

Definition 1.2.2 The natural numbers n1, . . . , nk are called relatively prime if the only common
divisor they have is 1.

For instance, 5 and 26 are relatively prime, while 33 and 1001 are not (check out that 11 is a common
factor!).
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Chapter 1. A Motivational One 1.3. The Integers, the Rational Numbers

Definition 1.2.3 The natural numbers n1, . . . , nk are pairwise relatively prime if every two of
them are relatively prime.

For instance, the numbers 2, 3, 4 are relatively prime, but are NOT pairwise relatively prime.

1.3 The Integers, the Rational Numbers

We may try to stick to using only the natural numbers in our considerations, but we will not be
able to keep up with this for long! The reason is that some of the questions in Number Theory, even
at the elementary level of our course, can only be answered by using techniques related to other
number systems, such as integer numbers and rational numbers, as well. And even when we can
do the things without the help of other number systems, using the latter makes the considerations
more elegant and illuminating.

The first extension of the natural numbers leads us to the set of integers

Z = {0,±1,±2, . . . ,±n, . . . }.

The two operations and the relation from N extends to Z. We have in this set the neutral element
for addition as well, i.e. 0. But we have much more than that! Every element has an opposite,
that is every m has (a unique) n such that m+ n = 0. In particular, every equation of the form

x+m = n

for m,n ∈ N has a (unique) solution in Z. By the way, the set of integers is a ring. That is, the
two operations are commutative and associative, they have neutral elements, the product distributes
over the addition, and every element has also an opposite one. In our course the ring Z will play a
fundamental role.

The notion of divisibility extends naturally to the set of integers. We say that the integer m divides
the integer n, if there is an integer s such that n = m · s. Notice that, once again, everybody divides
0, and that 0 divides only 0. (Prove that!) As it is in the case of natural numbers, the divisibility
is a non-trivial relation (a partial order) between integers as well: there are non-zero integers which
do not divide each other.

The total order ≤ on N extends to one on Z as well: by definition, every negative integer is less than
every positive integer; 0 separates the positive from negative numbers, being less than the former,
and bigger than the latter; if m,n are negative integers, then m < n if for their opposites we have
(−n) < (−m). This order is no longer a well order!

The second extension of the natural numbers, which is actually an extension of the integers, is
the set of rational numbers

Q = {m/n |m ∈ Z, n ∈ N \ {0} }

where by definition m/n = p/q if m · q = n · p. The expressions like m/n for m ∈ Z and n ∈ N \ {0}
are called rational fractions. Note that rational numbers are classes of equal rational fractions.
Every rational fraction represents its rational number. For instance, (−1)/2 and (−3)/6 represent
the same rational number. As we will prove in Chapter 4, every rational number has a unique, a.k.a.
canonical, representation as a reduced rational fraction, that is a fraction m/n such that m and n
share no common factors different from ±1. In particular, every integer n, considered as a rational
number, is represented by the reduced fraction n/1. The operations addition and multiplication are
defined by

m/n+ p/q = (m · q + n · p)/(n · q) m/n · p/q = (m · p)/(n · q).

10



1.3. The Integers, the Rational Numbers Chapter 1. A Motivational One

The order on Q, inherited from Z, and, ultimately, from N, is defined by (recall that n, t ∈ N \ {0})

m/n ≤ s/t if m · t ≤ s · n.

The set of rational numbers Q is a field, that is, Q is a ring every non-zero element of which has a
reciprocal:

(∀x ∈ Q)(x ̸= 0⇒ ((∃y ∈ Q)(x · y = 1))).

Now, we can solve any linear equation
a · x+ b = c

where a ̸= 0, b and c are rational numbers.

Fields that one knows from pre-school times are the set of real numbers, R, and the set of complex
numbers, C. We have the following inclusions

N ⊆ Z ⊆ Q ⊆ R ⊆ C.

All inclusions are strict! All the sets are infinite. In this course, we will introduce, along the way,
and study finite rings and finite fields as well.

As the reader may know, the real numbers are an extension of the rational numbers, and are
constructed for the needs of Calculus. They play important role in studying different types of (con-
tinuous real valued) functions (of real variables).

What the reader might not know is that, for every prime number p, there is an extension of the
rational numbers to a field denoted by Qp and called p-adic numbers . This field plays a similar
role to that of the real numbers (providing notions of limits and continuous functions), but is more
number theoretical in nature. We will discuss briefly the p-adic numbers in a couple of Vistas later
in the Notes.

Exercise 1.5 1) Let a, b, c ∈ Z. Prove that if a | b and a | c, then for every u, v ∈ Z we have
a | (ub+ vc).
2) Let m = ua+ vb where a, b, u, v ∈ Z. Prove that if d is a common divisor of a and b, then d |m.
Conclude that if ua+ vb = ±1, then a and b are relatively prime.
3) Suppose a, b, c ∈ Z such that a ̸= 0. Prove that ab | ac if, and only if, b | c.
4) Suppose a, b ∈ Z such that |b| < |a|. Prove that a | b if, and only if, b = 0.
5) Prove that

√
2 is not a rational number. That is, there is no rational number m/n such that

(m/n)2 = 2. Do the same for
√
3 as well.

[RAA: assume (m/n)2 = 2 for some rational number m/n. W.L.O.G. we may assume the
fraction reduced, that is m and n share no positive factors different from 1. We have then that
m2 = 2n2 which implies that m is even: m = 2m1. Substituting in the equality and simplifying
we get 2m2

1 = n2 which in turn implies that n is even as well: n = 2n1. So, m and n do share a
bigger than 1 factor - a contradiction! The second part of the Exercise is treated in a similar
way. ]

11



Chapter 2

Pythagorean Triplets

As a first example of a non-trivial number theoretical problem we are solving the Pythagorean
equation

x2 + y2 = z2

in integers.

2.1 Reduction to Solving in Rational Numbers

Let the triplet of integers (a, b, c) be a solution of the Pythagorean equation, that is a2 + b2 = c2. It
is easy to find all such triplets for which a · b · c = 0. Indeed, all solutions in this case are given by

(0, ϵ1 · t, ϵ2 · t) and (ϵ1 · t, 0, ϵ2 · t)

where ϵ1 = ±1, ϵ2 = ±1, and t ∈ N. So, without a loss of generality (W.L.O.G.), we may assume
that a · b · c ̸= 0. The next assumption is that the components of the triplet (a, b, c) are all positive.
Indeed, any such triplet (a, b, c) determines eight distinct solutions,

(ϵ1 · a, ϵ2 · b, ϵ3 · c) for ϵi = ±1,

and any triplet with non-zero components is obtained this way (from the triplet (|a|, |b|, |c|)).

2.1.1 Reduction to Solving a Hyperbolic Equation

Observe that a triplet (a, b, c) with a ̸= 0 determines a solution in rational numbers, (b/a, c/a), to
the equation

1 +X2 = Y 2.

This equation is an equation of a hyperbola in the plane, only we have to find the rational points
on it. We will call the equation hyperbolic in order to distinguish it from the Pythagorean one.
Now, a solution (p/q, r/s) to the hyperbolic equation produces many different solutions to the
Pythagorean equation. Indeed, if u ∈ N is such that p/q · u ∈ N and r/s · u ∈ N, then the triplet

(u, p/q · u, r/s · u)

is a solution to the Pythagorean equation. For some pair (p/q, r/s) and a number u we will get the
original solution (a, b, c).
Let u = q · s. Then we get the Pythagorean triplet (qs, ps, rq). The discussion in the previous
paragraph can be restated as follows:

Every Pythagorean triplet (a, b, c) can be obtained from a triplet (qs, ps, rq), where
(p/q, r/s) is a solution to the hyperbolic equation, by multiplying all the components

12



2.1. Reduction to Solving in Rational Numbers Chapter 2. Pythagorean Triplets

thereof by a natural number, or by dividing those components by a non-zero common
factor.

The moral here is that to find all Pythagorean triplets, it is enough to find all solutions in Q
of the hyperbolic equation. To do this, as we will see below, is very easy.

2.1.2 Solving the Hyperbolic Equation

We have

1 = Y 2 −X2 = (Y −X)(Y +X).

We are looking for rational solutions (u, v), so both v + u and v − u are rational numbers whose
product is 1. They both are also positive, because we are looking for positive solutions to the
Pythagorean equation. If we call r = u + v, for a rational number r, then v − u = 1/r. Obviously
r = u+ v > v − u = 1/r, and therefore r > 1. We easily solve then that

v =
1

2

(
r +

1

r

)
u =

1

2

(
r − 1

r

)
.

Let r = p/q for positive p > q. Then we have

v =
1

2

(
p

q
+
q

p

)
=
p2 + q2

2pq
u =

1

2

(
p

q
− q

p

)
=
p2 − q2

2pq
,

and the solutions in positive integers to the Pythagorean equation are given by

(a, b, c) = (u · 2pq, u · (p2 − q2), u · (p2 + q2)) u ∈ N \ {0}

or

(a, b, c) = (2pq/d, (p2 − q2)/d, (p2 + q2)/d) d ∈ N \ {0}

for positive integers p > q, and d a common factor of the three components.

This result tells us how to find all Pythagorean triplets in principle. In the next subsection, we
are discussing an interesting property of the Pythagorean triplets which will give us a much better
way, it will actually provide us with a formula, for finding all Pythagorean triplets.

2.1.3 Primitive Pythagorean Triplets

Among all Pythagorean triplets (a, b, c) with positive components, there are “minimal” ones in the
following sense. If the components of (a, b, c) share a common factor: a = da1, b = db1, c = dc1, then
the triplet (a1, b1, c1) is also a solution with positive components. The new solution is naturally
“smaller” than the original one. If the components of (a, b, c) do not share a bigger than 1 common
factor, then it is impossible to produce a smaller one, and such are naturally minimal solutions. In
fact, any solution (a, b, c) can be obtained from a minimal one by multiplying the latter
by an appropriate natural number. Therefore, knowing the minimal Pythagorean triplets we
can find all solutions to the Pythagorean equation. The amazing thing is that there is a formula
exhibiting all minimal triplets. This subsection is devoted to obtaining that formula.

Definition 2.1.1 A solution (a, b, c) to the Pythagorean equation with positive components which
do not share a bigger than 1 common factor is called a primitive Pythagorean triplet or, for
short PPT.

Obviously, to know all solutions to the Pythagorean equation, we need to know the primitive
Pythagorean triplets. Turns out, every primitive Pythagorean triplet can be expressed in the form
that we know from the previous subsection.

13



Chapter 2. Pythagorean Triplets 2.1. Reduction to Solving in Rational Numbers

Proposition 2.1.1 Let (a, b, c) be a primitive Pythagorean triplet. Then, we have

either (a, b, c) = (2pq, p2 − q2, p2 + q2) or (a, b, c) = (p2 − q2, 2pq, p2 + q2).

Moreover, the numbers U = p + q and V = p − q are odd and do not share common factors bigger
than 1.

Proof The proof is divided in three steps.
Step 1: For a PPT (a, b, c), at least one of its components is an odd number (for, otherwise, all the
numbers have to be even, and so sharing a bigger than 1 factor). Let’s observe that the component
c can not be even. Indeed, otherwise the components a and b need to have the same parity, and
since they can not be both even (the triplet (a, b, c) is a PPT!), then a = 2a1 + 1 and b = 2b1 + 1
have to be odd. But then, we would have

c2 = (2c1)
2 = (2a1 + 1)2 + (2b1 + 1)2 = 4(a1(a1 + 1) + b1(b1 + 1)) + 2

and therefore
4(c21 − a1(a1 + 1)− b1(b1 + 1)) = 2

which is impossible, because 4 does not divide 2.
Step 2: So, c is odd, and either a or b, but not both, is even. W.L.O.G., we may assume that
a = 2a1. We have now that

b2 = c2 − a2 = (c− a)(c+ a).

The numbers on the RHS are both odd. We are showing that they do not share factors bigger than
one. Indeed, if d | c−a and d | c+a, then d is an odd number which also divides (c−a)+(c+a) = 2c
and c + a − (c − a) = 2a. But, being odd, d has to divide a and c which is possible only when
d = 1. We are showing next that both c− a and c+ a are squares. Indeed, since b | b2 we have that
b | (c− a)(c+ a), and so, b = b1b2 such that b1 | c− a and b2 | c+ a. But then

b1 · b2 = b =
c− a
b1
· c+ a

b2

where the fractions on the RHS are integers. Observe now that no bigger than 1 divisor of b1 divides
c + a. This is, because if d | b1, then d | c − a as well, and, assuming d | c + a, we get that d is a
common divisor of c − a and c + a which forces d = 1. Similarly, no bigger than 1 divisor of b2
divides c− a. From the last equality above we get that

b1 |
c− a
b1

and b2 |
c+ a

b2
.

But then both (c− a)/b21 and (c+ a)/b22 are integers whose product is equal to 1. Therefore

c− a = b21 and c+ a = b22

as claimed.
Step3: Denote U = b2 and V = b1, and observe that U > V > 0 are two odd numbers sharing no
bigger than 1 divisors. Let now p = (U +V )/2, and q = (U −V )/2. simple computation shows that

(a, b, c) =

(
U2 − V 2

2
, UV,

U2 + V 2

2

)
= (2pq, p2 − q2, p2 + q2). 2

Turns out, the restriction on U and V above ensures that the triplet in the middle of the last
equalities is primitive!

Proposition 2.1.2 If U > V are relatively prime odd natural numbers, then

(a, b, c) =

(
U2 − V 2

2
, UV,

U2 + V 2

2

)
is a primitive Pythagorean triplet.
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2.2. A Geometric Method Chapter 2. Pythagorean Triplets

Proof Let d > 0 be a common factor of a, b and c. Then

a = da1 b = db1 c = dc1,

and therefore

UV = b = db1, U2 = a+ c = d(a1 + c1) and V 2 = a− c = d(a1 − c1)

are divisible by d. From d | UV we get d = d1d2 where d1 | U and d2 | V . Since U and V are
relatively prime we get that d1 is reltively prime with V as well as d2 is relatively prime with U .
Now, d = d1d2 | U2 and d1 | U imply that d2 | (U/d1)U . But d2, being relatively prime with U ,
is relatively prime with (U/d1)U . Therefore d2 = 1. So, d = d1 | V 2 which gives that d1 = 1.
Therefore d = 1 and the claim is proven. 2

We summarize the results from this subsection in a theorem.

Theorem 2.1.3 The primitive Pythagorean triplets are given by the formula

(a, b, c) = ((U2 − V 2)/2, UV, (U2 + V 2)/2)

or, due to the fact that (b, a, c) is also a Pythagorean triplet, by the formula

(a, b, c) = (UV, (U2 − V 2)/2, (U2 + V 2)/2)

where U > V > 0 are relatively prime odd integers. Any solution (a′, b′, c′) to the Pythagorean
equation with a′b′c′ ̸= 0 has the form

(a′, b′, c′) = (ϵ1da, ϵ2db, ϵ3dc)

where (a, b, c) is a primitive Pythagorean triplet, d is a positive integer, and ϵ1, ϵ2, ϵ3 take on values
±1 independently of each other. The rest of the solutions, those with a′b′c′ = 0 have the form
(t, 0,±t) or (0, t,±t) for t ∈ Z.

Exercise 2.1 Prove that, in the notations of the theorem, (U2 − V 2)/2 is an even number, and
that (U2 + V 2)/2 is odd. Conclude that the two formulae for the primitive Pythagorean triplets are
distinct.

The right triangle with integer sides are called Pythagorean triangles. The triangle with side-
lengths (3, 4, 5) is arguably the most famous Pythagorean triangle (known to ancient Egyptians
etc.). This triangle is special mathematically in at least two ways as the following exercise asks you
to show.

Exercise 2.2 (1) Consider the set PT of all Pythagorean triplets. For (a, b, c) ∈ PT we assume
a ≤ b ≤ c. Then,

(∀(a, b, c) ∈ PT )(a · b · c ≥ 60 ∧ a · b · c = 60⇔ (a, b, c) = (3, 4, 5)).

[Hint: Prove that for every (a, b, c) ∈ PT we have that 3 | a · b, and that 5 | a · b · c. Conclude
that 60 | a · b · c. Observe also that a · b · c = 60→ (a, b, c) = (3, 4, 5).]

(2) Prove that if (a, b, c) ∈ PT is such that a, b, c form an arithmetic progression, then (a, b, c) =
(3k, 4k, 5k) for some k ∈ N \ {0}. Conclude that (3, 4, 5) is the only PPT whose components form
such a progression.

2.2 A Geometric Method

Many deep problems in number theory are proved by using geometric methods. A really simple
case of use of geometry is explained below on the example of solving the Pythagorean equation in
rationals.
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2.2.1 Reducing to solving an Elliptic Equation

Going back to reducing to solving the Pythagorean equations in rationals, we assume that the
solutions (a, b, c) we are after are with non-zero components, abc ̸= 0, so we may divide by any of
these components. Dividing by a we got to solving the hyperbolic equation above. The same would
be the result if we divide by b. What will happen if we divide by c? The answer is straightforward:
(a/c, b/c) is a solution to the elliptic equation (the equation of a circle!)

X2 + Y 2 = 1.

Using the arguments from the previous section, we see that to find all solutions to the Pythagorean
equation, it is enough to find all solutions to the elliptic equation in rational numbers. Contrary
to the hyperbolic case, we can not factor out X2 + Y 2 in order to find the solutions. Here is where
geometric methods help.

2.2.2 Solving the Elliptic Equation Using Secant Lines

The real solutions to the elliptic equation are all well known: they form a circle, κ((0, 0), 1), of radius
1 centred at (0, 0). All such points have the form (cos t, sin t) for t ∈ [0, 2π). This equation has some
obvious rational solutions: (−1, 0), (1, 0), (0, 1), and (0,−1). So, let’s find the rest of the rational
solutions.

Y = m1(X + 1)

Y = m2(X + 1)

(0, 0)

(−1, 0)

(x1, y1)

(x2, y2)

X

Y

Suppose (x1, y1) is one such solution. The points (−1, 0) and (x1, y1) define a line which is a secant
line to the circle κ. The point-slope equation of this secant line is

Y = m1(X + 1) where m1 =
y1

x1 + 1
∈ Q.

Observe that if (x2, y2) is another rational point on κ, then the slopes of the secant lines determined
by them are distinct m1 ̸= m2. Conversely, we have

Proposition 2.2.1 Suppose m ∈ Q, and consider the line lm through (−1, 0) with slope m. Then

lm ∩ κ = {(−1, 0), Pm}

where Pm has rational coordinates.

Proof Indeed, Pm((1−m2)/(1 +m2), (2m)/(1 +m2)). Verify that as an exercise. 2

To get from this result the known formulae for the solutions to the Pythagorean equation is an
easy exercise.
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2.3. Vista: The Equation ax2 + by2 + cz2 = 0 Chapter 2. Pythagorean Triplets

Note that the geometric method is, in a sense, more powerful than the one we used in the hy-
perbolic equation case: we can apply the geometric method there to find the rational solutions too,
while the method from that case is not (directly) applicable in the elliptic case.

Exercise 2.3 (1) Noticing that the points (0,±1) are rational solutions to 1 +X2 = Y 2 apply the
geometric method to find the rational solutions to this equation.
(2) Find all solutions to x2 + y2 = 2z2 in integers.
(3) Do the same as in (2) for x2 + y2 = 3z2.
(4) Consider the equation x2 + y2 = nz2. Prove that there are solutions in positive integers when n
is a sum of two squares. When the latter is a case, find all integer solutions to this equation.
(5) Do the same as in (2) for x2 + 2y2 = z2.
(6) Do the same as in (2) for x2 + 3y2 = z2.
(7) Prove that for no positive natural number n is the expression n4 + 2n3 + 2n2 + 2n+ 1 a perfect
square.
(8) Prove that there are infinitely many PPTs whose even component is a perfect square. Find such
triplets.
(9)∗ Find all solutions to y2 = x3 and to y2 = x3 + x2

2.3 Vista: The Equation ax2 + by2 + cz2 = 0

Having solved the Pythagorean equation in the previous section, it is natural to ask whether the
more general equation in the title of this section has solutions, and, when the answer is yes, how to
find all solutions. It is no loss of generality if we ask only about existence of non-trivial solutions,
that is, solutions (x0, y0, z0) such that x0y0z0 ̸= 0. Similarly, since the case when abc = 0 is easy
to handle, we may assume that abc ̸= 0 as well. Obviously, non-trivial solutions exist only if the
coefficients a, b, and c are not all of the same sign (which reduces to solving the equation with a, b > 0
and c < 0). Other reductions, some of whose obvious, others familiar from our considerations in the
previous section) are the following

• a, b and c are square-free integers (why?);

• neither a, b and c nor x0, y0 and z0 share positive common factor different from 1;

• actually no two of a, b and c share common factor bigger than 1.

Observe that the last condition is equivalent to abc being square free.

2.3.1 Legendre’s Theorem

The name of Legendre will be used often in these Notes. Thus, we will learn about the Legendre
symbol, and will prove the Legendre-Gauss Law of Quadratic Reciprocity - one of the cen-
trepieces of these Notes, as well as of classical Number Theory.

In 1785, Legendre proved the precise conditions when the equation we are considering has a so-
lution in integers. As André Weil puts it, this theorem is ”one of Legendre’s main claims to fame”.

Before formulating the theorem, a bit of terminology. We say that the integer s is a quadratic
residue modulo the integer t if there is an integer u such that t |u2 − s.

Theorem 2.3.1 (Legendre, 1785) Let a, b and c be tree integers, not all of the same sign, and such
that abc is square-free. Then, the equation

ax2 + by2 + cz2 = 0

has a solution in integers, not all 0, if, and only if, −ab,−bc, and −ca are quadratic residues modulo
|c|, |a|, and |b| respectively.

17
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We will give a proof of this theorem in Chapter 6, after we learn about the Chinese Remainder
Theorem. Chapter 8 is devoted to the theory of quadratic residues (modulo n). The name of
Legendre will appear there again.

2.3.2 Finding All Solutions to ax2 + by2 + cz2 = 0

One can find all solutions to the equation under investigation using the geometric method. Indeed,
being interested in non-trivial solutions only, and having abc ̸= 0, one reduces solving the equation
ax2 + by2 + cz2 = 0 in integers to solving the equation

αX2 + βY 2 = 1

in rational numbers where α = −a/c,and β = −b/c are (non-zero) rational numbers, and X =
x/z, Y = y/z. The latter can be done, as we know, using lines with rational slopes through a
rational solution (X0, Y0) (the existence of which is checked using Legendre’s theorem).
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Chapter 3

The Division Algorithm in Z,
Applications

3.1 Division with Quotient and Remainder in Z
The fact that the integers Z are not a field (that is, there are non-zero integers none of which divides
the other one) makes Number Theory a very interesting and highly non-trivial subject. The most
fundamental property of the integers is that they can be divided with quotient and remainder.
In technical terms, this property makes them form an Euclidean ring (one can learn more about
these rings in Topics in Algebraic Structures). As we will see below, this fact is based on the Least
Element Property enjoyed by the natural numbers N.

Theorem 3.1.1 Suppose m ̸= 0, n ∈ Z. There exist unique q, r ∈ Z such that

n = m · q + r 0 ≤ r < |m|.

Proof We prove first the existence of q and r. To this end, consider the set of integers

S = {s | (∃l ∈ Z)(s = n+ l ·m)}.

It’s easy to see that S has both positive and negative elements. So, the set Σ = S∩N is a non-empty
subset of N, and has therefore a least element s0 = n+ l0 ·m.
The first observation is that s0 < |m|. Indeed, if not

s0 − |m| = n+ (l0 ± 1) ·m ∈ Σ

the plus or minus sign depends on whether m > 0 or m < 0. By the minimality of s0 we have that
s0 ≤ s0 − |m| which, combined with the obvious s0 − |m| < s0, leads us to the absurd that s0 < s0!
Denote q := −l0 and r = s0 to get n = q ·m+ r as needed.
Uniqueness of q and r. Assuming there is another pair q′ and r′ with the same properties, we get

n = q ·m+ r = q′ ·m+ r′

so that
(q − q′) ·m = r′ − r

and therefore
|q − q′| · |m| = |r − r′|.

But 0 ≤ r, r′ < |m| enforces |r − r′| < |m|, so that

|q − q′| · |m| = |r − r′| < |m|
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and hence
0 < |m| · (1− |q − q′|).

The last inequality holds true only if |q − q′| = 0. So, q = q′ and therefore r = r′ . The uniqueness
is proved. 2

Definition 3.1.1 The number q, respectively r, from the theorem above is called the quotient,
respectively - the remainder, of the division of n by m.

Note that m divides n if, and only if, the remainder of the division of n by m is r = 0.

Exercise 3.1 (1) Let a > 1 be an integer, and let m ̸= 0, n be natural numbers. Find the quotient
and the remainder of the division of an − 1 by am − 1.

[If n < m the result is obvious. Suppose that m ≤ n, and let n = mq + r where 0 ≤ r < m.
Show that in this case

an − 1 = (am − 1) · ar(am(q−1) + · · ·+ am + 1) + ar − 1. ]

(2) Do the same for an + 1 and am + 1.

3.2 The Greatest Common Divisor

The first application of Z being a Euclidean ring would be in proving that it is a principal ideal
ring (one can learn more about these rings in Topics in Algebraic Structures). This is what we are
doing in this section.

3.2.1 The Greatest Common Divisor of two integers

The main object of our discussion here is the greatest common divisor, gcd, of two integers. The
considerations are important for our future work in the course. But they also serve as a toy model
in our way of proving that Z is a principal ideal ring. We prove first the following

Theorem 3.2.1 Let m,n ∈ Z. Consider the set of integers {a · m + b · n | a, b ∈ Z}. If this set
contains a non-zero element, then there is a unique d ∈ N \ {0} such that

{a ·m+ b · n | a, b ∈ Z} = dZ := {s · d | s ∈ Z}.

In particular, d|m, d|n, and there are integers a0, b0 such that d = a0 ·m+ b0 · n.

Proof Existence of d. The set {a ·m + b · n | a, b ∈ Z} contains a non-zero element if, and only
if, at least one number m or n is non-zero. In such a case the set N \ {0} ∩ {a ·m+ b · n | a, b ∈ Z}
is a non-empty subset of N, and therefore has a least element d. Obviously, d = a0 ·m + b0 · n for
some integers a0 and b0. Let’s prove that d |m and d |n. By way of contradiction, suppose d does
not divide m. By the previous theorem, m = q · d+ r where 0 < r < d. Therefore,

r = m− q · d = (1− q · a0) ·m− (q · b0) · n.

This implies that
r ∈ {a ·m+ b · n | a, b ∈ Z} ∩ N

and so d ≤ r < d which is a contradiction! So, d |m. In a similar way we show that d |n as well. We
are ready to show that

{a ·m+ b · n | a, b ∈ Z} = dZ.
Indeed, m = d ·m′, n = d · n′ , and hence every element s = a ·m+ b · n of the set on the LHS has
the form s = (a ·m′ + b · n′) · d, and is an element of the set on the RHS, dZ. Conversely, every
element s · d of the RHS has the form (s · a0) ·m+ (s · b0) · n which makes it an element of the LHS.
Uniqueness of d. It is enough to show that if dZ = d′Z for some natural d, d′, then d = d′. But
this follows right away from the fact that, when the sets are equal, d′ | d and d | d′. 2
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Corollary 3.2.2 The number d in the previous theorem has the property that

(d |m) ∧ (d |n) ∧ (∀s ∈ Z \ {0})((s |m ∧ s |n)→ (s | d)).

In particular, if m or n is not zero, then d is the largest among the common divisors of m and n

Proof Indeed, we already know that d is a common divisor of m and n. If s is a divisor of the two
numbers as well, then using the relation d = a0 ·m + b0 · n we immediately get that s | d. Suppose
now that m or n is not zero. This means that d ̸= 0, and is therefore a positive integer. As we just
proved, for any common divisor s of m and n, we have s | d. So, d = s · d1. Taking absolute values
of both sides, we get |d| = |s| · |d1|. Now, d1 ̸= 0, and so, |d1| ≥ 1. Therefore,

d = |d| = |s| · |d1| ≥ |s| · 1 = |s|.

We get from this that s ≤ d as claimed. 2

We are giving now a name to the number d in the previous theorem.

Definition 3.2.1 Suppose m,n ∈ Z are not both zero. Then their greatest common divisor,
denoted by gcd(m,n) or just by (m,n), is the largest integer which divides both numbers. That is,

gcd(m,n) |m ∧ gcd(m,n) |n ∧ (∀s ∈ Z)((s |m ∧ s |n)→ (s ≤ gcd(m,n))).

By definition, gcd(0, 0) = 0.

The corollary above states in particular that the generator d of the Theorem is the gcd of m and n.

We had already the occasion to work with numbers not sharing bigger than 1 factors. Here is
the official definition.

Definition 3.2.2 The integers m,n are called relatively prime if gcd(m,n) = 1.

The following theorem describes the most important properties of the greatest common divisor.

Theorem 3.2.3 The following statements hold true.
(1) For every two integers m,n the greatest common divisor exists and is unique. Also, gcd(m,n) =
gcd(|m|, |n|).
(2) For any pair of integers m,n, and for a natural number d we have d = gcd(m,n) if, and only if,

d |m ∧ d |n ∧ (∀s ∈ Z)((s |m ∧ s |n)→ (s | d)).

(3) (Bézout’s Identity) For some integers a, b

gcd(m,n) = a ·m+ b · n.

(4) For the integers m,n we have

gcd(m,n) = 1 ⇔ (∃ a, b ∈ Z)(a ·m+ b · n = 1).

(5) If d = gcd(m,n) ̸= 0, then m/d and n/d are relatively prime integers:

gcd(m/d, n/d) = 1.

(6) We have gcd(d ·m, d · n) = |d| · gcd(m,n).
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Proof Item (1) is easy and is left as an exercise. For item (2) we have to show that the gcd(m,n)
has the property there, and vice-versa, if d has that property, then d = gcd(m,n). That gcd(m,n)
has that property is proved in the Corollary above. So, we have to show the “vice-versa” part of
the claim. To this end, observe that since d |m and d |n, it is a common divisor of the two integers,
and therefore, by the Corollary above, d | gcd(m,n). We have also that gcd(m,n) | d, because d
satisfies the property in item (2), and because gcd(m,n) is a common divisor of m and n. Since
both d and gcd(m,n) are natural numbers, the relations d | gcd(m,n) and gcd(m,n) | d imply that
d = gcd(m,n). Item (3) is obvious. For item (4), if gcd(m,n) = 1, then, by the Bézout’s identity,
there are integers a, b such that a ·m + b · n = 1. Conversely, if the latter relation is true, and s is
a divisor of m and n, then s is a divisor of 1 as well, and so s = ±1. Therefore gcd(m,n) = 1. For
item (5), notice that a ·m+ b · n = d implies a · (m/d) + b · (n/d) = 1 , and then apply item (4) to
finish the argument. Item (6) is straightforward, and is left as an exercise. 2

Remark 3.2.1 Item (2) of the theorem is significant: it characterizes the gcd of two integers only
in terms of the divisibility operation. 2

Exercise 3.2 (1) Let a, b, c, d be integers such that a = b · c+ d. Prove that gcd(a, b) = gcd(b, d).
(2) Let a, b, c ∈ Z
(i) Prove that if a | bc and gcd(a, b) = 1, then a | c.
(ii) Prove that if a | c, b | c and gcd(a, b) = 1, then ab | c.

[We have c = a · c1 = b · c2, and u · a+ v · b = 1. Multiplying the latter equality by c1 we get
u · a · c1 + v · b · c1 = c1 which can also be written as b · (u · c2 + v · c1) = c1. This implies that
b | c1, that is, c1 = b · c3. We ultimately have c = a · c1 = a · b · c3.]

(3) Let a,m, n ∈ N. Show that if (m,n) = 1, then (a,m ·n) = (a,m) · (a, n). Show, by example, that
this claim is not true when (m,n) ̸= 1.
(4) For all n ∈ N, prove that (n2 + 3n+ 2, 6n3 + 15n2 + 3n− 7) = 1.
(5) Let a and b be relatively prime integers. Show that

(a) (a− b, a+ b) = 1 or 2; (b) (2a+ b, a+ 2b) = 1 or 3;
(c) (a2 + b2, a+ b) = 1 or 2; (d) (a+ b, a2 − 3ab+ b2) = 1 or 5.

(6) For the integers a, b, c show that
(a) (a, bc) = (a, (a, b)c); (b) (a, bc) = (a, (a, b)(a, c)).

3.2.2 Ideals of Z, and Greatest Common Divisor of a Group of Integers

Ideals of Z

Definition 3.2.3 A non-empty subset I of Z is called an ideal of Z if the following holds true

(1) (∀m,n)(m,n ∈ I → m− n ∈ I) and
(2) (∀m,n)(m ∈ I ∧ n ∈ Z→ mn ∈ I).

Example 3.2.1 (1) Every ideal I contains the zero element: 0 ∈ I. Indeed, I ̸= ∅ so there is a
m ∈ I. But then, formally, m,m ∈ I, and therefore 0 = m−m ∈ I.

(2) For every element m of an ideal I, the opposite, −m, is also in I. This is because 0,m ∈ I
implies that 0−m ∈ I.

(3) I = Z and I = {0} are ideals of Z. An ideal I of Z which is not equal to Z is called a proper
ideal of Z. The ideal 0 is called the trivial ideal of Z.

(4) Let a be an integer. The set I = {s · a | s ∈ Z} is an ideal of Z. It is denoted by I = (a), and
a is called a generator of I. Notice that {0} = (0) and that Z = (1). Notice also that (a) = (−a),
so that we can assume, with no loss of generality, that generator of I is non-negative.

(5) Let a1, . . . , as ∈ Z. Consider the set Σ = {u1a1 + · · ·usas |u1, . . . us ∈ Z}. Obviously, 0 ∈ Σ,
and so Σ ̸= ∅. For any two elements x = u1a1 + · · ·+ usas and y = v1a1 + · · ·+ vsas we have that

x− y = (u1 − v1)a1 + · · · (us − vs)as
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is an element of Σ. Finally, if w ∈ Z, then

wx = (wu1)a1 + · · ·+ (wus)as

is an element of Σ. Therefore Σ is an ideal of Z. The elements a1, . . . as are called generators of Σ,
and we denote the fact that they are generators by writing Σ = (a1, . . . , as). It is straightforward
that

(a1, . . . , as) = (|a1|, . . . , |as|)

so that W.L.O.G. we may assume the generators are non-negative. 2

Definition 3.2.4 And ideal I of Z is called finitely generated if I = (a1, . . . , as) for some integers
a1, . . . , as. An ideal I of Z is called principal ideal if I has only one generator: I = (a).

In the previous subsection, where we discussed the gcd of two integers, we proved actually that any
ideal of Z generated by two elements is a principal ideal. Using the same argument, we are
proving next that all ideals of Z are principal. We say, because of that, that Z is a principal ideal
ring.

Theorem 3.2.4 The ring of integers Z is a principal ideal ring. In other words, every ideal I of Z
has one generator.

Proof Since the ideal (0) is principal, with a generator 0, we may assume that I is a non-zero ideal
of Z. Then, I has positive and negative elements as well. Consider the set A = (N∩I)\{0}. The set
A is a non-empty subset of N, and therefore has a least element a. Since a ∈ A ⊂ I, all the multiples
of a belong to I. In other words, (a) ⊆ I. To finish the proof, we will show next that actually
I ⊆ (a). Indeed, let x ∈ I. Since a ̸= 0, we can divide x by a with a quotient and a remainder:

x = a · q + r where 0 ≤ r < a.

We have that r = x− a · q ∈ I, and since r is smaller than the least element a of A, it can not be in
A. This means that r = 0. But then x = a · q ∈ (a). This proves that I ⊆ (a). 2

Greatest Common Divisor of a Group of integers

Definition 3.2.5 Suppose a1, a2, . . . , an ∈ Z are not all zero. Then their greatest common di-
visor, denoted by gcd(a1, . . . , an) or just by (a1, . . . , an), is the largest integer which divides all the
numbers. That is,

(∀i)(gcd(a1, . . . , an) | ai) ∧ (∀s ∈ Z)((∀i)(s | ai)→ (s ≤ gcd(a1, . . . , an))).

By definition, gcd(0, . . . , 0) = 0.

Obviously every common divisor of a1, . . . , an is less than or equal to |ai| for every non-zero ai.
From this it follows that there is a greatest such divisor, that is, gcd(a1, . . . , an) does exist. Also, it
is straightforward that

gcd(a1, . . . , an) = gcd(|a1|, . . . , |an|).

One value of the greatest common divisor is distinguished for many reasons in Number Theory:
when gcd(a1, . . . , an) = 1

Definition 3.2.6 The numbers a1, . . . , an ∈ Z are called relatively prime if gcd(a1, . . . , an) = 1.
The numbers a1, . . . , an are called pairwise relatively prime if every two of them are relatively
prime: gcd(ai, aj) = 1 for every 1 ≤ i ̸= j ≤ n.
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Example 3.2.2 The three numbers n, n+1 and n+2 are relatively prime: gcd(n, n+1, n+2) = 1.
Indeed, if d > 0 is a common divisor of the three, then d |n, and d |n+1, and so, d | (n+1)−n = 1.
This implies that d = 1. If n is odd, the numbers n, n + 1 and n + 2 are also pairwise relatively
prime. To see this notice that gcd(n, n + 1) = gcd(n + 1, n + 2) = 1, since these are gcd’s of
consecutive integers, and that gcd(n, n+ 2) = 1, because n and n+ 2 are consecutive odd integers
(any their common divisor d > 0 should be odd and should divide n+ 2− n = 2). But if n is even,
gcd(n, n+ 2) = 2 , and therefore the three numbers are not pairwise relatively prime. 2

Exercise 3.3 (1) Prove that if the integers a1, . . . , an are pairwise relatively prime, then they are
relatively prime. Moreover, prove that if two of the integers are relatively prime, say gcd(ai, aj) =
1, then all integers are relatively prime: gcd(a1, . . . , an) = 1.
(2) Show by examples that there are groups of relatively prime integers which are not pairwise
relatively prime. Moreover, it is possible to have gcd(a1, . . . , an) = 1 with gcd(ai, aj) ̸= 1 for all
1 ≤ i ̸= j ≤ n.

The properties of the gcd of a group of integers follow from the properties of the gcd of two integers.
We are proving the most important ones below.

Theorem 3.2.5 Let n ≥ 3 and a1, a2, . . . , an be integers. The following propositions hold true.
(i) Let d be the non-negative generator of the ideal (a1, . . . , an). Then d = gcd(a1, . . . , an).
(ii) ( Bézout Identity) There are integers u1, . . . , un such that

gcd(a1, . . . , an) = u1 · a1 + · · ·+ un · an.

(iii) The integers a1, . . . , an are relatively prime if, and only if, there are integers u1, . . . , un such
that

u1 · a1 + · · ·+ un · an = 1.

(iv) Let d = gcd(a1, . . . , an) ̸= 0. Then the integers a1/d, . . . , an/d are relatively prime.
(v) gcd(a1, a2, . . . , an) = gcd(gcd(a1, . . . , an−1), an).
(vi) gcd(d · a1, . . . , d · an) = |d| · gcd(a1, . . . , an).

Proof (i) Since (d) = (a1, . . . , an), we have that d is a common divisor of the elements a1, . . . , an.
That d is the greatest common divisor of these numbers follows from the fact that any common divisor
of a1, . . . , an, since d is a linear combination of these numbers, divides d as well. This completes
the proof of (i). Items (ii), (iii), and (iv) follow directly from (i) and are left as exercises. For item
(v) we denote by dk = gcd(a1, . . . , ak) for k = n − 1, n. We have to show that dn = gcd(dn−1, an).
Since dn is a common divisor of a1, . . . , an, it is a common divisor of a1, . . . , an−1, and of an. This
implies that dn | dn−1, and dn | an which in turn implies that dn | gcd(dn−1, an). On the other hand
gcd(dn−1, an) divides dn−1 and an, so it divides all a1, . . . , an−1, an, and therefore, gcd(dn−1, an) | dn.
This immediately implies that dn = gcd(dn−1, an). Item (vi) is straightforward and is left as an
exercise. The theorem is proved. 2

Exercise 3.4 (1) Prove that a1, . . . , an are relatively prime if, and only if, (a1, . . . , an) = (1)
(2) Prove items (ii), (iii), and (iv) from the theorem above.

Exercise 3.5 (1) Let a1, a2, a3 be pairwise relatively prime integers. Prove that

gcd(a1, a2a3) = gcd(a2, a1a3) = gcd(a3, a1a2) = 1.

(2) Prove that if a1, . . . , an are pairwise relatively prime integers, then for every i = 1, . . . , n we have

gcd

(
ai,

a1 · a2 · · · · · an
ai

)
= 1.
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3.2.3 Euclid’s Algorithm

We know now that computing the gcd of a group of integers, dn = gcd(a1, . . . , an), reduces to
successively computing gcds of pairs of integers:

d2 = gcd(a1, a2), d3 = gcd(d2, a3), · · · , dn = gcd(dn−1, an).

The preceding results are good theoretical results. For practical purposes though, we need an al-
gorithm for finding the greatest common divisor of two integers as well as the coefficients in the
corresponding Bézout’s identity. A very effective algorithm is provided by the way Euclid proved
the existence of the greatest common divisors. Not surprisingly, Euclid’s algorithm is based on the
division algorithm.

Let m,n be integers such that n ̸= 0. If n |m, then gcd(m,n) = |n|. Consider the more inter-
esting case when n ∤ m. Let’s divide m by n with quotient and remainder:

m = n · q0 + r0 0 ≤ r0 < |n|.

Notice that if r0 ̸= 0, that is if r0 > 0, we can divide n by r0 as well to get

n = r0 · q1 + r1 0 ≤ r1 < r0.

This process can be repeated divising r0 by r1 if r1 > 0, and so on, dividing ri by ri+1 provided the
latter one is non-zero. Now, observe that along the way we get the inequalities

|n| > r0 > r1 > · · · > ri > ri+1 > · · · ≥ 0,

and, since there are only finitely many integers between |n| and 0, that for some index s we will have
rs > 0, but rs+1 = 0, and the process will stop. Ultimately, we get the following chain of divisions
with quotient and remainder

m = n · q0 + r0

n = r0 · q1 + r1

r0 = r1 · q2 + r2

· · ·

rs−2 = rs−1 · qs + rs

rs−1 = rs · qs+1 + 0

where rs is the last non-zero remainder in the process of divisions. This chain, as was well known to
Euclid some 24 centuries ago, gives an effective way to find gcd(m,n). This chain helps even more!
We know that gcd(m,n) = u ·m + v · n for some u, v ∈ Z. Such u and v are not uniquely defined.
When n |m, we obviously have

gcd(m,n) = |m| = ±m+ 0 · n

so that u = 1 when m > 0, u = −1 when m < 0, and v = 0. Finding some u and v which work
when n ∤ m is not easy in general. The chain above helps in this, too. Finding gcd(m,n) and u and
v using the chain is called Euclid’s algorithm. Here is the result

Theorem 3.2.6 In the notations above, for n ∤ m, we have rs = gcd(m,n). In addition, the
coefficients of the Bézout’s identity can be found by ”reading” the system of relations above backward,
and solving for rs in terms of m and n, eliminating step-by-step the rest of the remainders from the
system.
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Proof Recall (an exercise) that for any integers a, b, c, d such that

a = b · c+ d

we have
gcd(a, b) = gcd(b, d).

Applying this relation to every line of the chail of equalities above we get

gcd(m,n) = gcd(n, r0) = gcd(r0, r1) = · · · = gcd(rs−1, rs) = gcd(rs, 0) = |rs| = rs.

Therefore, gcd(m,n) = rs.
We are proving next that the chain of equalities above gives an effective way to find explicit u and
v for which gcd(m,n) = u ·m+ v · n. This we do by induction on s ≥ 0.
Base case, s = 0. We have in this case that

m = n · q0 + r0 n = r0 · q1 + 0.

Solving for r0 from the first relation we get

r0 = m− n · q0.

Therefore u = 1 and v = −q0 in this case.
Inductive step (s→ s+ 1). Assume we can get u and v solving the chain of relations backwards
when rs > 0 and rs+1 = 0. Consider the case when rs+1 > 0 and rs+2 = 0. The system of relations
in this case is the following one (having s+ 3 lines)

m = n · q0 + r0

n = r0 · q1 + r1

r0 = r1 · q2 + r2

· · ·
rs−2 = rs−1 · qs + rs

rs−1 = rs · qs+1 + rs+1

rs = rs+1 · qs+2 + 0

Observe that the last s+2 lines in the tower pertain to finding the gcd of n and r0. Using induction,
we can find explicitly u′ and v′ such that

gcd(n, r0) = u′ · n+ v′ · r0.

Since gcd(m,n) = gcd(n, r0) and r0 = m− n · q0, we get

gcd(m,n) = u′ · n+ v′ · (m− n · q0) = v′ ·m+ (u′ − v′ · q0) · n

so that we can denote
u = v′ v = u′ − v′ · q0.

Notice that u and v are obtained reading the relations backwards, eliminating the remainders from
the relations in the tower of s+ 3 lines. The statement is proved. 2

Exercise 3.6 (1) Find the greatest common divisor of 123456789 and 987654321.
(2) Find the greatest common divisor of all nine-digit integers that can be written by using the non-
zero digits only once each.
(3) Let a > 1,m, n ∈ N. Prove that gcd(am − 1, an − 1) = agcd(m,n) − 1.
(4) Let a > 1,m > n be integers. Prove that

(i) a2
n

+ 1 | a2m − 1;
(ii) if a ∈ 2Z, then gcd(a2

n

+ 1, a2
m

+ 1) = 1, and if a /∈ 2Z, then gcd(a2
n

+ 1, a2
m

+ 1) = 2
(5) Let a > 1,m, n ∈ N. Find gcd(am + 1, an + 1).
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3.3 The Least Common Multiple

The least common multiple is a dual to the greatest common divisor notion. We discuss first the
least common multiple of two, and then - of any number of integers.

3.3.1 The Least Common Multiple of Two Integers

Definition 3.3.1 Let m,n be integers. Define the least common multiple, denoted by lcm(m,n)
or just by [m,n], to be
(1) the least positive integer which is divisible by both m and n in case m · n ̸= 0, and
(2) 0 in case m · n = 0. Observe that, in this case, m and n share only one common multiple: 0.

We are giving next a nice interpretation of the lcm(m,n) using the ideals (m) and (n). Before that,
we are proving an easy and important property of ideals of Z.

Proposition 3.3.1 Let I1, . . . , In be ideals of Z. Then their intersection I1 ∩ · · · ∩ In is also an
ideal of Z.

Proof We have to show that I := I1 ∩ · · · ∩ In ̸= ∅, and that

(∀x, y ∈ I)(x− y ∈ I) and (∀x ∈ I)(∀a ∈ Z)(a · x ∈ I).

But we have that 0 ∈ I, because 0 ∈ Ii for every i = 1, . . . , n. Therefore, I ̸= ∅. The rest of the
conditions are verified immediately, because x, y ∈ I is equivalent to x, y ∈ Ii for i = 1, . . . , n, and
because x− y, a · x ∈ Ii for all i = 1, . . . , n. 2

Theorem 3.3.2 Denote by l the non-negative generator of the ideal (m)∩(n). Then, lcm(m,n) = l

Proof Since, for every a ∈ Z, the ideal (a) consists of all integers divisible by a, then the ideal
(m) ∩ (n) consists of all integers divisible by both m and n. In other words, (m) ∩ (n) consists of
all common multiples of m and n. By the very definition then it follows that lcm(m,n) is equal to
l - the least among the non-negative elements of (m) ∩ (n). But this is exactly the non-negative
generator of (m) ∩ (n). 2

The main properties of the least common multiple of two integers easily follow from this theorem,
and are listed in the following proposition.

Proposition 3.3.3 Let m,n ∈ Z. The following propositions hold true.
(i) lcm(m,n) exists, and lcm(m,n) = lcm(|m|, |n|);
(ii) if gcd(m,n) = 1, then lcm(m,n) = |m| · |n|;
(iii) we have lcm(d ·m, d · n) = |d| · lcm(m,n);
(iv) the following relation holds true |m| · |n| = gcd(m,n) · lcm(m,n);
(v) if s ∈ Z is such that m | s and n | s, then lcm(m,n) | s.

Proof The claim in (i) follows from the fact that

(lcm(m,n)) = (m) ∩ (n) = (|m|) ∩ (|n|) = (lcm(|m|, |n|)).

We are proving the claim in item (ii) now. Let s be a common multiple of m and n. If s = 0, then
lcm(m,n) = 0 and m · n = 0, and therefore the formula we are proving is true. Assume now that
s ̸= 0. We have s = m · s′, and n |m · s′. Since gcd(m,n) = 1 it follows (using an exercise from
previous subsection) that n | s′, that is, s′ = n · s′′. Therefore, any common multiple of m and n
has the form s = m · n · s′′. Obviously, the non-negative ones have the form s = |m| · |n| · s′′ where
s′′ ≥ 0. Now, since s = lcm(m,n) ̸= 0, then lcm(m,n) > 0. Any positive common multiple of
m and n has the form s = |m| · |n| · s′′ where s′′ > 0.The smallest such multiple is obtained when
s′′ = 1. Therefore, in case gcd(m,n) = 1, we have lcm(m,n) = |m| · |n|.
For the claim in (iii) observe that it is true of d = 0. Let’s assume that d ̸= 0. We have in this case
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that s is a common multiple of d ·m and d · n if, and only if, s/d is a common multiple of m and n.
Therefore, the least common multiple of d ·m and d · n is the same as |d| times the least common
multiple of m and n.
To prove (iv), we use (ii) and (iii). We consider two cases: gcd(m,n) = 0 and gcd(m,n) ̸= 0. In the
former case, possible only when m = n = 0, the identity that we have to prove is true: 0 = 0. In the
latter case, denote by d = gcd(m,n). We have m = d ·m′ and n = d · n′ where now gcd(m′, n′) = 1.
By (iii) and (ii) we have

lcm(m,n) = lcm(d ·m′, d · n′) = d · lcm(m′, n′) = d ·m′ · n′ = (d ·m′) · (d · n′)
d

=
m · n

gcd(m,n)
.

For item (v) we notice that s ∈ (m) ∩ (n) = (lcm(m,n)). 2

Exercise 3.7 Let l ∈ N, and m,n ∈ Z. Prove that

l = lcm(m,n) ⇔ (∀s ∈ Z)(m | s ∧ n | s → l | s).

Remark 3.3.1 After this exercise we can see the dual natures of the concept of gcd and lcm.
Compare the statements we proved for d and l natural numbers, and m,n ∈ Z

d = gcd(m,n) ⇔ (d |m ∧ d |n) ∧ (∀s ∈ Z)(s |m ∧ s |n → s | d)

and

l = lcm(m,n) ⇔ (m | l ∧ n | l) ∧ (∀s ∈ Z)(m | s ∧ n | s → l | s).

Notice that both claims are expressed purely in terms of divisibility of integers. Both are also
formulated using a universal quantification on the set of integers Z. That’s why the right-hand sides
of the two claims are called universal properties of, respectively, the gcd and the lcm. 2

3.3.2 The Least Common Multiple of a Group of Integers

The notion of least common multiple is readily extended to the case of three or more non-zero
integers.

Definition 3.3.2 Let a1, . . . , an be integers. Define their least common multiple, denoted by
lcm(a1, . . . , an) or just by [a1, . . . , an], to be
(1) the least positive integer which is divisible by both all ai, i = 1, . . . , n in case a1 · a2 · · · an ̸= 0,
and
(2) 0 in case a1 · a2 · · · an = 0.

As in the case of least common multiple of two integers we are proving the fundamental fact that

Theorem 3.3.4 Let l be the non-negative generator of the ideal (a1) ∩ · · · ∩ (an). Then,

lcm(a1, . . . , an) = l.

Proof The proof is identical to the one for n = 2, and is left as an exercise. 2

The theorem immediately gives us that the lcm of a group of integers exists, and moreover that

lcm(a1, . . . , an) = lcm(|a1|, . . . , |an|).

Here are some of the basic properties of the least common divisor of a group of numbers.
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Exercise-Proposition 3.3.3 For the integers a1, a2, . . . , an, n ≥ 3 the following propositions hold
true.

(i) If s is a common multiple of the integers, then lcm(a1, . . . , an) | s.
(ii) lcm(d · a1, . . . , d · an) = |d| · lcm(a1, . . . , an).
(iii) lcm(a1, . . . , an−1, an) = lcm(lcm(a1, . . . , an−1), an).
(iv) If the numbers are pairwise relatively prime, then

lcm(a1, a2, . . . , an) = a1a2 · · · an,

Proof All items follow easily from the fundamental theorem above. For item (i) we notice that s
as a common multiple of a1, . . . , an needs to be in

(a1) ∩ · · · ∩ (an) = (lcm((a1, . . . , an)).

Item (ii) is obvious if d = 0. If not, then again obviously s is a common multiple of d · a1, . . . , d · an
if, and only if, s/d is a common multiple of a1, . . . , an. Therefore, the lcm of d · a1, . . . , d · an is |d|
times the lcm of a1, . . . , an.
Item (iii) follows directly from the set-theoretical fact that

(a1) ∩ · · · ∩ (an−1) ∩ (an) = ((a1) ∩ · · · ∩ (an−1)) ∩ (an).

Due to the fundamental theorem above, we have

(lcm(a1, . . . , an−1, an)) = (lcm(a1, . . . , an−1)) ∩ (an) = (lcm(lcm(a1, . . . , an−1), an)).

Since any ideal of Z has a unique non-negative generator, we get the identity in claim (iii).
We are proving (iv) by induction on n ≥ 3 (and using (iii)). Base case: n = 3. We have by (ii) that
lcm(a1, a2, a3) = lcm(lcm(a1, a2), a3). From item (ii) of the theorem in the previous sub-section we
have that lcm(a1, a2) = a1 · a2. Since a1, a2, a3 are pairwise relatively prime, and from a previous
exercise, we know that gcd(a1 · a2, a3) = 1, and applying item (ii) of the mentioned theorem, we get
the desired

lcm(a1, a2, a3) = lcm(a1 · a2, a3) = a1 · a2 · a3.
Inductive step: n→ n+1. Since a1, . . . , an are pairwise relatively prime, by a previous exercise we
know that gcd(a1 · · · an−1, an) = 1. We have, using the inductive hypothesis for the second equality,
and the property of lcm of two relatively prime integers for the third,

lcm(a1, . . . , an−1, an) = lcm(lcm(a1, . . . , an−1), an) = lcm(a1 · · · an−1, an) = a1a2 · · · an.

The claim in item (iv) is proved. 2

Exercise 3.8 (1) Let a, b, c be integers. Is it true that (a, b) = (a, c) implies [a, b] = [a, c]? Give
reasoning for your answer.
(2) For a natural number n evaluate (n, n+ 1, n+ 2) and [n, n+ 1, n+ 2].
(3) For the natural numbers a, b, c prove that if (a, b) = (b, c) = (c, a) = 1, then (a, b, c)[a, b, c] = abc.
(4) Is the statement of (3) true without the restriction on a, b, and c? Explain.
(5) Prove for every a, b, c ∈ Z that

([a, b], c) · [a, b, c] = [a, b] · |c|.

(6) As in (5) prove that
(ab, (a, b)c) = (ac, (a, c)b) = (bc, (b, c)a).

If abc ̸= 0 prove that the three expressions above are equal to abc/[a, b, c].
(7) Let a > 1,m, n be natural numbers. We know that gcd(an − 1, am − 1) = agcd(n,m) − 1. When is
it true that

lcm(an − 1, am − 1) = alcm(n,m) − 1 ?

(8) Let s = a1a2 · · · an ̸= 0. Prove that
(i) |a1a2 · · · an| = lcm(a1, a2, . . . , an) · gcd(s/a1, s/a2, . . . , s/an).
(ii) Suppose m ∈ N is a common multiple of a1, a2, . . . , an. Then

m = lcm(a1, a2, . . . , an) ⇔ gcd(m/a1,m/a2, . . . ,m/an) = 1.
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Chapter 4

The Fundamental Theorem of Z

In this chapter, we are learning about one other important property of the prime numbers: every
integer different from 0 and ±1 is, up to a sign, an essentially unique product of finitely many prime
numbers! This shows that the prime numbers are the building blocks for constructing all the integers
(with the exception of 0,±1 of course).

Let’s first note that it is enough to prove this result for natural numbers: the negative integers
are the opposites of the natural numbers.
The proof of that theorem has two parts: existence of such a presentation, and uniqueness of that
presentation. The former is based, again!, on the least element property of the natural numbers,
while the latter is based on the divisibility properties of the prime numbers.

4.1 Existence

Theorem 4.1.1 Let n ∈ N be different from 0 and 1. Then, there are finitely many prime numbers,
p1, p2, . . . , pk , not necessarily distinct, such that n = p1p2 · · · pk.

Proof Consider the set

Σ = {m ∈ N | (m > 1) ∧ (m is not a product of finitelymany primes)}.

We want to show that Σ = ∅. Arguing by contradiction, assume Σ ̸= ∅. Since Σ ⊆ N, there is an
s ∈ Σ which is the least element there. Now, s is a natural number bigger than 1, so it is either a
prime number or a composite number. But if s is prime, then it is a product of finitely many (of
one) primes: s = s. Since s ∈ Σ, it is not a product of finitely many primes, and therefore s must
be composite: s = s1 · s2 where both s1 and s2 are bigger than 1. SO, both, s1 and s2 are less than
s (!!). The latter fact implies in turn that BOTH s1 and s2 are NOT in Σ. And since they are both
bigger than 1, they both ARE products of finitely many primes:

s1 = p1 · · · pl s2 = q1 · · · qm.

But then,s = s1 ·s2 = p1 · · · pl ·q1 · · · qm is a product of finitely many primes as well - a contradiction!
Therefore Σ = ∅, and we are done. 2

4.2 Uniqueness

To prove this part of the theorem we need some preparation related to divisibility of integers.

Proposition 4.2.1 Let a, b, c ∈ Z. Suppose a | b · c. If gcd(a, b) = 1, then a | c
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Proof Since gcd(a, b) = 1, by the Bézout’s identity, there are integers u, v such that u · a+ v · b = 1.
Therefore (u · a+ v · b) · c = c, so

(u · c) · a+ v · (b · c) = c.

By a | b · c we get that the LHS of the last equality is divisible by a. So, the RHS of that equality,
c, is divisible by a as well. 2

The next Corollary is known as Euclid’s Lemma and reveals a very important property of the
prime numbers. Before we formulate it - an exercise:

Exercise 4.1 Let p be a prime number and let a be an integer. Then gcd(p, a) = 1 if p ∤ a, and
gcd(p, a) = p otherwise.

Corollary 4.2.2 Let p be a prime number. Prove that

(p | (b · c) ∧ p ∤ b) → (p | c).

Proof Notice that p ∤ b is equivalent with gcd(p, b) = 1, and apply the Proposition above. 2

Exercise 4.2 Prove that 2 ≤ a ∈ N is a prime number if, and only if,

(∀b, c ∈ Z)(a | b · c→ (a | b ∨ a | c)).

We will need a generalization of the last Corollary’s claim.

Proposition 4.2.3 Let p be a prime number and a1, a2, . . . , al ∈ Z. If p | a1a2 · · · al, then there is
an i ∈ {1, 2, . . . , l} such that p | ai.

Proof By way of RAA, assume that this claim is not true. So, there is a prime p, and integers
a1, . . . , al for which p divides the product a1 · · · al, but no ai is divisible by p. W.L.O.G. we may
assume that l is the least positive natural number for which the claim is not true (for this fixed p).
Obviously, l ≥ 2 (why?), and, we have

p | (a1 · · · al−1)al ∧ ¬(p | al).

By the Corollary above we get
p | a1 · · · al−1.

The last relation together with p ∤ a1, . . . , p ∤ al−1 gives that l is NOT the least positive integer
for which the claim is not true (for our fixed p). This is the needed contradiction. Therefore, the
assumption that the claim is not true is wrong, and the Lemma is proved. 2

Theorem 4.2.4 For every integer n > 1, there are unique prime numbers

p1 ≤ p2 ≤ · · · ≤ pk

such that n = p1p2 · · · pk.

Proof We need to show that if p1 ≤ p2 ≤ · · · ≤ pk and q1 ≤ q2 ≤ · · · ≤ qs are two groups of prime
numbers such that p1p2 · · · pk = q1q2 · · · qs, then k = s and pi = qi for every i = 1, . . . , k . Arguing
again by contradiction, assume there are such groups of primes for which the conclusion is not true.
Obviously, there are two such groups for which the total of the primes involved, k+s, is the smallest
possible. Notice that k, s ≥ 1 (Why?). We have

p1p2 · · · pk = q1q2 · · · qs

Since p1 divides q1q2 · · · qs , by the lemma above, there is an i ∈ {1, 2, . . . , s} such that p1 | qi . But
qi , being prime, has only one divisor bigger than 1: qi itself. So, p1 = qi. Cancelling out p1 on the
left by qi on the right we get two new groups of primes for which the conclusion of the theorem is
not true, and with smaller total number of primes involved - a contradiction! So, our assumption
from the beginning of the proof of the theorem is wrong, and the theorem is proved. 2
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4.3 Canonical Decomposition, Applications

The Fundamental Theorem of Arithmetic of Z means that the integers have the form

0, ±1, ±pα1
1 pα2

2 · · · p
αk

k

for unique p1 < p2 < · · · < pk and αi ≥ 1. The presentation of the integers different from 0,±1 is
called the canonical decomposition of the integers as a product of primes. This theorem
reveals the importance of the prime numbers in Z: every non-zero integer has, up to a sign, a unique
representation (a.k.a. factorization) as a product of powers of distinct primes. This is why Z is
called a unique factorization ring.

Remark 4.3.1 There are many unique factorization rings. One such is the ring of polynomials of
one indeterminate with rational (or real, or complex) coefficients. More about all this can be learned
in the course Topics in Algebraic Structures. 2

Note that if we have two, or any finitely many, non-zero integers we may, without a loss of gener-
ality, assume that the prime numbers involved in their presentations are the same. This is done by
allowing some, or all, of the exponents αi to be 0. In particular, ±1 also have such presentations:
all exponents are 0. The only integer without such a presentation is 0. Of course, allowing zero
exponents, we violate the uniqueness of the presentation. This violation will not be too harmful to
our considerations though.

It is very easy, and illuminating, to write the greatest common divisor and the least common multiple
of two numbers using their canonical presentations. You should verify as an exercise that if

a = ±pα1
1 pα2

2 · · · p
αk

k and b = ±pβ1

1 p
β2

2 · · · p
βk

k ,

then

gcd(a, b) =

k∏
i=1

p
min{αi,βi}
i and lcm(a, b) =

k∏
i=1

p
max{αi,βi}
i .

As pretty as these expressions look, they have mostly theoretical importance. The reason for that
is that it is very hard to find the canonical decomposition of a random integer. We will see later
in the course that this fact is effectively used to encrypt information ( the so called ”public key
cryptosystem”).

Exercise 4.3 (1) Let a1, . . . , an be non-zero integers. Using the canonical decompositions of these
numbers as products of powers of primes, find a formula for gcd(a1, . . . , an) and for lcm(a1, . . . , an).
(2) Let p be a prime number, and a, b, c ∈ Z. Decide if the following statements are true or false. Give
reasons for your answers: if a statement is true, give a proof or otherwise - give a counterexample.

(i) (p | (a2 + b2) ∧ p | (b2 + c2)) → (p | (a2 − c2))
(ii) (p | (a2 + b2) ∧ p | (b2 + c2)) → (p | (a2 + c2))
(iii) (p | a3) → (p | a) (iv) (p | a ∧ p | (a2 + b2)) → (p | b)
(v) (a3 | b3) → (a | b) (vi) (a3 | b2) → (a | b) (vii) (a2 | b3) → (a | b).

(3) This is a nice exercise to test our intuition about prime numbers and unique factorization.
Consider the set of even integers

2Z = {2n |n ∈ Z}

The total order in Z determines one in 2Z, so we can define positive (the bigger than 0), and negative
(the smaller than 0 elements in 2Z. The addition and multiplication in Z determine addition and
multiplication in 2Z as well: the sum of two even numbers is even, and the product of two even
numbers is even. The operations in 2Z are quite similar to the ones in Z: they are commutative,
associative, the addition distributes over the multiplication, there is an additive neutral element, 0,
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every element has an opposite, and the additive cancellation property is satisfied. There are differ-
ences between Z and 2Z too: there is no multiplicative neutral element: 1 /∈ 2Z. Nevertheless,
the multiplicative cancellation property is satisfied:

2a · 2b = 2a · 2c ∧ 2a ̸= 0 → 2b = 2c.

Furthermore, in analogy with Z, we can discuss questions of divisibility and factorization in 2Z:

for x, y ∈ 2Z we say that x | y if (∃z ∈ 2Z)(y = x · z).

(Note, for example, that in 2Z, 2 does not divide 6 = 2 · 3, but 2 does divide 4 = 2 · 2). We can also
introduce the notion of primes in 2Z: these are positive numbers of 2Z who do not have positive
divisors in 2Z. (Note that since 1 /∈ 2Z, we ignore it as a possible divisor, in 2Z, of the elements of
2Z.)

(i) List some primes of 2Z. Describe all the primes of 2Z.
(ii) Prove that every positive element of 2Z can be expressed as a product of primes of 2Z.
(iii) Show that this factorization into primes need not be unique.
(iv) What about negative primes and the factorization of negative elements of 2Z?

4.4 Infinitude of the Prime Numbers

After proving the Fundamental Theorem of Arithmetic of Z, an interesting question is: how many
are the prime numbers? A simpler question is whether they are finitely or infinitely many. The
answer to the latter question was known to Euclid, and is given below. The former question is much
harder. It was answered in the end of 19th century (in 1896), and the answer is known as the Prime
Number Theorem. This theorem is discussed in the last chapter of these Notes.

Theorem 4.4.1 The odd prime numbers are infinitely many.

Proof We follow the classical Euclid’s proof of this theorem. Arguing by contradiction, assume that
the prime numbers are finitely many, and that 2, p1, p2, . . . , pk is the list of all primes. Consider the
number E = 2 · p1p2 · · · pk + 1. The number E is bigger than 1, so it has a canonical decomposition
as a product of primes, as we just proved. So, there is a prime number (necessarily - from the list
above) which divides E: say pi |E = 2p1 · · · pi · · · pk + 1. Therefore. pi |E − 2 · p1 · · · pi · · · pk = 1.
That is a contradiction! 2

Now, half of the odd numbers have the form 4n + 1 and the other half have the form 4n + 3.
There are prime numbers of both types, of course. The question is: are the prime numbers of each
of these types infinitely many? The answer to this question is ”yes”, but with our current knowledge
in Number Theory, we are able to prove only that the primes of type 4n+ 3 are infinitely many. In
a week or so, we will be able to tackle the second question successfully too.

Theorem 4.4.2 The prime numbers of type 4n+ 3, n ∈ N are infinitely many.

Proof The argument here is a minor modification of the one Euclid has used. Arguing again by
contradiction, assume that there is a finite list of all such prime numbers: p1, p2, . . . , ps. Consider
the number F = 4p1 · · · pk − 1. This number is bigger than 1, and therefore has a presentation as a
product of primes

F = q1q2 · · · ql.

Since F is an odd number, all primes q1, . . . , ql are also odd. The crucial observation now is that
there is at least one i ∈ {1, . . . , l} such that qi = 4ni + 3. Indeed, otherwise we would have

F = 4p1 · · · pk − 1 = 4(p1 · · · pk − 1) + 3 = 4A+ 3

and
F = q1 · · · ql = (4n1 + 1) · · · (4nl + 1) = 4B + 1
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so that
4A+ 3 = 4B + 1

which is of course impossible! But this means that there is a pj dividing F , which is another
impossibility. So the assumption that the primes of type 4n+ 3 are finitely many is wrong, and the
theorem is proved. 2

Exercise 4.4 Prove that the prime numbers of type 6m+ 5,m ∈ N are infinitely many.
[Hint: Mimic the argument in the proof of the previous theorem.]

It is obvious that the remainder of an odd prime number when divided by 4 can only be 1 or 3. This
means that the odd prime numbers are of the form 4n+ 1 or 4n+ 3. Similarly, the remainders the
odd prime numbers can have when divided by 6 can only be 1 or 5: the odd primes are of the form
6m+ 1 and 6m+ 5. We know that the odd prime numbers are infinitely many, and that the prime
numbers of type 4n+3 and 6m+5 are infinitely many. We will prove soon, for which we will need a
deeper knowledge of Number Theory, that the primes of type 4n+1 and the primes of type 6m+1
are also infinitely many. The natural question to ask here is if the prime numbers of type an+ b for
n ∈ N are infinitely many. Of course, we need to have gcd(a, b) = 1 in order to have at least one such
prime. The affirmative answer to this question was given by the German mathematician P.-G. L.
Dirichlet who proved in 1837 his Theorem About the Primes in an Arithmetic Progression
stated below. The proof of this result goes far beyond the scope of our course.

Theorem 4.4.3 (Dirichlet’s Theorem about the prime numbers in an arithmetic progression) Let
a, b ∈ N be relatively prime. Then the set

{ an+ b |n ∈ N}

contains infinitely many prime numbers.

Remark 4.4.1 Dirichlet’s theorem claims in effect that every linear polynomial with integer
coefficients which are relatively prime contains infinitely many prime numbers. It is natural to ask
if there are polynomials of higher degree which have the same property. The answer to this question
is not known. We will say more about polynomials, and other ”reasonable” functions,taking on
many values which are prime numbers in the last Chapter of these Notes.

4.5 An Interpretation through Q
In this section, we give an interpretation of the fundamental theorem of the arithmetic of Z through
the non-zero elements of the field of rational numbers.

4.5.1 The Group Q>0

The positive rational numbers can be added and multiplied without getting out of their realm: sum
and product of positive numbers is positive. The addition has no neutral element though, so, that
operation is not of much interest (at least to us). The multiplication does have a neutral element:
1 ∈ Q>0, and moreover, every positive rational number has a positive reciprocal element. So we
have

· : Q>0 ×Q>0 → Q>0

x · y = y · x x · (y · z) = (x · y) · z 1 · x = x (∀x)(∃y)(x · y = 1).

In technical terms (to be developed in detail in Algebraic Structures), this means that (Q>0, ·) is
an Abelian group.

We also know that every rational number has a unique representation as a reduced rational fraction

(∀x ∈ Q>0)(∃!m,n ∈ N)(x = m/n ∧ gcd(m,n) = 1).
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We know that m,n have unique expression as a product of powers of primes with non-zero exponents
- that’s the statement of the fundamental theorem of arithmetic of Z. We know also that we can
find a presentation of m and n in terms of the same primes allowing some the exponents to be zero.
There are many such presentations, but if we consider only those who have sum of the exponents
corresponding to a prime to be positive, then the presentation is unique. But then, the rational
number itself has a unique expression as a product of non-zero integer powers of primes

1 ̸= x = pα1
1 · · · p

αk

k p1 < · · · < pk α1, . . . , αk ∈ Z \ {0}.

Example Let x = 75/296. Then m = 75 = 3 · 52, n = 296 = 23 · 37, and we can (in a unique way)
write

m = 20 · 3 · 52 · 370 n = 23 · 30 · 50 · 37.

Therefore
x = 2−3 · 3 · 52 · 37−1.

The positive integers in Q>0 are given by such products with positive exponents

1 ̸= x ∈ N \ {0} ⊆ Q>0 ⇔ x = pα1
1 · · · p

αk

k , p1 < · · · < pk, α1, . . . , αk ∈ N \ {0}.

The moral here is that the fundamental theorem can be, equivalently, interpreted via the uniqueness
in the presentation of the positive rational numbers just explained. Again in technical terms (to be
explained in detail in Algebraic Structures), the uniqueness of the presentation means that (Q>0, ·)
is a free Abelian group with generators - the prime numbers. Since the generators are as
many as the elements of N, we write in this case

Q>0
∼= Z⊕N.

4.5.2 The Group Q×

The set Q× = Q \ {0} of non-zero rational numbers is also an Abelian group with the operation
multiplication. We can apply the fundamental theorem in full to understand the structure of this
group. By the previous sub-section, and applying the theorem to any non-zero m now, we see that
every different from ±1 non-zero rational number x has a unique expression as

x = ± pα1
1 · · · p

αk

k p1 < · · · < pk α1, . . . , αk ∈ Z \ {0}.

And similarly to N \ {0} ⊆ Q>0 we can identify the non-zero integers on Q× to those who have
non-negative exponents α1, . . . , αk.
Contrary to the previous case, the group Q× is not a free Abelian group. This is due to the ± sign
in front of the rational numbers! In professional notations we have actually that

Q× ∼= Z/2Z⊕ Z⊕N.

Exercise 4.5 (1) Let k be a positive integer. Prove that

(gcd(a, b) = 1 ∧ a · b = ck) → ((∃u, v ∈ Z)(a = uk ∧ b = vk)).

(2) Let p be a prime number, and a, b ∈ Z be such that (a, b) = p. Find all possible values of

(a2, b); (a2, b2); (a3, b); (a3, b2).

(3) Let a, b, c ∈ N. Show that

abc = (a, b, c)[ab, bc, ca] = (ab, bc, ca)[a, b, c].

(4) For a, b, c ∈ N \ {0} show that

(abc = (a, b, c)[a, b, c]) → ((a, b) = (b, c) = (c, a) = 1).
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(5) Let a, b, c ∈ N \ {0}. Prove the relations

(a, b, c) =
(a, b)(b, c)(c, a)

(ab, bc, ca)
[a, b, c] =

abc(a, b, c)

(a, b)(b, c)(c, a)
.

(6) Let a, b, c ∈ N \ {0}. Prove the relation

[(a, b), (b, c), (c, a)] = ([a, b], [b, c], [c, a]).
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Chapter 5

Linear Diophantine Equations

Consider the equation
a · x = b

where a, b ∈ Z. It is immediate to see when this equation has a solution (provided a ̸= 0). Namely,
solution exists, and is unique if, and only if, a | b.
We move on and consider the equation

a · x+ b · y = c

asking for all its solutions in integers. Such equations are called linear Diophantine equations (of
two unknowns).

Use of Geometry can put our considerations in right perspective. Observe that the same equa-
tion considered over the real numbers defines a line in the Euclidean plane. The solutions in R
correspond to the points on that line, and are uncountably many.

23X − 41Y + 82 = 0

24X + 41Y = 736

(0, 0)(−15, 0) (30, 0)

(0,−10)

(0, 15)

X

Y

The rational solutions to that equation correspond to the points on the line which have rational co-
ordinates, the so called Q-rational points. It is easy to show that there are infinitely, but countably,
many such points. The integer solutions to the equation correspond to points on the line which
have integers as coordinates called integral or Z-rational points. As we will see, the existence of
Z-rational points on the line ax+ by = c is a delicate fact: such points may or may not exist! This
chapter is devoted to solving the linear Diophantine equations.

The most general linear Diophantine equations has the form

a1 · x1 + · · ·+ ak · xk = b
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where the coefficients, not all 0, and b are integers.

This chapter is devoted to finding the solutions to the linear Diophantine equations. We begin
with the case k = 2 - the basic and more important one.

5.1 The Equation a · x+ b · y = c

Theorem 5.1.1 The Diophantine equation a · x + b · y = c, with |a| + |b| > 0, has solutions in
integers if, and only if gcd(a, b) | c. In that case, if d = gcd(a, b) and (x0, y0) is a solution to the
equation, then all the solutions to the equations are given by

x = x0 + (b/d) · k y = y0 − (a/d) · k

where k ∈ Z.

Proof Denote d = gcd(a, b). By our assumption about a and b, d ≥ 1. Obviously, for any integers
x′, y′, the number a · x′ + b · y′ ∈ dZ. So, if there is a solution a · x0 + b · y0 = c, then c ∈ dZ, and so
d | c. Conversely, if d | c, so that c = d · c′, the Bézout’s identity gives integers x′, y′ such that

a · x′ + b · y′ = d.

Then we obviously have that
a · (x′ · c′) + b · (y′ · c′) = (d · c′)

so that x0 = x′ · c′ and y0 = y′ · c′ provide a solution to the equation. This completes the proof of
the first part of the claim of the Theorem.
Further, assuming d | c, it is obvious that the given formulae provide solutions to the linear Diophan-
tine equation. So, it is enough to show that in that case ALL solutions are given by those formulae.
We are doing this now. Note that W.L.O.G. we may assume that both a and b are non-zero. Suppose
(x0, y0) is a fixed solution, and that (x′, y′) is any other solution. We have

a · x0 + b · y0 = c = a · x′ + b · y′

which gives us
a · (x0 − x′) = b · (y′ − y0).

Dividing by d both sides, and denoting a′ = a/d and b′ = b/d, we get

a′ · (x0 − x′) = b′ · (y′ − y0)

where, as we know, gcd(a′, b′) = 1. We have now that

b′ | a′ · (x0 − x′) and gcd(a′, b′) = 1.

This implies that b′ | (x′ − x0). So, x′ − x0 = b′ · k for an integer number k. Substituting this back
in the identity above we get

a′ · b′ · (−k) = b′ · (y′ − y0)

and cancelling out b′ (remember - both a and b are non-zero!), we get y′ = y0− a′ · k as needed.This
completes the proof of the second part of the claim of the Theorem. 2

Example 5.1.1 Let’s solve 3x+ 7y = 26 in integers.
We first check that solutions exist, that is, that gcd(3, 7) | 26. Since gcd(3, 7) = 1, solutions exist.
We have to find next a particular solution to the equation. Often such a solution can be guessed.
In the case at hand, obviously 3 · (−3)+ 7 · 5 = 26, so x0 = −3, y0 = 5 is a particular solution. Then
we apply the formulae for the general solution

x = −3 + 7k y = 5− 3k k ∈ Z.
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There are more ”theoretical” ways to find particular solutions (following the proof of the theorem
above). For instance, knowing that gcd(3, 7) = 1, we can find uo, v0 ∈ Z such that 3 · u0 + 7 · v0 = 1
Then a particular solution is given by x0 = 26 · u0, y0 = 26 · v0. The question now is how to find
(u0, v0)? This can again be done by guessing (a method applicable when the coefficients of the
equation are not too big integers). In our case obviously 3 · (−2)+7 · 1 = 1. So a particular solution
is x0 = −52, y0 = 26, and the general solution is given by

x = −52 + 7s y = 26− 3s s ∈ Z.

Notice that, at a first glance, the two general solution formulae, corresponding to different particular
solutions, look differently. But they have to produce the same sets of solutions to the equation
(we proved a theorem!). Verify that the sets of solutions are really the same

{(−3 + 7k, 5− 3k) | k ∈ Z} = {(−52 + 7s, 26− 3s) | s ∈ Z}.

Finally, one can exclude the guessing completely from finding particular solutions! This is done by
using Euclid’s Algorithm. Recall, it says that integers u0, v0 such that u0 ·m + v0 · n = gcd(m,n)
can be found by ”reading” the system of relations in the algorithm backward. In our case we have

7 = 3 · 2 + 1 q0 = 2, r0 = 1

3 = 1 · 3 + 0 q1 = 2, r1 = 0

so, as we already know, gcd(3, 7) = 1, and 3 · (−2) + 7 · 1 = 1. We find u0 = −2, v0 = 1. 2

Remark 5.1.1 As we know from the proof of the theorem above, one easily finds a particular
solution to ax+ by = c once they know a pair (u0, v0) such that a ·u0+ b ·v0 = gcd(a, b). Such a pair
can be found, as we proved, by reading off the Euclid’s algorithm backward. In many cases though,
mainly when |a| and |b| are reasonably small, one can guess-find some u0 and v0. The reason for
this is that, as exercises below teach us, there always is (u0, v0) with |u0| ≤ |b| and |v0| ≤ |a|. 2

Exercise 5.1 (1) Solve the equations

(i) 91x+ 33y = 147 (iv) 24x+ 30y = 14 (vii) 30x− 43y = 97

(ii) 93x− 81y = 15 (v) 17x+ 646y = 51 (viii) 91x+ 56y = 0

(iii) 874x− 19y = 1052 (vi) 84x− 91y = 11 (ix) 4147x+ 10, 672y = 58

(2) Find all solutions in positive integers to the equations

(i) 18x+ 7y = 302 (iii) 54x− 38y = 82 (v) 10x+ 28y = 1240

(ii) 18x− 7y = 302 (iv) 11x+ 13y = 47 (vi) 17x+ 646y = 51

(3) Find two rational fractions having denominators 5 and 7 respectively, and whose sum is 26/35.
(4) Find a number that leaves the remainder 16 when divided by 39, and the remainder 27 when
divided by 56.
(5) In this exercise we discuss the size of the coefficients in a Bézout’s identity. Let a, b ∈ N \ {0}
with (a, b) = d. Consider u0, v0 ∈ Z such that a · u0 + b · v0 = d. Show that u0 · v0 < 0.

(i) In the case d = 1, prove that there is only one pair (u′0, v
′
0) such that

a · u′0 + b · v′0 = 1 − b < u′0 < 0 and 0 < v′0 < a.

Similarly, prove that there is only one pair (u′′0 , v
′′
0 ) such that

a · u′′0 + b · v′′0 = 1 0 < u′′0 < b and − a < v′′0 < 0.

Show also that
−u′0 + u′′0 = b and v′0 − v′′0 = a.
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(ii)∗ Study the case of d ≥ 1 in general: what can you say of the smallest possible u0 and v0 in
this case?

[Hint to (i): Let a · u0 + b · v0 = 1. Divide u0 by b with quotient and remainder: u0 = b · q′ + r′

where 0 ≤ r′ < b. Similarly, v0 = a · q′′ + r′′ where 0 ≤ r′′ < a. We have then that

a · r′ + b · r′′ − 1 = −ab(q′ + q′′).

But since (u0, v0) = 1, we have r′ + r′′ > 0, and therefore

0 < a · r′ + b · r′′ − 1 < 2ab,

which implies that
a · r′ + b · r′′ − 1 = ab.

In other words,

a(r′ − b) + b · r′′ = 1 and a · r′ + b(r′′ − a) = 1

and we can write

u′0 = r′ − b, v′0 = r′′ and u′′0 = r′, v′′0 = r′′ − a.

This proves the existence of the pairs (u′0, v
′
0) and (u′′0 , v

′
0) together with the relations u′′0 −u′0 = b

and v′0 − v′′0 = a. To prove the uniqueness, assume that (u, v) has the properties of (u′0, v
′
0).

Then, we have
a · u′0 + b · v′0 = 1 = a · u+ b · v

and so
a(u′0 − u) = b(v − v′0).

Since gcd(a, b) = 1, we have that a | v − v′0 and b |u′0 − u which immediately implies, due to the
inequalities u′0, u, v

′
0 and v satisfy, that u′0 = u and v′0 = v. Ans so on...]

(6) Let a, b ∈ N \ {0}, and c ∈ Z be such that gcd(a, b) = 1. Prove that the equation ax− by = c has
infinitely many solutions in positive (respectively - negative) integers.

aX − bY = c, c < 0

aX − bY = c, c > 0

(0, 0)
X

Y

[Hint: Arithmetic proof is preferable, but a geometric approach would help as well.]
(7) Suppose a, b ∈ N \ {0}, c ∈ Z and gcd(a, b) = 1. Consider the equation ax+ by = c. Prove that

(i) The equation does not have infinitely many solutions in (positive (respectively - negative)
integers.

(ii) If c > ab (respectively c < −ab), then the equation does have solutions in positive (respectively

40



5.2. The General Linear Diophantine Equation Chapter 5. Linear Diophantine Equations

- negative) integers.

aX + bY = ab

aX + bY = c, c > ab

(0, 0)

(0, a)

(0, c/b)

(b, 0) (c/a, 0)
X

Y

(iii) Prove that the inequality in (ii) is sharp in the following sense: the largest positive (respec-
tively - the smallest negative) number c such that the equation has no solution in positive (respectively
- negative) integers is ab, (respectively −ab).

[Hint. In light of item (ii), it is enough to show that c = ab is not representable as a positive
linear combination of a and b. RAA: assume a · u+ b · v = ab for u, v > 0. We have then that

b · v = a(b− u) and a · u = b(a− v).

So, since gcd(a, b) = 1, we have that a | v and b |u. Therefore, u = b · u1, v = a · v1 and

a · u+ b · v = ab(u1 + v1) = ab.

We have then that 1 = u1 + v1 ≥ 1 + 1 = 2 - a contradiction.]
(iv) For every n ∈ N there are a, b, c such that the equation has exactly n solutions in positive

(respectively - negative) integers.
(8) Find the smallest and the biggest integers c such that the equation 5x+ 7y = c has exactly nine
solutions in positive (respectively - negative) integers.
(9) State and prove a necessary and sufficient condition that the equation ax+ by = c have infinitely
many solutions in positive (respectively - negative) integers.
(10) Let a, b ∈ Z be such that (a, b) = d. Verify that if x0, y0 ∈ Z are such that a · x0 + b · y0 = d,
then (x0, y0) = 1.

5.2 The General Linear Diophantine Equation

We are addressing here the question of solving the general linear Diophantine equation

a1x1 + a2x2 + · · ·+ akxk = b

where b ∈ Z and the coefficient, not all zero, are integers as well: a1, a2, . . . , ak ∈ Z. Denote by d
the greatest common divisor of the coefficients: d = gcd(a1, . . . , ak). Here is the theorem explaining
the precise conditions when the general linear equation has solutions, and how they look like.

Theorem 5.2.1 The general linear Diophantine equation above has solutions if, and only if, d | b.
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Proof The proof of this statement easily follows from the properties of the gcd of a group of integers,
including the Bézout’s identity, and is left as an exercise. 2

The question of how to find the solutions to the general linear equation takes a bit longer to answer.
The solution has to depend on k − 1 independent parameters (for k = 2 we had one parameter). It
turns out that solving the case of two variables is enough to solve the general case. Here is how it goes.

Suppose, by induction, that we can solve the general linear equation for k ≥ 2. We are show-
ing how to find the solutions to the equation when the unknowns are k + 1. So let the equation
be

a1x1 + · · · akxk + ak+1xk+1 = b.

If any of the coefficients is zero, say ak+1 = 0, we see that any integer can be in the place of xk+1

in a solution to the equation: (x01, . . . , x
0
k, x

0
k+1). Also, the k-tuple (x01, . . . , x

0
k, ) is a solution to the

equation
a1x1 + · · · akxk = b

which we know how to solve. So, in this case, the solutions of the original equation are formed by
the solutions of the last equation (depending on k − 1 parameters), and an independent parameter
for the value of x0k+1 (so, the solution depends on the total of k parameters).
Let’s assume now that all coefficients are non-zero. Denote by dk the greatest common divisor of
the first k coefficients: dk = gcd(a1, . . . , ak). Consider the equation

dky + ak+1xk+1 = b

By exercise (6) of section 3.2 we have that d = gcd(dk, ak+1). Assuming that d | b, we get that the
last linear equation does have solutions. Moreover, we know how to find them all, by the previous
section. Namely, if (y0, x0k+1) is a particular solution, then the general one is given by

y′ = y0 + (ak+1/d) · sk x′k+1 = x0k+1 − (dk/d) · sk

for sk - an integer parameter. To find the solution to the original equation it is enough to solve for
x1, . . . , xk the equation

(a1/dk) · x1 + · · · (ak/dk) · xk = y′.

Since the coefficients of this equation are relatively prime - share no factors bigger than 1 (by exercise
(7) of section 3.2), we can solve it, and thus get the solutions for the original linear equation. Note
that the solution will depend on k parameters: sk and k − 1 more coming from the solution to the
last equation.

Example 5.2.1 Let’s solve 6x+ 15y + 30z = 21
We check out first if gcd(6, 15, 30) | 21. We have gcd(6, 15, 30) = gcd(gcd(6, 15), 30) = gcd(3, 30) = 3.
Since 3 | 21 there are solutions to the equation. Denote by t = 2x + 5y. For t and z we have the
equation

3t+ 30z = 21

the solutions to which we know how to find. We have

t = −3 + 10k z = 1− k k ∈ Z.

To find x and y we have to solve, for every integer k, the equation

2x+ 5y = −3 + 10k.

This we do the same well known way: we find a particular solution, and then use the formulae for
the general solution. Obviously, x0 = 2 + 5k, y0 = −1 is a particular solution. Then we get

x = 2 + 5k + 5s y = −1− 2s s ∈ Z.
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So the general solution to the original equation is given by

x = 2 + 5k + 5s y = −1− 2s z = 1− k k, s ∈ Z.

As expected, the solution depends on two parameters. 2

Exercise 5.2 (1) Solve in integers the equation 6x+ 15y + 20z = 2.
(2) The same for any equation of three variables you can think of.
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Chapter 6

Modular Arithmetic, the Ring
Z/nZ

In studying natural numbers (and the integers), it is often useful to make arguments by using
divisibility of integers by a fixed natural number. Solving Diophantine equations is where making
such arguments is especially valuable. Consider for instance solving in Z the equation known to us
from Chapter 2

x2 + y2 = 3z2.

Are there any solutions apart from the obvious one, (0, 0, 0)? Geometric arguments tell us that if
there is one non-zero solution, then we will find all solutions. The idea behind using divisibility
to check if solutions exist is simple and natural. For any solution (a, b, c) we have that the two
natural numbers a2+ b2 and 3c2 are equal. But then, for every positive rational number n we would
have that the remainder of a2 + b2 and of 3c2 when divided by n are equal. Now, divisibility by 3
immediately shows that non-zero solutions do not exist.

This method of constructing arguments has evolved into what we call Modular Arithmetic. It
is based on the concept of congruences modulo a positive integer the modern form of which,
including the notation for congruence, was introduced and developed by Gauss in 1796.

In this Chapter, we develop Modular Arithmetic proving the main theorems which will be used
later on in the course. Professionally (that is - algebraically) speaking, we are constructing a ring,
of n elements, for every natural number n ≥ 1. When n is a prime number, the corresponding
ring turns out to be a field. The first two sections of the chapter are devoted to the definition of
these rings, and to establishing some of their most basic, and very important, properties. In the
third section of the Chapter, we prove the three standard theorems: Fermat’s Little theorem, its
generalization due to Euler, and Wilson’s theorem. Finally, we prove a property of the rings Z/nZ
known as the Chinese Remainder Theorem. This theorem will be instrumental in the rest of the
course.

6.1 Congruences Modulo n ∈ N
Let n ∈ N.

Definition 6.1.1 We say that the integers a, b are congruent modulo n, and write a ≡ b mod n,
if n | a− b.

Exercise 6.1 When are two integers congruent modulo 0? When are two integers congruent mod-
ulo 1?
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Having in disposition the division with quotient and remainder, we easily get the following statement

Exercise 6.2 Let n > 0 be a natural number. For the integers a, b let

a = n · q1 + r1 b = n · q2 + r2

where 0 ≤ r1, r2 < n. Prove that

a ≡ b mod n ⇔ r1 = r2.

Proposition 6.1.1 If a ≡ b mod n ∧ a′ ≡ b′ mod n, then

a+ a′ ≡ b+ b′ mod n, and a · a′ ≡ b · b′ mod n.

Proof The proof is straightforward. We have n | a−b and n | a′−b′ , so a−b = n·A and a′−b′ = n·B.
But then

(a+ a′)− (b+ b′) = n · (A−B) and a · a′ − b · b′ = n · (b ·B + b′ ·A+ n ·A ·B)

which finishes the proof. 2

Observe that the cancellation property modulo n

ab ≡ ac mod n → b ≡ c mod n

is not true in general, even if ¬(a ≡ 0 mod n). Here is the right statement.

Proposition 6.1.2 Let a, b, c, n ≥ 1 be integers. Then we have

ab ≡ ac mod n ⇔ b ≡ c mod n/ gcd(a, n).

In particular
(gcd(a, n) = 1) → (ab ≡ ac mod n ⇔ b ≡ c mod n).

Proof The second claim follows from the first one in a straightforward way. We are proving the
first claim now. Let d = gcd(a, n). Observe that, since n ̸= 0, we have also that d ̸= 0. Denote
n = d · n1 and a = d · a1, and recall that gcd(a1, n1) = 1. We obviously have the following

ab ≡ ac mod n ⇔ n | a(b− c) ⇔ dn1 | da1(b− c)

⇔ n1 | a1(b− c) ⇔ n1 | (b− c) ⇔ b ≡ c mod n1.

Exercise 6.3 (1) If a ∈ Z is even, then a2 ≡ 0 mod 4. If a ∈ Z is odd, then a2 ≡ 1 mod 8.
(2) Let n ∈ N be an (n+ 1)-digit number (in base 10) with digits a0, . . . an

N = an10
n + · · ·+ a110 + a0.

Prove that

(i) N ≡ a0 mod 2 or 5 (ii) N ≡ a0 − a1 + · · ·+ (−1)nan mod 11

(iii) N ≡ a0 + a1 + · · ·+ an mod 3 or 9.

(3) Let n = n1n2 · · ·nk where n1, . . . , nk are pairwise relatively prime. Prove for the integers a, b
that

a ≡ b mod n ⇔ (∀i)(a ≡ b mod ni).

(4) Let f(X) = adX
d+ad−1X

d−1+ · · ·+a1X +a0 be a polynomial with integer coefficients, ai ∈ Z,
let a, b ∈ Z, and let n ∈ N. Prove that if a ≡ b mod n, then f(a) ≡ f(b) mod n.
(5) Let p be an odd prime number, 0 ̸= k ∈ N, and a ∈ Z. Prove that

(a2 ≡ 1 mod pk) ⇔ (a ≡ 1 mod pk) ∨ (a ≡ −1 mod pk).

(6) Let a and k be as in (5). Prove that
(i) a2 ≡ 1 mod 2 if, and only if, a ≡ 1 mod 2;
(ii) a2 ≡ 1 mod 22 if , and only if, a ≡ ±1 mod 22;
(iii) For k ≥ 3 we have a2 ≡ 1 mod 2k if, and only if, a ≡ ±1 mod 2k or a ≡ 2k−1±1 mod 2k.
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6.2 The Ring Z/nZ
The notion of congruence modulo n can be organized in a better construct. Here is how this goes.

Theorem 6.2.1 The relation on Z defined by a ∼n b if a ≡ b mod n is an equivalence relation.
That is

∀a ∈ Z(a ∼n a); a ∼n b → b ∼n a; a ∼n b ∧ b ∼n c → a ∼n c.

Proof Do it as an easy exercise. 2

By the general theory of equivalence relations, we may consider the set of equivalence classes, the
quotient set of Z modulo the relation ∼n,

Z/ ∼n :=: Z/nZ := {[a]n | a ∈ Z}

where [a]n stands for the equivalence class of a ∈ Z w.r.t. ∼n, that is

[a]n = { b ∈ Z | a ∼n b }.

Whenever there is no danger of confusion, we will write [a] instead of [a]n.

The quotient set Z/nZ is finite:

Theorem 6.2.2 The set Z/nZ has n elements

Z/nZ = { [0], [1], . . . , [n− 1] }.

Proof Indeed, if a = n · q + r where 0 ≤ r < n, then a ∼n r, so that [a] = [r]. On the other hand,
if 0 ≤ r1, r2 < n, then r1 ∼n r2 if, and only if, r1 = r2. Therefore, Z/ ∼n has as many elements as
are the remainders modulo n. 2

The important feature of the set Z/nZ is that we can define two operations, addition and mul-
tiplication, on its elements, in such a way that the result be a ring!

Theorem 6.2.3 For [a], [b] ∈ Z/nZ define

[a] + [b] := [a+ b] and [a] · [b] := [a · b].

We have then that
(1) the two operations are well defined, that is: do not depend on the choices of representatives of
the classes;
(2) the two operations are associative and commutative;
(3) the class [0] is the neutral element for the addition +, while the class [1] is neutral element for
the multiplication ·;
(4) every element has an opposite one: ∀[a]∃[b] ([a] + [b] = [0]);
(5) the multiplication distributes over the addition: [a] · ([b] + [c]) = [a] · [b] + [a] · [c].
Therefore, (Z/nZ,+, ·) is a (commutative) ring (with identity).

Proof (1). This item states the same as Proposition 6.1.1 above. Indeed, we have to show that if

a1, a2 ∈ [a], and b1, b2 ∈ [b],

then
[a1] + [b1] = [a2] + [b2] and [a1] · [b1] = [a2] · [b2].

But this is equivalent to saying that

a1 ≡ a2 mod n and b1 ≡ b2 mod n
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implies that
a1 + b1 ≡ a2 + b2 mod n and a1 · b1 ≡ a2 · b2 mod n

which is exactly the content of Proposition 6.1.1.
Items (2) and (3) are obvious. As to item (4), here is a proof

[a] · ([b] + [c]) = [a] · [b+ c] = [a · (b+ c)]

= [a · b+ a · c] = [a · b] + [a · c] = [a] · [b] + [a] · [c]. 2

Notice that it is possible to have [a] ̸= [0] ̸= [b] and still [a] · [b] = [0]. Indeed, if n = n1 · n2 is
composite (n1, n2 > 1), then [n1] ̸= [0] ̸= [n2], but [n1] · [n2] = [n1 ·n2] = [n] = [0]. In the congruence
notations, this looks like

¬(a ≡ 0 mod n) ∧ ¬(b ≡ 0 mod n), but a · b ≡ 0 mod n.

In professional, that is - algebraic, terms, this means that Z/nZ has non-zero zero divisors when
n is composite. It turns out that the case when n = p is a prime number is much gentler.

Theorem 6.2.4 Let n = p be a prime number, and let [0] ̸= [a] ∈ Z/pZ. Then, there is (a unique)
[b] ∈ Z/pZ such that [a] · [b] = [1], that is, [b] is the reciprocal of [a] in Z/pZ. In other, professional,
words, Z/pZ is a field.

Proof We have [a] ̸= [0] ↔ p ∤ a, and so gcd(p, a) = 1. The Bézout’s identity gives us b, c ∈ Z
such that a · b+ p · c = 1. Therefore, p | a · b− 1, and according to the definition of ∼p, [a · b] = [1].
So, [a] · [b] = [1]. On the other hand, if [b] and [b′] are reciprocals of [a], then

[b] = [1] · [b] = ([b′] · [a]) · [b] = [b′] · ([a] · [b]) = [b′] · [1] = [b′]. 2

As a consequence of this theorem, we get the cancellation property of Z/pZ:

([a] · [b] = [a] · [c] ∧ [a] ̸= [0]) → [b] = [c].

We know already that this property is not true for Z/nZ for a composite n. The cancellation
property in this case reads as follows.

Theorem 6.2.5 In Z/nZ, every [a] with gcd(n, a) = 1 has a (unique) reciprocal, that is [b] such
that [a] · [b] = [1]. Moreover, we have the cancellation property

([a] · [b] = [a] · [c] ∧ gcd(n, a) = 1) → [b] = [c].

Proof Do the proof as an exercise, using the Bézout’s identity as in the proof of Theorem 6.2.4
above. 2

Remark 6.2.1 The definition of the classes modulo n can be extended from integers, [a], a ∈ Z,
to rational fractions, [a/b] where a ∈ Z, b ∈ N, and gcd(b, n) = 1. By definition, the class [a/b] is
such that [b][a/b] = [a] in Z/nZ. The cancellation property modulo n ensures that this definition is
correct: the class exists and is unique. With this definition, we can write

a/b ≡ c mod n

when c ∈ [a/b]. We will use this extension, and the notations, in the exercises to follow. 2

Exercise 6.4 (1) For which natural numbers n is the number 3n + 1 divisible by 10?
(2) Find the remainder of the division of 1! + 2! + · · ·+ 50! by 7.
(3) Is it true that 36 divides n4 + n2 + 4 for infinitely many natural numbers n? Explain!
(4) What are the possible values of the last digit of 4m,m ∈ N?
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(5) Show that a three digit natural number written as abc is divisible by 7 if, and only if, 2a+3b+ c
is divisible by 7.
(6) Let p be an odd prime number, and let k ∈ {1, . . . , p− 1}. Prove that(

p

k

)
≡ 0 mod p

(
p− 1

k

)
≡ (−1)k mod p.

(7) Let p be an odd prime number. Prove that

1/1 + · · ·+ 1/k + · · ·+ 1/(p− 1) ≡ 0 mod p.

(8) Let p be an odd prime number. Prove that p | 2p − 2, and that

1/1− 1/2 + · · ·+ (−1)k−11/k + · · · − 1/(p− 1) ≡ (2p − 2)/p mod p.

6.3 Fermat, Euler, and Wilson

We are proving here three properties of Z/nZ known as Fermat’s Little Theorem, Euler’s Theorem,
and Wilson’s Theorem.

6.3.1 Fermat’s Little Theorem

Lemma 6.3.1 Let [0] ̸= [a] ∈ Z/pZ. We have the following equality of sets

{[1], [2], . . . , [p− 1]} = {[a] · [1], [a] · [2], . . . , [a] · [p− 1]}.

Proof Indeed, by the cancellation property in Z/pZ, we have that

[a] · [i] = [a] · [j] → [i] = [j].

Therefore, the RHS-set has p − 1 pairwise distinct non-zero elements. This means that it contains
all the non-zero classes modulo p. 2

Theorem 6.3.2 ( Fermat’s Little Theorem (FLT), (1640)) Let p be a prime number. For every
[a] ̸= [0] in Z/pZ, we have

[a]p−1 = [1].

Proof By the Proposition above,

([a] · [1]) · ([a] · [2]) · · · ([a] · [p− 1]) = [1] · [2] · · · [p− 1].

Therefore,
[a]p−1 · [(p− 1)!] = [(p− 1)!]

which, after cancelling out [(p− 1)!] ̸= [0] gives the result. 2

Exercise 6.5 (1) Prove that, for any two integers a and b, and a prime number p,

(a+ b)p ≡ ap + bp mod p.

Prove also that if a ≡ b mod p , then ap ≡ bp mod p2.
(2) Let p be a prime number. Show that

(
2p
p

)
≡ 2 mod p.

(3) Let p be a prime number and let a ∈ Z. Show that p | (ap + a(p− 1)!).
(4) Let p be an odd prime number. Show that

1p + 2p + · · · (p− 1)p ≡ 0 mod p,

and that
1p−1 + 2p−1 + · · ·+ (p− 1)p−1 ≡ −1 mod p.
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6.3.2 Euler’s Theorem, Reduced Residue System, Euler’s Totient Func-
tion

The idea of proving Fermat’s Little Theorem can easily be generalized to the case of powers of
elements of Z/nZ for any n ∈ N. Indeed, notice first of all that, as in the case of Z/pZ, we have
equality of sub-sets of Z/nZ:

{[a][1], [a][2], . . . , [a][n− 1]} = {[1], [2], . . . , [n− 1]}

for any [a] such that gcd(a, n) = 1. (Verify this! It is based on the corresponding cancellation
property.) So, as in the case of Z/pZ, we have that

[a]n−1[(n− 1)!] = [(n− 1)!] in Z/nZ.

One may be tempted, applying the cancellation property, to infer from here that [a]n−1 = [1] in
Z/nZ. There is a problem though! The cancellation property is not applicable for composite num-
bers n: in fact, gcd((n− 1)!, n) > 1 in this case.

The right thing to do in order to use the idea from the proof of FLT is to consider the set

(Z/nZ)× := {[a] ∈ Z/nZ | gcd(a, n) = 1}.

Definition 6.3.1 The cardinality of set (Z/nZ)× is denoted by φ(n) and is called Euler’s phi-
function or Euler’s totient function.

Obviously, φ(n) is the number of all natural numbers, which are less than n and are relatively prime
with n. Also, for a prime number p, we have φ(p) = p−1. Very soon, in the context of the Chinese
Remainder Theorem, we will establish a formula for φ(n) for all n ∈ N.

Definition 6.3.2 The integers b1, . . . , bn represent a complete residue system modulo n if they
are pairwise incongruent modulo n.
The integers a1, . . . , aφ(n) represent a reduced residue system modulo n if they are relatively
prime to n, and are pairwise incongruent modulo n.

Let (Z/nZ)× = {[a1], [a2], . . . , [aφ(n)]}.

Proposition 6.3.3 (1) For every two integers a and b we have

gcd(ab, n) = 1 ⇔ gcd(a, n) = 1 ∧ gcd(b, n) = 1.

(2) For every [a] ∈ (Z/nZ)× we have the equality of sets

{[a1], [a2], . . . , [aφ(n)]} = {[a] · [a1], [a] · [a2], . . . , [a] · [aφ(n)]}.

(3) The set (Z/nZ)× consists of all elements of Z/nZ which have reciprocal elements

(Z/nZ)× = {[a] ∈ Z/nZ | (∃b ∈ Z)([a][b] = [1])}.

Proof (1) (⇒) gcd(ab, n) = 1 so, there are integers u, v such that u(ab)+ vn = 1. This identity can
be read in two ways:

(ub)a+ vn = 1 and (ua)b+ vn = 1

which in turn imply that gcd(a, n) = 1 and gcd(b, n) = 1. (⇐) The relations gcd(a, n) = 1 and
gcd(b, n) = 1 imply that, for some u1, u2, v1, v2 ∈ Z,

u1a+ v1n = 1 and u2b+ v2n = 1.

We have then that

1 = (u1a+ v1n)(u2a+ v2n) = (u1u2) · ab+ (u1av2 + u2bv1 + v1v2n) · n
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which implies that gcd(ab, n) = 1 as needed.
(2) By item (1) we have that

{[a] · [a1], [a] · [a2], . . . , [a] · [aφ(n)]} ⊆ {[a1], [a2], . . . , [aφ(n)]}.

By the cancellation property in Z/nZ we have that the elements of the LHS are pairwise disjoint:
[a][ai] = [a][aj ] → [ai] = [aj ]. Since the LHS and the RHS sets are finite and of same cardinality,
they are equal.
(3) We have to show that

{[a] ∈ Z/nZ | gcd(a, n) = 1} = {[a] ∈ Z/nZ | (∃b ∈ Z)([a][b] = [1])}.

Showing that LHS ⊆ RHS. Let [a] ∈ LHS, that is a ∈ Z such that gcd(a, n) = 1. By Bézout,
there are u, v ∈ Z such that ua+ vn = 1. This means that [ua] = [1], and therefore [a][u] = [1], and
the element [a] has a reciprocal in Z/nZ. This implies that [a] ∈ RHS. Showing that RHS ⊆ LHS.
Left as an exercise! So, LHS = RHS as needed. 2

Corollary 6.3.4 If [a] and [b] are elements of (Z/nZ)×, then so are [a][b] and the reciprocals of [a]
and [b].

Proof An easy exercise. 2

Remark 6.3.1 In professional, that is Algebraic, terminology the claim of the Proposition means
that (Z/nZ)× is a group with respect to the multiplication operation. It is called the group of
units of Z/nZ. 2

Theorem 6.3.5 ( Euler (1736)) For any [a] ∈ (Z/nZ)×

[a]φ(n) = [1] in Z/nZ.

Remark 6.3.2 In congruence notations, Euler’s theorem sounds like this. For every a ∈ Z such
that gcd(a, n) = 1 we have that

aφ(n) ≡ 1 mod n. 2

Proof of Theorem 6.3.5 Using item (2) of the previous proposition, we get that

[a]φ(n) · ([a1][a2] · · · [aφ(n)]) = [a1][a2] · · · [aφ(n)] in Z/nZ

and we now may cancel out [a1][a2] · · · [aφ(n)], because it, being an element of (Z/nZ)×, is subject
to the cancellation property of Z/nZ. 2

Exercise 6.6 (1) If p and q are distinct prime numbers, is it true that we always have

pq−1 + qp−1 ≡ 1 mod pq ?

More generally, if m,n ∈ N are relatively prime, is it true that

nφ(m) +mφ(n) ≡ 1 mod nm ?

(2) Show that (∀n ∈ N) (32n+2 ≡ 8n+ 9 mod 64).
(3) Let m, and a > 1 be natural numbers such that (a,m) = (a− 1,m) = 1. Show that

1 + a+ a2 + · · ·+ aφ(m)−1 ≡ 0 mod m.
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6.3.3 Wilson’s Theorem

Wilson’s theorem reveals one more property of the elements of the group (Z/pZ)×.

Theorem 6.3.6 (Wilson (1770)) For any prime number p we have

[1][2] · · · [p− 1] = [−1] in Z/pZ.

Or, in congruence notations,

(p− 1)! ≡ −1 mod p.

Proof We know that in (Z/pZ)× every element has a reciprocal:

∀[a] ∃[b]([a][b] = [1]).

So, for all [a] for which [b] ̸= [a] their product in [1][2] · · · [p − 1] will produce a [1]. Therefore,
the product [1][2] · · · [p − 1] reduces to the product of only the elements [a] with reciprocals equal
to themselves, that is to all of which [a][a] = [1]. But [a]2 = [1] is equivalent to p | (a2 − 1), that
is to p | (a − 1)(a + 1). Since p is prime this latter is in turn equivalent to p | a − 1 or p | a + 1.
Therefore, there are only two elements of (Z/pZ)× which coincide with their reciprocals: [a] = [1]
and [a] = p− 1. We have now that

[1][2] · · · [p− 1] = [1][p− 1] = [p− 1] = [−1]. 2

Keeping up with the idea of generalizing results modulo p to the general case of modulo n, the next
step here would be to generalize Wilson’s theorem as well, and show that [a1] · [a2] · · · [aφ(n)] = −[1]
in Z/nZ. This however is not true in general: the answer depends on n.

Example 6.3.1 The natural numbers less than 15 and relatively prime with 15 are 1, 2, 4, 7, 8, 11, 13,
and 14. So, in particular, φ(15) = 8. It is easy to check that in Z/15Z

[1][2][4][7][8][11][13][14] = [1] 2

Exercise 6.7 ∗ Prove, nevertheless, that actually∏
[a]∈(Z/nZ)×

[a] = ±[1] in Z/nZ.

Prove, more precisely, that the value of the product is [−1]s/2 where s is the number of elements
[a] ∈ Z/nZ such that [a]2 = [1]. (In particular, s is even!) [Hint: Study the proof of Wilson’s
theorem, and adopt the idea from there.]

To find the exact value of the product of elements of a reduced system of remainders modulo n,
equivalently - to find s from the last Exercise, is harder. Later on in this course we will find two
different ways to do that.

Exercise 6.8 (1) Let p be an odd prime number. Show that

p−1∑
k=1

(k − 1)!(p− k)!kp−1 ≡ 0 mod p.

(2) Let p be a prime number. Show that, for every integer k such that 0 < k < p,

(k − 1)!(p− k)! ≡ (−1)k mod p.
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6.4 The Chinese Remainder Theorem

This theorem, which was really known to the ancient Chinese mathematicians, has numerous gener-
alizations and vast applications throughout modern Algebra. Our treatment of this theorem, while
kept elementary, will point into its algebraic nature, and will prepare the ground to some of its
generalizations in the course Topics in Algebraic Structures.

6.4.1 Naive Set-up

Suppose, we want to find an integer x which satisfies two congruences simultaneously, say

x ≡ a mod m and x ≡ b mod n.

We find x by making it satisfy them one at a time, of course:

x = a+ k ·m, k ∈ Z from the first congruence

and then, substituting in the second, we find all k for which x satisfies the second congruence as
well

k ·m− a ≡ b mod n or better m · k ≡ b− a mod n.

The last congruence means that, for some integer s we have m · k + n · s = b− a, or equivalently, k
is the X-component of the solution to the linear Diophantine equation

mX + nY = b− a.

We know very well now that the equation has a solution precisely when gcd(m,n) | b− a. So, when
the latter happens, and only then, we find the needed x.

The right question to ask here would be the following: for what m and n does such an x always
(that is, for all integers a and b) exist? The answer obviously is: whenever gcd(m,n) = 1.

Exercise 6.9 Assuming that gcd(m,n) = 1, find the solutions to problem above, and show it is
unique modulo mn.

We can formulate our finding as follows.

Theorem 6.4.1 (Chinese Remainder Theorem) Let m,n ∈ N be relatively prime. Then, for
every a, b ∈ Z, there is a unique modulo mn integer x satisfying the congruences

x ≡ a mod m x ≡ b mod n.

6.4.2 Set Theoretical Approach

A step closer to the ”professional” take of the Chinese Remainder Theorem is to look ate it from
set-theoretical point of view. Let m,n ∈ N be positive. Consider the sets Z/(mn)Z,Z/mZ, and
Z/nZ. The truth of the matter is that there are maps

f : Z/(mn)Z→ Z/mZ and g : Z/(mn)Z→ Z/nZ

such that
f([a]mn) = [a]m and g([a]mn) = [a]n.

(Verify that these are well defined as an exercise!) But then, there is a map

F : Z/(mn)Z→ Z/mZ× Z/nZ

defined by
F ([a]mn) = (f([a]mn), g([a]mn)) = ([a]m, [a]n).

This map is neither one-to-one, nor onto in general. What is true, and is equivalent to the Chinese
Remainder Theorem, is the following
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Theorem 6.4.2 (Chinese Remainder Theorem) The map F : Z/(mn)Z → Z/mZ × Z/nZ is one-
to-one if, and only if, it is onto, if, and only if, gcd(m,n) = 1.

Proof The equivalence of the properties of F being one-to-one and onto follows from the fact that
the domain and the co-domain of F have the same finite cardinality: mn. The equivalence of F being
one-to-one and gcd(m,n) = 1 can be seen as follows. If gcd(m,n) = 1, let F ([a]mn) = F ([b]mn).
This means that [a]m = [b]m and [a]n = [b]n, or, equivalently, that m | a − b and n | a − b. But
since gcd(m,n) = 1, we get that mn | a − b which means that [a]mn = [b]mn. So, F is one-to-
one. In the opposite direction, assuming that F is one-to-one, observe that F ([lcm(m,n)]mn) =
([0]m, [0]n), and therefore, [lcm(m,n)]mn = [0]mn, that ismn | lcm(m,n). We know that lcm(m,n) =
(mn)/gcd(m,n), and so gcd(m,n) = 1. 2

Remark 6.4.1 Notice that the statement that F is a bijection is equivalent to the state-
ment in the Chinese Remainder Theorem (CRT). Indeed, the CRT says that for every
a, b ∈ Z, there is a unique c ∈ Z modulo mn such that c ≡ a mod m and c ≡ b mod n. This means
precisely that there is a unique class [c]mn such that [c]m = [a]m and [c]n = [b]n, that is, F is a
bijection. 2

Exercise 6.10 These exercises show two ways how to find [c]mn such that [c]m = [a]m and [c]n =
[b]n.
(1) Let m,n ∈ N be relatively prime, and let

F : Z/(mn)Z→ Z/mZ× Z/nZ

be the map from the CRT above. Prove that for any a, b ∈ Z

F (a · nφ(m) + b ·mφ(n)) = ([a]m, [b]n).

(2) Keep the notation of (1). Prove that there are A,B ∈ Z be such that

An ≡ 1 mod m and Bm ≡ 1 mod n.

Prove further that

F ([aAn+ bBm]mn) = ([a]m, [b]n).

6.4.3 More General Case

An easy induction by the number of the factors, k ≥ 2, of n = n1n2 · · ·nk gives the following
generalization of the Chinese Remainder Theorem.

Theorem 6.4.3 (Chinese Remainder Theorem) If n1, n2, · · · , nk are pairwise relatively prime, and
if n = n1n2 . . . nk, then the map

F : Z/nZ→ Z/n1Z× Z/n2Z× · · · × Z/nkZ

given by F ([a]n) = ([a]n1 , [a]n2 , . . . , [a]nk
) is a bijection.

Proof The proof goes by induction on k ≥ 1. The case k = 1, and n = n1, is trivial: Z/nZ = Z/n1Z,
and F is the identity map. The case k = 2 is the statement of the Chinese Remainder Theorem
discussed and proved in the previous subsection. Assume, by way of induction, that the statement
is true for k = m ≥ 2. We are showing that it is true for k = m + 1 as well. Let n1, . . . , nm, nm+1

be pairwise relatively prime. Then, the first m of them are also pairwise relatively prime, and by
the induction hypothesis the map

F ′ : Z/n′Z→ Z/n1Z× · · · × Z/nmZ
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given by [a]n′ 7→ ([a]n1
, . . . , [a]nm

), where n′ = n1 · · ·nm, is a bijection. On the other hand,
gcd(n′, nm+1) = 1 as well, and the CRT for k = 2 gives the bijection

F ′′ : Z/nZ→ Z/n′Z× Z/nm+1Z

where G([a]n) = ([a]n′ , [a]nm+1) where n = n′nm+1 = n1 · · ·nm · nm+1. We can combine the maps
F ′ and F ′′ to finish the proof. Consider the composition of maps

Z/nZ −→ Z/n′Z× Z/nm+1Z −→ Z/n1Z× · · · × Z/nmZ× Z/nm+1Z

where the first arrow is the map F ′′ while the second is the map (F ′, IdZ/nm+1Z). Notice that both
these maps are bijections, and as such their composition F = (F ′, IdZ/nm+1Z) ◦ F ′′ is a bijection as
well. It is straightforward to check that F maps [a]n to ([a]n1 , . . . , [a]nm , [a]nm+1) and is the map we
wanted to show is a bijection for k = m+ 1. The theorem is proved. 2

In the notations of congruences, the theorem says that, under the restrictions on n1, . . . , nk, for
any integers a1, . . . , ak there is a unique modulo n1 · · ·nk integer c such that

c ≡ a1 mod n1 c ≡ a2 mod n2 · · · c ≡ ak mod nk.

Exercise 6.11 Let n1, . . . , nk be pairwise relatively prime natural numbers. For n = n1 · · ·nk,
consider the map

F : Z/nZ→ Z/n1Z× · · · × Z/nkZ

as in CRT. We know that for any a1, . . . , ak ∈ Z, there is a unique modulo n integer c such that
F ([c]n) = ([a1]n1

, . . . , [ak]nk
). Design two formulae for c. [Hint: Mimic the formulae for k = 2

established in the previous subsection.]

6.4.4 A Professional (that is, Algebraic) Approach to the Above

Turns out, we have proved so far in this section more than claimed. In this final subsection, we are
giving the things we saw above the right names. We are giving them the right treatment as well.

To start off, recall the Z/nZ is a ring with the operations addition and multiplication. We also
know the set (Z/nZ)× is a group with the operation multiplication. Indeed, the product of every
two elements of (Z/nZ)× belongs there as well, the inverse (reciprocal) of every element of (Z/nZ)×

belongs there too, and the class [1]n is the neutral element with respect to the operation. This group
is also commutative: [a][b] = [b][a] for every two elements of (Z/nZ)×.

Now, the Cartesian product Z/mZ × Z/nZ of the two rings Z/mZ and Z/nZ is also a ring with
the following two (component-wise) operations

([a]m, [b]n) + ([a1]m, [b1]n) := ([a]m + [a1]m, [b]n + [b1]n)

and

([a]m, [b]n) · ([a1]m, [b1]n) := ([a]m · [a1]m, [b]n · [b1]n).

Verifying this, that is checking that the two operations are associative, commutative, have neutral
elements, every element has an opposite, and that multiplication distributes over addition, is a
bit lengthy, but absolutely routine. Generalizing this construction to the make a ring out of the
Cartesian product of any (finite) number of rings

Z/n1Z× Z/n2Z× · · · × Z/nkZ,

with component-wise operations addition and multiplication, is straightforward. It is left as an ex-
ercise.
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The map that we designed in the previous subsections, for n = n1n2 · · ·nk,

F : Z/nZ→ Z/n1Z× Z/n2Z× · · · × Z/nkZ

respects the operations of both the domain and the co-domain sending sum to sum and product to
product:

F ([a]n + [b]n) = F ([a]n) + F ([b]n) and F ([a]n · [b]n) = F ([a]n) · F ([b]n),

and also sends the identity of the domain to the identity of the co-domain

F ([1]n) = ([1]n1 , [1]n2 , . . . , [1]nk
).

In professional terms, this means that F is a ring homomorphism. Moreover, as we know, when
n1, n2, . . . , nk are pairwise relatively prime, the map F is also a bijection. This, in addition to
F being a ring homomorphism, makes it a ring isomorphism. This means that in this case the
domain and the co-domain are identifiable, via F , as rings. Every property of rings one can prove
for any one of these two rings, will automatically be true for the other one! In particular, when
n1 = pα1

1 , n2 = pα2
2 , . . . , nk = pαk

k where n = pα1
1 pα2

2 · · · p
αk

k is the canonical factorization of n, we
get

F : Z/nZ→ Z/pα1
1 Z× Z/pα2

2 Z× · · · × Z/pαk

k Z

is a ring isomorphism, and to understand the properties of the domain, one might try to use the
properties of each of the factors of the co-domain! For instance, an invertible element of Z/nZ
corresponds to an invertible element in product of rings, which in turn corresponds to an ordered
k-tuple of invertible elements, one for each factor Z/pαi

i Z. We will use this observation in the next
section to establish an important property of the totient function φ.

Exercise 6.12 (1) Find all integers x, y, z such that 2 ≤ x ≤ y ≤ z and

xy ≡ 1 mod z, yz ≡ 1 mod x, zx ≡ 1 mod y.

(2) Let p ≥ 5 be a prime number. Compute gcd(p!, (p− 2)!− 1). [Hint: Wilson.]
(3) Show that there do not exist natural numbers m,n such that 1 + n+ n2 = m2.
(4)∗ Let n = n1 · · ·nk be a product of pairwise relatively prime positive integers. Let si be the number
of [b] ∈ Z/niZ such that [b]2 = [1] in Z/niZ. Prove that s1 · · · sk is the number of [a] ∈ Z/nZ such
that [a]2 = [1] in Z/nZ.
(5)∗∗ Applying the result in (4) to the canonical representation of n conclude that∏

[a]∈(Z/nZ)×
[a] = −[1] in Z/nZ

if, and only if, n = 2, 4, pα or 2pα where p is an odd prime, and α ≥ 1. This is a generalization of
Wilson’s theorem due to Gauss (1801).

[Hint: Exercises (5) and (6) of Sect 6.1, and Exercise (3) from 6.3.3 could be helpful.]

6.5 Vista: Proof of Legendre’s Theorem

Recall the Legendre’s theorem 2.3.1:

Theorem 6.5.1 (Legendre, 1785) Let a, b and c be tree integers, not all of the same sign, and such
that abc is square-free. Then, the equation

ax2 + by2 + cz2 = 0

has a solution in integers, not all 0, if, and only if, −ab,−bc, and −ca are quadratic residues modulo
|c|, |a|, and |b| respectively.
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The necessity of the conditions on a, b, and c is easy to see. Indeed, if there is a non-trivial solution,
then, since a, b, and c are pairwise relatively prime, there is a solution with pairwise relatively prime
components: (x0, y0, z0). Consider the relation ax20 + by20 + cz20 = 0 modulo, say, c. We have

ax20 + by20 ≡ 0 mod c.

Since gcd(x0, c) = 1, we have also that

ab+ b2y20t
2
0 ≡ 0 mod c

where t0 is the reciprocal of x0 modulo c. Then, obviously, −ab is a quadratic residue modulo c. In
a similar way, we prove the other two conditions are true as well.

To prove the sufficiency of these conditions, we need to work more.

6.5.1 Factoring ax2 + by2 + cz2 in Z/(abc)Z
We are proving now that the conditions on the coefficients: abc - square free, and −ab,−bc, and −ca
are quadratic residues modulo |c|, |a|, and |b| respectively, implies that the polynomial ax2+by2+cz2

is factorizable modulo abc.

Theorem 6.5.2 With the conditions on a, b and c listed above, there are integers a1, a2, b1, b2, c1
and c2 such that

(a1x+ b1y + c1z)(a2x+ b2y + c2z) ≡ ax2 + by2 + cz2 mod abc.

Proof We do the proof in two steps.
• Factoring ax2 + by2 + cz2 in Z/aZ, Z/bZ, and Z/cZ

Consider first Z/aZ. By our assumption, −bc ≡ u2 mod a. From this it follows that b ≡ −c(u/c)2
mod a, and therefore that

ax2 + by2 + cz2 ≡ −c(u
c
)2y2 + cz2 ≡ (0x− uy + cz)(0x+

u

c
y + z) mod a.

In a similar way we get that

ax2 + by2 + cz2 ≡ (−vx+ 0y + cz)(
v

c
x+ 0y + z) mod b

and
ax2 + by2 + cz2 ≡ (−wx+ by + 0z)(

w

b
x+ y + 0z) mod c.

• Factoring ax2 + by2 + cz2 in Z/(abc)Z
With the help of the CRT, we find integers a1, b1 and c1 such that

a1 ≡ 0 mod a, a1 ≡ −v mod b, a1 ≡ −w mod c

b1 ≡ −u mod a, b1 ≡ 0 mod b, b1 ≡ 1 mod c

c1 ≡ c mod a, c1 ≡ c mod b, c1 ≡ 0 mod c.

We immediately conclude that

a1x+ b1y + c1z ≡ 0x− uy + cz mod a

a1x+ b1y + c1z ≡ −vx+ 0y + cz mod b

a1x+ b1y + c1z ≡ −wx+ by + 0z mod c.

In a similar way we find integers a2, b2 and c2 such that

a2x+ b2y + c2z ≡ 0x+
u

c
y + z mod a
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a2x+ b2y + c2z ≡
v

c
x+ 0y + z mod b

a2x+ b2y + c2z ≡
w

b
x+ y + 0z mod c.

With these choices we obviously have the needed

(a1x+ b1y + c1z)(a2x+ b2y + c2z) ≡ ax2 + by2 + cz2 mod abc.

Denote f(x, y, z) := a1x+ b1y + c1z, and g(x, y, z) := a2x+ b2y + c2z.

6.5.2 Sufficiency of the Conditions on a, b and c

Consider the function f(x, y, z) = a1x+ b1y + c1z with integer and x, y, and z in the parallelepiped

{x2 < |bc|} × {y2 < |ac|} × {z2 < |ab|}.

It is straightforward that the cardinality of this domain is (2s+ 1)(2t+ 1)(2r + 1) where

s = ⌊
√
|bc|⌋ t = ⌊

√
|ac|⌋ r = ⌊

√
|ab|⌋.

Exercise 6.13 Let A ∈ N, and d = ⌊
√
A⌋. Prove that d2 +2d ≥ A. Conclude that d ≥

√
A+ 1− 1.

From this exercise we derive that

(2s+ 1)(2t+ 1)(2r + 1) ≥ (2
√
|bc|+ 1− 1)(2

√
|ac|+ 1− 1)(2

√
|ab|+ 1− 1)

=
(4|bc|+ 3)(4|ac|+ 3)(4|ab|+ 3)

(2
√
|bc|+ 1 + 1)(2

√
|ac|+ 1 + 1)(2

√
|ab|+ 1 + 1)

.

We have furthermore that

2
√
|bc|+ 1 + 1 < 4

√
|bc|, 2

√
|ac|+ 1 + 1 < 4

√
|ac|, 2

√
|ab|+ 1 + 1 < 4

√
|ab|,

and therefore that

(2s+ 1)(2t+ 1)(2r + 1) ≥ (4|bc|+ 3)(4|ac|+ 3)(4|ab|+ 3)

4
√
|bc|4

√
|ac|4

√
|ab|

> |abc|.

We have proven the following

Proposition 6.5.3 In the notations above, there are two distinct triplets

(x1, y1, z1), (x2, y2, z2) ∈ {x2 < |bc|} × {y2 < |ac|} × {z2 < |ab|}

such that f(x0, y0, z0) ≡ f(x1, y1, z1) mod abc.

As a direct consequence we get that

Corollary 6.5.4 There is a non-zero triplet (x0, y0, z0) ∈ {x2 < |bc|} × {y2 < |ac|} × {z2 < |ab|}
such that f(x0, y0, z0) ≡ 0 mod abc.

We are ready now to finish the proof of the sufficiency of the conditions in Legendre’s theorem.
Indeed, we have that

ax20 + by20 + cz20 ≡ f(x0, y0, z0)g(x0, y0, z0) ≡ 0 mod abc.

We have obviously that |ax20| < |abc|, |by20 | < |abc|, and |cz20 | < |abc|. Since a, b and c are not all of
the same sign, we get (assuming that two of the coefficients are positive) that

−|abc| < ax20 + by20 + cz20 < 2|abc|

which, in combination with ax20 + by20 + cz20 ≡ 0 mod abc, implies that there are two options

ax20 + by20 + cz20 = 0 or ax20 + by20 + cz20 = |abc| = −abc.

In the first case, we are done. In the second, we check that

a(x0z0 + by0)
2 + b(y0z0 − ax0)2 + c(z20 + ab)2 = 0

which finishes the proof.

57



Chapter 6. Modular Arithmetic, the Ring Z/nZ 6.6. Multiplicativity of φ

6.6 Multiplicativity of φ

In this section, we are using the CRT to establish a very important property of the totient function:
this property relates nicely φ(mn) to φ(m) and φ(n). =

6.6.1 The Induced Map G : (Z/(mn)Z)× → (Z/mZ)× × (Z/nZ)×

Let m,n be positive natural numbers. Consider the associated with the CRT map

F : Z/(mn)Z→ Z/mZ× Z/nZ.

As we know, F is a ring homomorphism which sends the identity element [1]mn of its domain to the
identity element ([1]m, [1]n) of its co-domain. This means that

[a]mn[b]mn = [1]mn ⇒ F ([a]mn[b]mn) = F ([1]mn) ⇒ F ([a]mn)F ([b]mn) = ([1]m, [1]n).

In other words, a unit of Z/mnZ is sent by F to a unit of Z/mZ × Z/nZ. Decorating the
notation of the latter ring in a usual way to denote the group of units thereof, we get that the ring
homomorphism F induces a map between groups (with operation multiplication)

G : (Z/(mn)Z)× → (Z/mZ× Z/nZ)×

defined by G([a]mn) = F ([a]mn). It follows from the definition of G that it is a group homomor-
phism, that is for all [a]mn, [b]mn ∈ (Z/mnZ)× we have

G([a]mn[b]mn) = G([a]mn)G([b]mn).

Recalling that

gcd(a,mn) = 1 ⇔ gcd(a,m) = 1 ∧ gcd(a, n) = 1,

we identify the units of Z/mZ×Z/nZ to the set (Z/mZ)××(Z/nZ)×. This latter set is the Cartesian
product of two groups, and is a group with the component-wise multiplication. Observe that this is
the same operation which the Cartesian product inherits from the ring under the inclusion

(Z/mZ)× × (Z/nZ)× ⊆ Z/mZ× Z/nZ.

As a result, we get that F induces a group homomorphism

G : (Z/(mn)Z)× → (Z/mZ)× × (Z/nZ)× .

6.6.2 Multiplicativity of φ and a Formula for φ(n)

Recall that in general the map F : Z/(mn)Z → Z/mZ × Z/nZ is neither injective, nor surjective.
The same applies to G as well. When m and n are relatively prime, however, the situation is much
better.

Theorem 6.6.1 Let m and n be relatively prime positive integers, and consider the homomorphism

G : (Z/(mn)Z)× → (Z/mZ)× × (Z/nZ)×

as above. Then G is an isomorphism, that is, it is a homomorphism which is a bijection as well.

Proof Since gcd(m,n) = 1, the map F is a bijection, that is - an injection and a surjection. Since
G is induced by F , then G is an injection as well. We have to show also that G is a surjection. To
this end, let ([a]m, [b]n) ∈ (Z/mZ)× × (Z/nZ)× So, there are [a′]m and [b′]n such that

[a]m[a′]m = [1]m and [b]n[b
′]n = [1]n.
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that is ([a′]m, [b
′]n) ∈ (Z/mZ)× × (Z/nZ)× as well, and

([a]m, [b]n) · ([a′]m, [b′]n) = ([1]m, [1]n).

Since F is a surjection, there are x, y ∈ (Z/(mn)Z)× such that

F (x) = ([a]m, [b]n) and F (y) = ([a′]m, [b
′]n).

But then we have also that

F (xy) = F (x)F (y) = ([a]m, [b]n) · ([a′]m, [b′]n) = ([1]m, [1]n) and F ([1]mn) = ([1]m, [1]n),

and so, F (xy) = F ([1]mn). Since F is an injection, it follows that xy = [1]mn, and that x, y ∈
(Z/mnZ)× Finally, by the definition of G, we have ([a]m, [b]n) = F (x) = G(x). This proves that G
is a surjection. 2

This theorem has an interpretation through the totient function.

Corollary 6.6.2 The totient function φ : N → N is multiplicative, that is, for any two relatively
prime natural numbers m and n we have

φ(mn) = φ(m) · φ(n).

Proof For gcd(m,n) = 1, the map G : (Z/(mn)Z)× → (Z/mZ)× × (Z/nZ)× is a bijection. Com-
paring the cardinalities of the two sets, we get the result. 2

This corollary helps us compute the values of φ whenever we know the canonical factorization of the
argument. Here is the result

Proposition 6.6.3 Let n > 1 be an integer, and let n = pα1
1 pα2

2 · · · p
αk

k be its canonical decomposi-
tion as a product of powers of primes. We have the formula

φ(n) = n ·
(
1− 1

p1

)
·
(
1− 1

p2

)
· · ·
(
1− 1

pk

)
.

Proof The result follows from the above corollary, by a straightforward induction, and by the easily
verifiable formula, for every prime number p, and for any positive integer α,

φ(pα) = pα ·
(
1− 1

p

)
.

The last formula can be proved as follows. By definition, φ(pα) is the number of elements in a re-
duced residue system modulo pα. To find this number, one can find the number of residues which are
not relatively prime with pα instead, and subtract it from the total number, pα, of residues modulo
pα. Now, a residue is not relatively prime with pα if, and only if, it is divisible by p. Obviously,
among the natural numbers less than pα the ones which are divisible by p have the form pm, and
are such that 0 ≤ pm < pα. In other words, 0 ≤ m < pα−1. The total of such numbers is pα−1.
therefore, φ(pα) = pα − pα−1. The formula is proven. 2

As a matter of fact, this proposition can be seen from more conceptual point of view. Indeed,
consider, as we did in the end of the last section, n = n1n2 · · ·nk where the n1, n2, . . . , nk are
pairwise relatively prime. As we already know, the corresponding map

F : Z/nZ → Z/n1Z× Z/n2Z× · · · × Z/nkZ

is a bijection. It is again straightforward to see that F restricted to the subset (Z/nZ)× ⊆ Z/nZ
has values in (Z/n1Z)× × (Z/n2Z)× × · · · × (Z/nkZ)×. If we denote, as above, by

G : (Z/nZ)× → (Z/n1Z)× × (Z/n2Z)× × · · · × (Z/nkZ)×

the map obtained by restricting the domain and the co-domain of F to the ones in the previous
sentence, we immediately get that it is a bijection. Comparing the cardinalities of the two sets gives,
modulo the formula for φ(pα), the result about φ in the Proposition.
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Example 6.6.1 We are showing that there is no natural number n such that φ(n) = 14.

Let n = 2αpβ1

1 · · · p
βk

k be the canonical decomposition of n. Then we have

φ(n) = 2α−1pβ1−1
1 (p1 − 1) · · · pβk−1

k (pk − 1) = 2 · 7.

We see that α ≤ 2, and α = 2 is impossible: there has to be an odd prime divisor of n which will
increase the exponent of 2 dividing φ(n). So, n is either odd n = 2m+ 1, or twice an odd number,
n = 2(2m + 1). In both cases φ(n) = φ(2m + 1). Observe that φ(n) = 14 implies also that k ≤ 1
(why?). So, 2m + 1 = pβ . Finally, φ(n) = 14 implies that β ≤ 2 (how?). So, 2m + 1 = 1, p, or p2.
It is easy to check that none of these cases works. 2

Exercise 6.14 (1) Prove that, n ≥ 3 → φ(n) ∈ 2N.
(2) Prove that φ(n) = φ(2n) if, and only if, n is an odd number.
(3) Find all n such that 4 ∤ φ(n).
(4) Find all n ∈ N for which

(i) φ(n) = n/2 (ii) φ(n) = n/3 (iii) φ(n) = n/6.

(5) What can you say about n if φ(n) is a prime number? The same question for when φ(n) is a
square of a prime number.
(6) Find the smallest positive integers a which is not in the range of the totient function. That is,
find the smallest a ∈ Z+ such φ(n) ̸= a for every n ∈ Z+.
(7) There are ten natural numbers n for which φ(n) = 24. Find them.
(8) Find all pairs of natural numbers m,n for which φ(mn) = φ(m) + φ(n).
(9) For p a prime number, and k a positive integer, prove that

φ(1) + φ(p) + · · ·φ(pk) = pk.

Prove further that for any positive integer n∑
d>0, d|n

φ(d) = n.

(10) Let Sn = {m | 1 ≤ m ≤ n, gcd(m,n) = 1 }. Prove that∑
m∈Sn

m = (nφ(n))/2.

(11) Prove that the function ψ : N→ N defined by ψ(n) = n− φ(n) has the property

d |n ∧ d < n → ψ(d) < ψ(n).

(12) Prove that for any two positive integers m,n with d = gcd(m,n) we have

φ(mn) =
d · φ(m)φ(n)

φ(d)
.

(13) Prove that, for positive integers m and n,

φ(mn) = φ(n) ⇔ (m = 1) ∨ (m = 2 ∧ 2 ∤ n).

(14) Prove that, for the positive integers m,n,

φ(mn) = φ(m)φ(n) ⇔ gcd(m,n) = 1.

(15) Let m = m1m2 · · ·mr where m1,m2, . . . ,mr are pairwise relatively prime natural numbers.
Show that

m
φ(m)/φ(m1)
1 +m

φ(m)/φ(m2)
2 + · · ·+mφ(m)/φ(mr)

r ≡ r − 1 mod m.
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Polynomial Equations Modulo n

7.1 Linear Equations in Z/nZ
Following the general philosophy from Algebra, once we have a ring, we would like to be able to
solve linear equations with coefficients in that ring. The ring at hand is Z/nZ, and we want to study
the solutions to an equation of the form

[a] ·X = [b]

where [a] ̸= [0]. In the notations of congruences, we want to solve the congruence equation

a ·X ≡ b mod n.

Theorem 7.1.1 Consider the equation [a] ·X = [b] in Z/nZ. The following is true
(1) If [a] = [0], then the equations has solutions if, and only if, [b] = [0] in which case it has n
distinct solutions (every element of Z/nZ is a solution to [0] ·X = [0]);
(2) If [a] ̸= [0], let d = gcd(a, n). The equation above has a solution if, and only if, d | b in which
case it has exactly d distinct solutions.

Before giving a proof to the theorem - an exercise! The exercise shows that item (2) of the theorem
does make sense!

Exercise 7.1 Let [a] ̸= [0] in Z/nZ. Prove that
(1) if [a] = [b], then gcd(a, n) = gcd(b, n);
(2) if d |n and [a] = [b], then d | a ⇔ d | b.

Again, in the congruence notations item (2) of the theorem says that if ¬(a ≡ 0 mod n) and
d = gcd(a, n), then the congruence equation

a ·X ≡ b mod n

has solutions if, and only if, d | b in which case there are exactly d incongruent modulo n solu-
tions. Note that the solutions in integers are infinitely many in that case! All they are organized in
d distinct classes modulo n.

Proof of Theorem 7.1.1. The item (1) is obvious. So, let’s prove item (2). The crucial ob-
servation here is that [a] · X = [b] has a solution [x0] if, and only if, n | a · x0 − b, if, and only if,
a · x0 − b = n · y0 , if, and only if, the equation

a ·X + n · Y = b

61



Chapter 7. Polynomial Equations Modulo n 7.2. Equations of Higher Degree in Z/nZ

has a solution in Z. But we already know that the linear Diophantine equation has a solution if,
and only if, gcd(a, n) | b in which case all solutions are given by the formulae

x′ = x0 + (n/d) · k y′ = y0 − (a/d) · k

where k ∈ Z, d = gcd(a, n), and (x0, y0) is a particular solution of that equation. This proves half
of the claim of item (2): the existence of solutions. For the number of distinct solutions in Z/nZ,
we need to figure out when two solutions

x′ = x0 + (n/d) · k′ and x′′ = x0 + (n/d) · k′′

determine the same element in Z/nZ, that is, when [x′] = [x′′]. But since

x′ − x′′ = (n/d)(k′ − k′′) = n · (k′ − k′′)/d,

we see that n |x′ − x′′ , that is [x′] = [x′′] in Z/nZ, if, and only if, (k′ − k′′)/d is an integer,
if, and only if, d | k′ − k′′ , if, and only if, [k′] = [k′′] in Z/dZ. Therefore the distinct solutions to
[a] ·X = [b] in Z/nZ are as many as are the elements of Z/dZ. This finishes the proof of item (2). 2

As usual, the case when n = p is a prime number is very simple: if [a] ̸= [0] in Z/pZ, then
gcd(a, p) = 1, so the solution to [a] ·X = [b] is unique. Of course, if [a′] is the reciprocal of [a], which
exists since [a] ̸= [0], then, that (unique) solution is given by

[x0] = [a′] · [a].

Exercise 7.2 (1) Solve the congruences

(i) 4X ≡ 2 mod 6 (iii) 4X ≡ 4 mod 6 (v) 256X ≡ 179 mod 337

(ii) 4X ≡ 1 mod 6 (iv) 3X ≡ 800 mod 11 (vi) 1215X ≡ 560 mod 2755.

(2) Let p be a prime number, and a, b be integers such that 1 ≤ a ≤ p−1. Prove that the congruence
aX ≡ b mod p has a solution

x ≡ b · (−1)a−1 · 1
a
·
(
p− 1

a− 1

)
mod p.

7.2 Equations of Higher Degree in Z/nZ
7.2.1 General Remarks and Notations

Let f(X) = adX
d + · · · + a1X + a0 be a polynomial with integer coefficients, and let n ∈ N be a

positive number. We are interested in finding the solutions to the equation

f(X) ≡ 0 mod n.

By definition this means that we want to find all integers s ∈ Z such that

f(s) ≡ 0 mod n.

Let’s observe the following.
(i) If s, s′ ∈ Z such that s ≡ s′ mod n, then f(s) ≡ f(s′) mod n.
(ii) Suppose g(X) = a′dX

d + · · · a′1X + a′0 is a polynomial with integer coefficients for which

a0 ≡ a′0 mod n, a1 ≡ a′1 mod n, . . . ad ≡ a′d mod n.

(We write in such a case f(X) ≡ g(X) mod n.) If s ∈ Z, then f(s) ≡ g(s) mod n. 2

Our observations mean that solving f(X) ≡ 0 mod n is the same as solving the equation

[f(X)]n := [ad]nX
d + · · ·+ [a1]nX + [a0]n = [0]n in Z/nZ.

The polynomial [f(X)]n with coefficients in Z/nZ is called the reduction modulo n of the poly-
nomial f(X).
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7.2.2 Reduction of the Modulus Using the Chinese Remainder Theorem

Suppose now that n = n1n2 where gcd(n1, n2) = 1. If s ∈ Z is a solution to f(X) ≡ 0 mod n, that
is if f(s) ≡ 0 mod n, then obviously s is a solution to both equations

f(X) ≡ 0 mod n1 and f(X) ≡ 0 mod n2.

This means that the solution [s]n to the equation [f(X)]n = [0]n produces solutions [s]n1
, respec-

tively [s]n2 , to [f(X)]n1 = [0]n1 , respectively [f(X)]n2 = [0]n2 .

By using the CRT (recall that gcd(n1, n2) = 1), we see that if [s1]n1
is a solution to [f(X)]n1

= [0]n1

and if [s2]n2
is a solution to [f(X)]n2

= [0]n2
, then there is a unique [s]n such that [s]n1

= [s1]n1

and [s]n2
= [s2]n2

, and moreover, since f(s) ≡ f(s1) mod n1 and f(s) ≡ f(s2) mod n2, we have
also that f(s) ≡ 0 mod n.

We can interpret the result we just established in a useful way using the CRT map F : Z/nZ →
Z/n1Z× Z/n2Z. Denote by M ⊆ Z/nZ the set of solutions to [f(X)]n = [0]n, and by Mi ⊆ Z/niZ
the set of solutions to [f(X)]ni

= [0]ni
for i = 1, 2. Then, by the above considerations we have that

F|M :M → Z/n1Z× Z/n2Z

has a range exactly M1 ×M2. As a consequence we get that F induces a bijection

F̃ :M →M1 ×M2.

Our discussion so far helps us prove the following theorem.

Theorem 7.2.1 Suppose f(X) is a polynomial with integer coefficients, and n ∈ N is a positive
number such that n = n1n2 · · ·nk where n1, n2, . . . , nk are pairwise relatively prime. Denote by
Mi ⊆ Z/niZ the set of solutions to [f(X)]ni = [0]ni for i = 1, . . . , k, and by M ⊆ Z/nZ the set
of solutions to [f(X)]n = [0]n. Then, the CRT map F : Z/nZ → Z/n1Z × · · · × Z/nkZ induces a
bijection between M and M1 × · · · ×Mk.

Proof We argue by induction on k ≥ 2. The discussion preceding the theorem proves the base case
k = 2. Let’s verify the induction step: (n → n + 1). Suppose n = n1 · · ·nknk+1 is a product of
pairwise relatively prime positive integers. We want to show that the CRT map

F : Z/nZ→ Z/n1Z× · · · × Z/nkZ× Z/nk+1Z

induces a bijection
F̃ :M →M1 × · · · ×Mk ×Mk+1.

Let n′ = n/nk+1. We have that n′ = n1 · · ·nk is a product of k pairwise relatively prime positive
integers, and therefore we can apply the induction hypothesis to the solutions of [f(X)]n′ = [0]n′ .
Denoting by M ′ ⊆ Z/n′Z the set solutions and by F ′ : Z/n′Z → Z/n1Z × · · · × Z/nkZ the corre-
sponding CRT map, we get that F ′ induces a bijection F̃ ′ :M ′ →M1 × · · · ×Mk.
Applying the base step to n = n′nk+1 we get the bijection F̃ ′′ : M → M ′ × Mk+1 where F ′′ :
Z/nZ→ Z/n′Z× Z/nk+1Z is the CRT map relevant here.
Observe now that F is the composition of the following maps

F ′′ : Z/nZ→ Z/n′Z× Z/nk+1Z

and
(F ′, IdZ/nk+1Z) : Z/n′Z× Z/nk+1Z → Z/n1Z× · · · × Z/nkZ× Z/nk+1Z,

that is, F = (F ′, IdZ/nk+1Z)◦F ′′. Restricting both maps, on the left and on the right of the equality,

to M we get the composition F̃ = (F̃ ′, IdMk+1
) ◦ F̃ ′′ : M → M1 × · · · ×Mk ×Mk+1. Since both,

(F̃ ′, IdMk+1
) and F̃ ′′ are bijections, then so is their composition. Therefore, F̃ is a bijection as

63



Chapter 7. Polynomial Equations Modulo n 7.3. Equations of Higher Degree in Z/pkZ

claimed. This completes the proof of the induction step. 2

This theorem gives in particular an estimate of the number of solutions to [f(X)]n = [0]n: in
the notation of the theorem, it is |M | = |M1| · · · |Mk|.

Corollary 7.2.2 Let n = pα1
1 · · · p

αk

k be the canonical decomposition of n ≥ 2, and let f(X) be a
polynomial with integer coefficients. Denote by M the number of solutions to [f(X)]n = [0]n, and
by Mi - the number of solutions to [f(X)]pαi

i
= [0]pαi

i
for i = 1, . . . , k. Then, M =M1 · · ·Mk.

Example 7.2.1 Let n = 2αpα1
1 · · · p

αk

k , where 2 < p1 < · · · < pk, be the canonical decomposition
of n as a product of powers of primes. Here we allow α ≥ 0, but αi ≥ 1 for i = 1, . . . , k. For the
number m of solutions to [X2 − 1]n = [0]n we have

(i) m = 2k if α ≤ 1;
(ii) m = 2k+1 if α = 2;
(iii) m = 2k+2 if α ≥ 3.

This follows from Exercise 6.3 items (5) and (6). 2

Example 7.2.2 We are solving f(X) = X3 + 4X + 7 ≡ 0 mod 84. For this, we need to solve

f(X) ≡ 0 mod 4, f(X) ≡ 0 mod 3, f(X) ≡ 0 mod 7

first. We check directly that the first equation has solutions X ≡ 1 mod 4, the second X ≡ 1
mod 3, and the third has X ≡ 0 mod 7. So, the solution to f(X) ≡ 0 mod 84 is unique, and is
given by the system of three linear equations above. Since gcd(3, 4) = 1 the system X−1 ≡ 0 mod 4
and X − 1 ≡ 0 mod 3, has a solution X ≡ 1 mod 12. Together with the third linear equation we
have

X = 7X1, 7X1 ≡ 1 mod 12

which is the same as
7X1 ≡ 49 mod 12.

Since gcd(7, 12) = 1 we cancel out a 7, and get X1 ≡ 7 mod 12. So, X1 = 12k + 7 and X = 7X1 =
7(7 + 12k) = 49 + 84k. The solution to f(X) ≡ 0 mod 84 is given by X ≡ 49 mod 84. 2

7.3 Equations of Higher Degree in Z/pkZ
The last theorem of the previous section reduces solving the equation [f(X)]n = [0]n to solving the
system of equations [f(X)]pαi

i
= [0]pαi

i
where n = pα1

1 · · · p
αk

k is the canonical decomposition of n.

So, we may assume, W.L.O.G., that n = pk. Turns out the situation in this case is even better:
solving f(X) ≡ 0 mod pk almost entirely depends on solving f(X) ≡ 0 mod p - a fact discovered
in its utmost generality by Kurt Hensel (in the early 1900’s). His result is what we are proving in
this section.

7.3.1 The Derivative of a Polynomial

The concept of derivative of a function is known from Calculus. This definition still works when we
consider a polynomial over the fields Q,R and C. What we need here is a definition of derivative
of a polynomial over a ring, and even a finite ring. No matter that our approach is not related to
finding limits, as it is in Calculus, the resulting formula for the derivative will be the same.

Consider the polynomial f(X) = adX
d + ad−1X

d−1 + · · · + a1X + a0 where the coefficients be-
long to some ring (such as Z,Q,RC,Z/nZ or any other ring). We can express this polynomial in
terms of X − a for any a in the ring.

f(X) = ad(X − a+ a)d + ad−1(X − a+ a)d−1 + · · ·+ a1(X − a+ a) + a0
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-

= bd(X − a)d + bd−1(X − a)d−1 + · · ·+ b1(X − a) + b0 =: g(X − a).

Obviously, b0 = f(a). Let’s compute b1.

Exercise 7.3 Prove that b1 = d · ad · ad−1 + (d− 1) · ad−1 · ad−2 + · · ·+ 2 · a2 · a+ a1.

By the expression above, we see that b1 is the coefficient at the linear term of g(X − a), and
b1(X − a) + b0 = b1(X − a) + f(a) is therefore similar to the ”linear approximation” of f(X) at a

f(X) ∼ f(a) + b1(X − a).

This is the motivation for the following definition.

Definition 7.3.1 In the notations above, the polynomial

d · adXd−1 + (d− 1) · ad−1X
d−2 + · · ·+ 2 · a2X + a1

is called the derivative of f(X), and is denoted by f ′(X). We define the kth derivative, f (k)(X), of
f(X) for every natural number k: f (0)(X) = f(X), f (1)(X) = f ′(X), and for every k ∈ N we set
f (k+1)(X) = (f (k)(X))′.

In these notations we have that b1 = f ′(a), and we obtain the identity

f(X) = f(a) + f ′(a)(X − a) + b2(X − a)2 + · · ·+ bd(X − a)d.

Obviously, if k > d, then f (k)(X) = 0.

7.3.2 Solving Equations Modulo pk: Hensel’s Lemma

Suppose that s ∈ Z is a solution to f(X) ≡ 0 mod pk for k ≥ 2. That is

f(s) ≡ 0 mod pk.

Then, for every 1 ≤ l < k we have that f(s) ≡ 0 mod pl, that is, s is a solution to f(X) ≡ 0
mod pl for every such l. Turns out that often we can reverse the process: starting with a solution
to f(X) ≡ 0 mod pl, we can determine a solution to f(X) ≡ 0 mod pl+1. This process is called
lifting the solution from mod pl to mod pl+1. Repeating this process, one ends up with a
solution mod pk. Here is the official definition of lifting solutions.

Definition 7.3.2 Suppose m,n ∈ N such that m |n, and that x0 is a solution to f(X) ≡ 0 mod m.
The integer x1 is called a lift mod n of x0 if
(i) x1 ≡ x0 mod m, and
(ii) f(x1) ≡ 0 mod n

In particular, a lift mod pl+1 of a solution x0 to f(X) ≡ 0 mod pl is an integer x1 such that

x1 ≡ x0 mod pl and f(x1) ≡ 0 mod pl+1.

Notice that (see the example below) there are cases in which several incongruent solutions to
mod pk restrict to the same solution to mod pl, (l < k).

Example 7.3.1 Let p = 2 and k = 3. The equation X2 − 1 ≡ 0 mod 8 has four solutions:
[1]8, [3]8, [5]8 and [7]8. When restricting to mod 4, we see that [1]8 and [5]8 restrict to [1]4, and [3]8
and [7]8 restrict to [3]4. 2
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Since every solution to f(X) ≡ 0 mod pl+1 restricts to a solution mod pl, the lifting of solutions
from mod pl to mod pl+1 will produce all solutions mod pl+1.

The derivative of the polynomial f(X) plays an important role in the lifting process. Here is
why. Suppose S is a solution to f(X) ≡ 0 mod pl which we want to lift to solutions mod pl+1.
Any lifted solution will have the form s′ = s+ t · pl for some t ∈ Z, and will satisfy the congruence
f(s′) ≡ 0 mod pl+1. Since we are working mod pl+1, the possible lifts of s to mod pl+1 are given
by 0 ≤ t ≤ p− 1. More explicitly

f(s′) = ad(s+ tpl)d + ad−1(s+ tpl)d−1 · · ·+ a1(s+ tpl) + a0 ≡ 0 mod pl+1.

Substituting s′ = s+ t · pl for X, and s for a in the last formula of the previous subsection we can
express the previous equation as

f(s′) = f(s) + f ′(s) · (tpl) + b2 · (tpl)2 + · · ·+ bd · (tpl)d ≡ 0 mod pl+1.

Disregarding the terms with pr for r ≥ l + 1, since they are 0 mod pl+1, we simplify the last
congruence to (this calculation is straightforward and routine, and should be done by every student
on their own)

f(s) + tf ′(s)pl ≡ 0 mod pl+1.

Since pl | f(s), we see that the values of t we are looking for satisfy the congruence

f(s)

pl
+ f ′(s)t ≡ 0 mod p.

So, t, being an integer bounded by 0 and p− 1, is a solution to the linear equation

f ′(s) ·X ≡ −f(s)
pl

mod p.

By the first section of this chapter we know how to solve this equation. Namely, a solution exists if,
and only if, gcd(f ′(s), p) | f(s)/pl in which case the number of the incongruent solutions mod p is
gcd(f ′(s), p).
There are two cases to consider here:

(i) gcd(f ′(s), p) = 1 when p ∤ f ′(s) and (ii) gcd(f ′(s), p) = p when p | f ′(s).

In the case when gcd(f ′(s), p) = 1 s is liftable to mod pl+1 in a unique way: s′ = s+ t0p
l where t0

is the unique solution to the equation mod p above.
In the case when gcd(f ′(s), p) = p the equation reduces to

0 ·X ≡ −f(s)
pl

mod p.

Accordingly, we have two sub-cases here: (ii’) p ∤ f(s)/pl, and (ii”) p | f(s)/pl. In the first sub-case
no solutions exist, and the lifting of s from mod pl to mod pl+1 is not possible. In the second
sub-case, all classes mod p can be t, that is, any t = 0, . . . , p− 1, and s has p lifts to mod pl+1.

We have proven now item (1) of the following theorem.

Theorem 7.3.1 (Hensel’s Lifting Lemma) Let f(X) be a polynomial with integers coefficients, let
p be a prime number, and l a positive integer.
(1) Suppose that the integer s is a solution to f(X) ≡ 0 mod pl. Then we have

(i) if p ∤ f ′(s) then there is a unique mod pl+1 number s′ ∈ Z such that s′ ≡ s mod pl and
f(s′) ≡ 0 mod pl+1;

(ii) if p | f ′(s) and pl+1 ∤ f(s), then there is no s′ with properties as in (i);
(iii) if p | f ′(s) and pl+1 | f(s), then there are p incongruent mod pl+1 integers s′1, . . . , s

′
p such

that s′i ≡ s mod pl and f(s′i) ≡ 0 mod pl+1.
(2) If f(s) ≡ 0 mod p and p ∤ f ′(s), then for every k ≥ 1 there is a unique mod pk integer sk such
that sk ≡ s mod p, and f(sk) ≡ 0 mod pk.
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Proof The discussion before the theorem provides the proof of item (1). To prove item (2) we argue
by induction on k ≥ 2. The base step k = 2 is the case l = 1 in item (1), and is therefore verified.
We are proving the inductive step: (k → k + 1). Let the extension sk of s to mod pk be unique.
We have to show that there is an extension of s to mod pk+1 and that this extension is unique.
(Existence.) Notice that, since sk ≡ s mod p, we have f ′(sk) ≡ f ′(s) mod p, and so p ∤ f ′(sk). By
item (1), we get that there is a unique mod pk+1 extension s′k of sk. This means in particular that
f(s′k) ≡ 0 mod pk+1 and that s′k ≡ sk mod pk. But then, s′k ≡ sk ≡ s mod p as well, and we can
choose sk+1 = s′k: a mod pk+1 extension of s does exist.
(Uniqueness.) For the uniqueness of the mod pk+1 extension of s, notice that any such extension
is also a mod pk+1 extension of sk as well, and so, as we proved, is unique. This completes the
proof of item (2). 2

Remark 7.3.1 To solve f(X) ≡ 0 mod pk we must start with solving f(x) ≡ 0 mod p, and then
extend, whenever possible, the solutions to mod pk. Hensel’s lemma tells us how to do that step by
step. It, moreover, teaches us that every solution mod p which does not annihilate f ′(X) mod p
has a unique extension to mod pk. In particular, if the latter happens for all solutions mod p,
then f(X) ≡ 0 mod pk has as many solutions as f(X) ≡ 0 mod p. 2

Example 7.3.2 Consider the equation f(X) = X2 − 1 ≡ 0 mod 16. The solution to f(X) ≡ 0
mod 2 is only one: s = 1. Since f ′(X) = 2X we have that f ′(1) ≡ 0 mod 2. Since 4 | f(1), the
theory says that there will be two lifts of s = 1 to solutions mod 4. Indeed f(X) ≡ 0 mod 4 has

two solutions: s
(1)
1 = 1 and s

(2)
1 = 3. As before, f ′(1) ≡ 0 mod 2 and f ′(3) ≡ 0 mod 2. Since

in this case f(s
(j)
1 ) ≡ 0 mod 8, for j = 1, 2, the solutions s

(j)
1 lift to two solutions mod 8 each.

Indeed, these are

s
(1)
2 = 1, s

(2)
2 = 5, s

(3)
2 = 3, s

(4)
2 = 7

the first two extending s
(1)
1 and the last two extending s

(2)
1 . To find the solutions mod 16, we have

to extend, whenever possible, the solutions mod 4. In this case

f(1) = 0, f(3) = 8, f(5) = 24, f(7) = 48

so that only the first and the last are divisible by 16. Therefore, only s
(1)
2 and s

(4)
2 can be lifted to

solutions mod 16, and each of them has two lifts. In particular, the equation x2 − 1 ≡ 0 mod 16
has four solutions. 2

Example 7.3.3 How many solutions does f(X) = X3 + 2X + 1 ≡ 0 mod 1800 have? Solve the
equation.
There is no problem in principle to find all solutions by brute force: trying all possible 1800 values
for X, and select the ones which solve the equations. The more so if we have a computer handy. We
will work here using theory, not computers.
Since 1800 = 233252 we have to solve three equations

f(X) ≡ 0 mod 23, f(X) ≡ 0 mod 32, f(X) ≡ 0 mod 52.

(i) Solving f(X) ≡ 0 mod 23. Again, we can find the solutions directly, checking out the eight
possible values for X. Since this is obvious how to do, we will show how to find the solutions using
the theory developed so far in this chapter. To this end, we solve f(X) ≡ 0 mod 2 first. There is
one such solution: s1 =. We use Hensel’s lemma to lift this solution to mod 22. We have that
f ′(X) = 3X2 +2. Since f ′(s1) = f ′(1) = 5 ≡ 1 mod 2 ̸= 0 mod 2, this solution lifts to mod 4. It
lifts to mod 8 as well, as we know, and f(X) ≡ 0 mod 8 has a unique solution. Let’s find it. We
have s′1 = s1 + 2t = 1 + 2t so that f(s1) + 2tf ′(s1) ≡ 0 mod 4. This means 4 + 10t ≡ 0 mod 4,
so t = 0 (recall that t ∈ {0, 1}), and s′1 = 1. To extend s′1 to mod 8 we do the same procedure:
s′′1 = s′1 + 4t = 1+ 4t so that f(s′1) + 4tf ′(s′1) ≡ 0 mod 8. We get 4 + 20t ≡ 0 mod 8, so t = 1 and
the only solution to f(X) ≡ 0 mod 8 is given by s′′1 = 5.

(ii) Solving f(X) ≡ 0 mod 9. The equation has no solutions mod 3. This means that the
original equation has no solutions either. 2
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Exercise 7.4 Solve the equations
(1) 7X2 + 19X + 25 ≡ 0 mod 27.
(2) 9X2 + 29X + 62 ≡ 0 mod 64.
(3) X3 + 2X + 2 ≡ 0 mod 125.
(4) X4 + 4X3 + 2X2 + 2X + 12 ≡ 0 mod 625.
(5) 6X3 + 27X2 + 17X + 20 ≡ 0 mod 30.
(6) 31X4 + 57X3 + 96X + 191 ≡ 0 mod 225.

Exercise 7.5 (1) Suppose d ∈ N is such that gcd(d, p) = 1, and let k > 0 and a be integers with
gcd(a.p) = 1. Prove that the equation Xd − a ≡ 0 mod pk has as many solutions as the equation
Xd − a ≡ 0 mod p.
(2) Let a and k > 0 be integers such that gcd(a, p) = 1. Prove that Xp−1 − a ≡ 0 mod pk has p− 1
solutions when a ≡ 1 mod p, and 0 solutions otherwise.

7.4 Vista: p-adic Numbers

Hensel’s lemma discussed above is related to number systems Qp, extensions of the rational numbers,
one for each prime number p, and called p-adic numbers. These number systems were invented by
Kurt Hensel (∼ 1897) with the aim of making methods of power series expansion, so powerful in
analytic function theory, available to Number Theory as well.

This section is devoted to the definition and the discussion of the most basic properties of the
p-adic numbers. In the second Vista about the p-adic numbers, in the next Chapter, we will discuss
some number theoretical questions which show the importance of these extensions of the rational
numbers.

7.4.1 The p-adic Integers Zp

We begin with the definition of p-adic integers. By definition, a p-adic integer is a sequence

< [an]pn >n≥1:= {[a1]p, [a2]p2 , . . . , [an]pn , . . . }

such that
an+1 ≡ an mod pn

for every n ≥ 1. The class [an]pn is called the nth component of the p-adic integer x =< [an]pn > .
Naturally, the p-adic integers form a subset Zp of the Cartesian product

Z/pZ× Z/p2Z× · · · × Z/pnZ× · · · =:
∏
n≥1

Z/pnZ

The defining relation between neighbouring components of x suggest the notation lim←−Z/pnZ for the
set of sequences defining p-adic integers. This notation is not reserved for this particular family
of sequences, and is used in more general situations as well. In those lim←− denotes the so called
projective or inverse limit. So that we have

Zp = lim←−Z/pnZ.

The p-adic integers form a ring with component-wise addition and multiplication: for x =< [an]pn >
and y =< [bn]pn > we define

x+ y :=< [an + bn]pn >, x · y :=< [an · bn]pn > .

Exercise 7.6 (1) Prove that the p-adic integers Zp with the two operations just defined is a com-
mutative ring the zero element ([0]p, [0]p2 , . . . , [0]pn , . . . ) being the neutral element w.r.t. addition,
and the identity element ([1]p, [1]p2 , . . . , [1]pn , . . . ) being the neutral element w.r.t. multiplication.
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These are denoted by 0 and 1 as usual.
(2) Let x = ([a1]p, . . . [an]pn , . . . ) be a p-adic integer. Prove that the components [a1]p, . . . , [ak]pk are
uniquely determined by [ak+1]pk+1 . In particular, if [ak]pk = [0]pk , then

[a1]p = [0]p, [a2]p2 = [0]p2 , . . . , [ak−1]pk−1 = [0]pk−1 .

Conclude that a non-zero element x ∈ Zp either has no zero components, (∀n ≥ 1)([an]pn ̸= [0]pn),
or has the form

([0]p, . . . , [0]pk , [ak+1]pk+1 , . . . )

where (∀s ≥ 1)([ak+s]pk+s ̸= [0]pk+s).

There is a natural map φp : Z→ Zp defined on k ∈ Z by

φp(k) = {[k]p, [k]p2 , . . . , [k]pn , . . . }.

This map is obviously one-to-one, and is a homomorphism (of rings). So, we can naturally consider
Z a subset of Zp.

What is more interesting here is that some non-integer rational numbers are also naturally a p-
adic integers. Indeed, let x = a/b where gcd(b, p) = 1. As we know, since b is invertible modulo
any positive power of p, the number a/b determines a class in Z/pnZ for every n ≥ 1: the only class
[an] ∈ Z/pnZ for which a ≡ b · an mod pn. We will denote [an] by [a/b]pn . It is straightforward to
check (do that!) that the sequence < [a/b]pn > is a p-adic integer.

A bit more ”globally” now, denote by Z(p) the set of all rational numbers whose reduced repre-
sentation has denominator not divisible by p:

Z(p) = {x ∈ Q |x = a/b, a > 0, b ∈ Z, gcd(a, b) = 1, p ∤ b}.

The set Z(p) with the operations addition and multiplication inherited from Q forms a ring (verify
this!). The ring of integers Z is naturally a subset (identifying an integer m with the rational
fraction m/1), and actually - a subring of Z(p). Finally, the map φp : Z → Zp extends to a one-to-
one homomorphism, denoted the same way,

φp : Z(p) → Zp, φp(a/b) = ([a/b]p, [a/b]p2 , . . . , [a/b]pn , . . . ).

So, we may also assume that Z(p) is a subset (a sub-ring) of Zp.

Exercise 7.7 (1) Suppose the p-adic integer x has the form

x = ([0]p, . . . , [0]pk , [ak+1]pk+1 , . . . )

with [ak+1]pk+1 ̸= [0]pk+1 , and k ≥ 1. Prove that there is a unique p-adic integer y such that
x = φp(p

k) · y. More specifically, let bk+l = ak+l/p
k for l ≥ 1. (bk+l ∈ Z - why?) Prove that the

unique y the existence of which is claimed above has the form

y = ([bk+1]p, . . . , [bk+1]pk+1 , . . . , [bk+l]pk+l , . . . ).

(2) Prove that x = ([a1]p, . . . , [an]pn , . . . ) ∈ Zp has a reciprocal, i.e., (∃y ∈ Zp)(x · y = 1), if, and
only if, [a1]p ̸= [0]p.

The last exercise teaches us that the group of units (Zp)
× of the ring of p-adic integers consists of

all x = ([a1]p, . . . , [an]pn , . . . ) with p ∤ a1.

Exercise 7.8 Prove that Zp has no non-zero zero divisors: if x ̸= 0 and y ̸= 0, then x · y ̸= 0.
(Rings with this property are called integral domains.)
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7.4.2 The p-adic Numbers Qp

The definition of Qp is pretty formal from algebraic point of view, and resembles the the construction
of the rational numbers Q starting from the integers Z: rational numbers are fractions of integers.
In the case at hand, we want to consider fractions of p-adic numbers instead. This is a construction
which can be carried over for any ring R without non-zero zero divisors. The result is a field, called
the field of fractions of the ring R and denoted by Frac(R). In other words, Q = Frac(Z), and, by
definition, Qp = Frac(Zp).

The field of fractions of a ring is studied thoroughly in the course Topics in Algebraic Structures.
We only sketch one way to construct it here.

Suppose R is a ring with no non-zero zero divisors. Denote

Frac(R) = {(r1, r2) | r1, r2 ∈ R, r2 ̸= 0 }/ ∼

where ∼ is a relation on R× (R \ {0}) defined by

(r1, r2) ∼ (r′1, r
′
2) if r1 · r′2 = r′1 · r2.

The important fact here is that Frac(R) has a structure of a field with the operations

(r1, r2) + (r′1, r
′
2) = (r1 · r′2 + r′1 · r2, r2 · r′2) and (r1, r2) · (r′1, r′2) = (r1 · r′1, r2 · r′2).

It is customary to write r1/r2 instead of (r1, r2). Notice that if R = Z, the construction of Frac(Z)
is exactly the one that is usually described in the course Intro to Advanced Math.

Exercise 7.9 Prove that every p-adic number α ∈ Qp can uniquely be represented in the form
α = φp(p

n) · x where n ∈ Z and x ∈ (Zp)
×. In addition, Zp consists of all such α with n ∈ N, and

(Zp)
× consists of all such α with n = 0.

Based on the exercise above, it is straightforward to verify that the map φp : Z(p) → Zp extends to
a map φp : Q → Qp which is still a homomorphism of rings (so, a homomorphism of fields). Using
this map, we identify Q to its image in Qp.

7.4.3 Hensel’s Lifting Lemma and p-adic Integers

Let’s go back to solving polynomial equations modulo powers of prime numbers. Suppose f(X) ∈
Z[X], and we want to solve it modulo the powers of a prime number p. Hensel’s lifting lemma tells
us what happens here: every solution modulo pk+l is an extension of a solution modulo pk, and we
know the mechanism of lifting a solution modulo pk to modulo pk+l.

Now, we can evaluate a polynomial with integer coefficients at a p-adic integer, and get a p-adic
integer as value. To explain this, suppose x = ([a1]p, . . . , [an]pn , . . . ) ∈ Zp. Then, by definition,

f(x) = ([f(a1)]p, . . . , [f(an)]pn , . . . ).

Exercise 7.10 Check that, if x ∈ Zp is as above, then, for every n ≥ 1, f(an+1) ≡ f(an) mod pn.
Conclude that f(x) ∈ Zp.

The exercise shows that any such polynomial can be considered as a map, a polynomial function,
f : Zp → Zp. We may, therefore, ask about the solutions to f(X) = 0 in Zp. Any such solution
x ∈ Zp consists of a sequence < an >n≥1 such that, for n ≥ 1, an+1 ≡ an mod pn, and f(an) ≡ 0
mod pn. But this is exactly what it means to have a1 a solution to f(X) ≡ 0 mod p which is liftable
to any mod pn.

Exercise 7.11 Prove that f(X) ≡ 0 mod pn has a solutions for every n ≥ 1 if, and only if, there
is a solution to f(X) ≡ 0 mod p which is liftable to mod pn for every n ≥ 1.
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In other words, f(X) ≡ 0 mod pn is solvable for every n ≥ 1 if, and only if, it is solvable in Zp.

One of the items in Hensel’s lifting lemma ensures that if f(a) ≡ 0 mod p, and if p ∤ f ′(a), then
f(X) = 0 has a solution in Zp. Notice that if f(a) = 0 in Z, then φp(a) ∈ Zp is a solution of
f(X) = 0 in Zp for every p. But if f(X) = 0 has no integer solutions, then any solution in Zp will
be in Zp \ φp(Z).

An interesting question arising here is the following: Is it true that f(X) = 0 would have
solutions in Z if it has solutions in Zp for every prime number p? The answer is negative
in general. We will address this question in more detail in the end of next Chapter.

Naturally, one can consider polynomial functions f : Qp → Qp as well where

f(X) = bdX
d + bd−1X

d−1 + · · · b1X + b0 ∈ Z[X].

Indeed, let α ∈ Qp have its unique expression α = φp(p
k) · x where x ∈ Zp, and k ≤ 0 is an integer.

By definition

f(α) = φp(bd)φp(p
k)dxd + φp(bd−1)φp(p

k)d−1xd−1 + · · ·+ φp(b1)φp(p
k)x+ φp(b0) ∈ Qp.

To be saved from dealing with such long and ugly, but correct!, expressions we identify Q with its
image φp(Q) ⊂ Qp, and write s instead od φp(s) for any s ∈ Q. With this simplification, we have
α = pkx, and

f(α) = bdp
kdxd + bd−1p

k(d−1)xd−1 + · · ·+ b1p
kx+ b0.

7.4.4 Hensel’s Definition of p-adic Numbers

There is a natural and intuitive way to encode any x = ([a1]p, . . . , [an]pn , . . . ) ∈ Zp using pow-
ers of p and a fixed system of residues modulo p. Classically, the residue system is chosen to be
{0, 1, . . . , p − 1}, but we can work with any other fixed system. We choose to be classical in this
subsection.

As we know, any class [a]pn has a unique representative b ∈ [a]pn such that 0 ≤ b < pn. More-
over, this representative has a unique expression to the base p:

b = b0 + b1p+ · · · bn−1p
n−1, 0 ≤ b0, b1, . . . , bn−1 < p.

Considering x ∈ Zp above, we may assume that for all n ≥ 1 we have chosen 0 ≤ an < pn. Then,
because of the relations an+1 ≡ an mod pn, we obviously have a sequence < bn >n≥1, 0 ≤ bn < p
of integers such that

a1 = b0, a2 = b0 + b1p, a3 = b0 + b1p+ b2p
2, · · · , an = b0 + b1p+ · · ·+ bn−1p

n−1 n ≥ 1.

So, a p-adic integer is the same as a formal power series

x = b0 + b1p+ · · ·+ bnp
n + · · · , 0 ≤ bn < p, n ∈ N,

because the components an uniquely determine the series, and vice-versa - the series uniquely deter-
mines the components an. Recalling that any p-adic number α has the form α = p−k · x for unique
x ∈ Zp and k ≥ 0, we see that α can be written as a formal Laurent series

α =
b−k

pk
+ · · ·+ b−1

p
+ b0 + b1p+ · · · bnpn + · · · , 0 ≤ bi < p, i ≥ −k.

It is an interesting and amusing question about how to recognize Z and Q in these notations.
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Exercise 7.12 (1) Prove that, for any a ∈ N, its expression as a p-adic integer coincides with its
expression in base p: a = b0 + b1p+ · · ·+ bsp

s.
(2) Prove that the formal power series representing −1 has all its coefficients equal to p− 1:

−1 = (p− 1) + (p− 1)p+ · · ·+ (p− 1)pn + · · · .

Prove moreover that every negative integer is expressed by an infinite formal power series.
(3) Prove that in terms of formal power series of 1/(1− p) has all coefficients equal to 1:

1

1− p
= 1 + p+ p2 + · · ·+ pn + · · · .

(4) (A++-students) Prove that α ∈ Qp is a rational number, that is, belongs to the subset Q of Qp,
if, and only if, the sequence b−k, . . . , b−1, b0, b1, . . . , bn, . . . of the coefficients of its formal Laurent
series is periodic from some point onwards.

As stated in the title of this sub-section, this is how Hensel defined the p-adic numbers. Having these
numbers as power series, although formal, he wanted to employ the methods of Calculus in studying
number theoretical problems. There is a way to consider these formal series as actually convergent
series! We will explain this briefly in the second Vista devoted to the p-adic numbers (in the next
Chapter). As a final remark here, note that the operations addition and multiplication should be
performed in these notations following the rule of ”carrying over” familiar from the operations in
base 10 system.

7.5 Equations of Higher Degree in Z/pZ
We learned in the previous section that solving equations mod n reduces to solving equations
mod p. The case of a prime modulus is particularly attractive, for Z/pZ is a field, like R and C,
and the polynomials with coefficients in it exhibit properties, similar to the ones the polynomials
with real and complex coefficients have. The fact of the matter is that even the case of a degree
two equation in Z/pZ is non-trivial! Some of the results on such equations bear the names of great
mathematicians such as Lagrange, Gauss, and Jacobi... We will devote several lectures to this case
in our course. In the current section, we are proving the following fact (which we know well about
polynomials with real and complex coefficients).

Theorem 7.5.1 (Lagrange(∼ 1780)) Consider the degree d polynomial

[f(X)]p = [ad]p ·Xd + [ad−1]p ·Xd−1 + · · ·+ [a1]p ·X + [a0]p

with coefficients in Z/pZ. (This means that [ad]p ̸= [0].) This polynomial has no more than d roots
in Z/pZ, counted with multiplicities. Equivalently (contra-positively), if a polynomial as above has
more than d roots in Z/pZ, then it is the zero polynomial, that is

[ad]p = [ad−1]p = · · · = [a0]p = [0]p.

In the congruence notations this theorem says that, if p does not divide ad, then the congruence
equation

f(X) = ad ·Xd + ad−1 ·Xd−1 + · · ·+ a1 ·X + a0 ≡ 0 mod p

has no more than d incongruent solutions, counted with multiplicity.
Recall that if a polynomial is non-zero, its degree is the largest index of its non-zero coefficients.
Hence the degree of a non-zero polynomial is d ≥ 0. The zero polynomial, by definition, has degree
−∞.

Before demonstrate that the theorem is true, we have to define what multiplicity of a root is.
We begin with a result which is true for any n ≥ 1.
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Lemma 7.5.2 (Bézout) In the notation above, with [ad]n ̸= [0]n, assume that d ≥ 1, and that

f([x0]n) := [f(x0)]n = [0]n.

Then,

[f(X)]n = (X − [x0]n)([ad]nX
d−1 + [bd−2]nX

d−2 + · · ·+ [b1]nX + [b0]n)

for some integers bd−2, . . . , b1, b0. In other words, in such a case

[f(X)]n = (X − [x0]n)[g(X)]n

where the degree of g(X) is one less than the degree of f(x), and has the same leading coefficient as
f(x).

Proof We have that [f(x0)]n = [ad]n[x0]
d
n + · · · [a1]n[x0]n + [a0]n = [0]n. Therefore

[f(X)]n = [f(X)]n − [f(X0)]n

= ( [ad]n ·Xd + · · ·+ [a1]n ·X + [a0]n ) − ( [ad]n · [x0]dn + · · ·+ [a1]n · [x0]n + [a0]n )

= [ad]n · (Xd − [x0]
d
n) + · · ·+ [a1]n · (X − [x0]n) + ([a0]n − [a0]n)

and by the exercise after this proof we get

= (X − [x0]n) · ([ad]n ·Xd−1 + · · · ) = (X − [x0]n) · [g(X)]n

as promised. 2

Exercise 7.13 Prove that Xk− [x′]kn = (X− [x′]n)(X
k−1+Xk−2[x′]n+ · · ·+X[x′]k−2

n +[x′]k−1
n ).

Using Bézout’s lemma, we easily get a corollary (again for ebery n ≥ 1.

Corollary 7.5.3 In the notations above, if [f(X)]n has a root (in Z/nZ), then

[f(X)]n = (X − [x1]n) · · · (X − [xk]n) · [h(X)]n

where h(X) has degree d − k, has a leading coefficient ad, and doesn’t have roots (in Z/nZ). In
particular, since [h(X)]n ̸= 0 as a polynomial ([ad]n ̸= [0]n), its degree is a natural number, that is,
d− k ≥ 0.

Proof By the Bézout’s lemma [f(X)]n = (X − [x1]n) · [g1(X)]n where [x1]n is a root of [f(X)]n,
and g1(X) has degree one less than the degree of f(X), and leading coefficient ad. If [ga(X)]n
has no roots in Z/nZ, we are done. If it does have, then again by the Bézout’s lemma we have
[g1(X)]n = (X − [x2]n) · [g2(X)]n where g2(X) has the corresponding degree and leading coefficient.
Continuing this way in no more than d steps we will get to a [gk(X)]n which has no roots in Z/nZ,
has degree d−k and leading coefficient ad. We denote h(X) := gk(X). The corollary is proved. 2

Remark 7.5.1 Unfortunately, in general when n ≥ 1, the classes in the presentation

[f(X)]n = (X − [x1]n) · · · (X − [xk]n) · [h(X)]n

are not uniquely defined. Consider for example f(X) = X3 −X, and n = 6. We obviously have

[f(X)]6 = (X − [0]n)(X − [1]6)(X − [5]6) = (X − [1]6)(X − [2]6)(X − [3]6)

where, in both presentations, h(X) = 1. The picture is much better looking when n = p is a prime
number! 2
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Proposition 7.5.4 Let p be a prime number, and suppose

[f(X)]p = (X − [x1]p) · · · (X − [xk]p) · [h(X)]p

where [h(X)]p has no roots in Z/pZ. Then the classes [x1]p, . . . , [xk]p constitute the roots (may be
with repetition) of the polynomial [f(X)]p. They are, therefore, uniquely determined.

Proof We have to show that [f(x′)]p = [0]p if, and only if, [x′]p = [xi]p for some i = 1, . . . , k. But

[0]p = [f(x′)]p = ([x′]p − [x1]p) · · · ([x′]p − [xk]p) · [h(x′)]p

if, and only if,
p | (x′ − x1) · · · (x′ − xk) · h(x′)

which, since p is a prime number, is equivalent to p dividing one of the k + 1 factors involved. But
since [h(X)]p has no roots in Z/pZ, the factor h(x′) is not divisible by p, it remains to have p |x′−xi
for some i, which gives the result. 2

In the presentation [f(X)]p = (X − [x1]p) · · · (X − [xk]p) · [h(X)]p we combine the like linear terms
together and, after re-indexing the classes involved, rewrite the presentation as

[f(X)]p = (X − [x1]p)
m1 · · · (X − [xs]p)

ms · [h(X)]p

where m1 + · · ·ms = k, and [xi]p ̸= [xj ]p for 1 ≤ i < j ≤ s. In this presentation, the classes [xi]p
are well defined: all the distinct roots of [f(X)]p in Z/pZ. We are proving next that the exponents
mi are also well defined: they are uniquely determined by f(X) itself. In other words, the part

(X − [x1]p)
m1 · · · (X − [xs]p)

ms

of the presentation of [f(X)]p is uniquely determined.

Lemma 7.5.5 Let [x1]p be a root of the non-zero polnomial [f(X)]p. There exist a unique non-zero
m1 ∈ N and a polynomial [g(X)]p such that

[f(X)]p = (X − [x1]p)
m1 [g(X)]p

and [g(x1)]p ̸= [0]p. The polynomials [f(X)]p and [g(X)]p have the same leading coefficients.

Proof We know that the presentation of [f(X)]p as in the Lemma exists. We have to prove the
uniqueness of m1 and of [g(X)]p. To this end, suppose that

(X − [x1]p)
m[g(X)]p = (X − [x1]p)

n[h(X)]p

with m ≤ n and [g(x1)]p ̸= [0]p ̸= [h(x1)]p. Then we get that

(X − [x1]p)
m · ([g(X)]p − (X − [x1]p)

n−m[h(X)]p) = [0]p.

Since the product of non-zero polynomials in Z/pZ [X] is a non-zero polynomial, and since (X −
[x1]p)

m ̸= [0]p, we get that
[g(X)]p = (X − [x1]p)

n−m[h(X)]p.

Since [g(x1)]p ̸= [0]p, we get that n−m = 0, and that [g(X)]p = [h(X)]p. 2

Definition 7.5.1 The number m1 in the Lemma above is called the multiplicity of [x1]p as a root
of [f(X)]p. If m1 = 1, the root is called simple, and if m1 > 1 it is called a multiple root.
Naturally, if [x1]p is not a root of [f(X)]p, we agree that m1 = 0.

Exercise 7.14 Prove that the following cancellation property holds true in Z/pZ [X]: if

[f(X)]p[g(X)]p = [f(X)]p[h(X)]p

and [f(X)]p ̸= [0]p, then [g(X)]p = [h(X)]p.
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Proposition 7.5.6 Let [f(X)]p, with distinct roots [x1]p, . . . , [xs]p, have the following two presen-
tations

(X − [x1]p)
m1 · · · (X − [xs]p)

ms · [h(X)]p = (X − [x1]p)
m′

1 · · · (X − [xs]p)
m′

s · [h1(X)]p

where [h(X)]p and [h1(X)]p have no roots in Z/pZ. Then,

m1 = m′
1, . . . ,ms = m′

s and [h(X)]p = [h1(X)]p.

Proof By the Lemma above, m1 = m′
1, . . . ,ms = m′

s because mi and m′
i are the multipliciry of

[xi]p as a root of [f(X)]p. By the cancellation property in Z/pZ [X] (see the previous Exercise)
we conclude that [h(X)]p = [h1(X)]p. The proposition is proved. 2

Exercise 7.15 Prove that [x′]p is a root of [f(X)]p of multiplicity m′ if, and only if,

[f(X)]p = (X − [x′]p)
m′
· [h(X)]p

where [h(x′)]p ̸= [0]p.

Proof of Theorem 7.5.1 The proof is now obvious. If [f(X)]p is non-zero, then its degree is a
natural number, and if it has no roots, then we are done (0 ≤ 0). If [f(X)]p does have roots, by the
presentation

[f(X)]p = (X − [x1]p)
m1 · · · (X − [xs]p)

ms · [h(X)]p

where [h(X)]p has no roots we get that m1 + · · ·ms is the number of roots of [f(X)]p counted with
multiplicities. On the other hand, [h(X)]p is non-zero as well, and has degree d − (m1 + · · · +ms)
which should be a natural number as well. So, m1 + · · ·ms ≤ d. The theorem is proved. 2

Exercise 7.16 (1) For any positive integer k, find n and a linear equation with coefficients in
Z/nZ which has k solutions in Z/nZ.
(2) Suppose f(X) = a0 + a1X + · · · + adX

d has integer coefficients. Prove that f(X) ≡ 0 mod p
has p solutions if, and only if, [f(X)]p = (Xp−X) · [g(X)]p where g(X) is a polynomial with integer
coefficients.
(3) Let d > 0 be an integer. Prove that Xd−1 ≡ 0 mod p has p−1 solutions if, and only if, p−1 | d.

7.6 Two Important Examples

We are considering in this section four polynomials - two are related to Fermat’s Little Theorem,
and the other two are related to Euler’s generalization of that theorem.

7.6.1 The polynomials ep(X) = Xp−1− 1 and fp(X) = (X − 1) · · · (X − (p− 1))

The main character of this chapter is the polynomial

Xp−1 − [1] in Z/pZ.

The following theorem describes completely this polynomial.

Theorem 7.6.1 We have

Xp−1 − [1] = (X − [1]) · (X − [2]) · · · · · (X − [p− 1]) in Z/pZ.

Proof It’s enough to show that the difference

Xp−1 − [1]− (X − [1])(X − [2]) · · · · · (X − [p− 1])

is the zero polynomial. But this difference is a polynomial of degree strictly less than p−1, and has,
by the FLT, p− 1 roots: [1], [2], . . . , [p− 1]. Therefore, by Lagrange’s theorem, this polynomial has
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degree −∞, that is, it is the zero polynomial. 2

Recall that two polynomials, with coefficients in a ring (such as Z,Q,R,C,Z/nZ etc.) are equal, by
definition, if their coefficients are the same. The theorem above means then that, after eliminating
the parentheses of (X−[1])·(X−[2]) · · · (X−[p−1]), we will get coefficients the same as in Xp−1−[1].
This gives us the following important information about those coefficients.

Proposition 7.6.2 Let p be an odd prime number. Write

(X − [1]) · (X − [2]) · · · (X − [p− 1]) = Xp−1 + [Ap−2] ·Xp−2 + · · ·+ [A1] ·X + [A0]

where

A0 = (p− 1)!, A1 = −
p−1∑
i=1

(p− 1)!

i
, . . . , Ap−3 =

∑
1≤i<j≤p−1

ij, Ap−2 = −
p−1∑
i=1

i.

Then, [A0] = −[1], [A1] = · · · = [Ap−2] = [0]. In particular,

(p− 1)! ≡ −1 mod p

an identity we know as Wilson’s Theorem.

Proof That’s obvious. 2

An important corollary, used in the exercises below, is the following one.

Corollary 7.6.3 In the notations of the proposition, A1 ≡ 0 mod p2 for p ≥ 5.

Proof The polynomial with integer coefficients fp(X) = (X − 1)(X − 2) · · · (X − (p − 1)) has
coefficients A0, A1, . . . , Ap−2 and 1. So, we have

fp(X) = (X − 1)(X − 2) · · · (X − (p− 1)) = Xp−1 +Ap−2X
p−2 + · · ·+A1X +A0 in Z.

Evaluating the polynomials at p we get

(p− 1)! = fp(p) = pp−1 +Ap−2p
p−2 + · · ·+A2p

2 +A1p+A0.

Since A0 = (p− 1)!, and after simplifications, we get

A1 +A2p+ · · ·+Ap−2p
p−3 + pp−2 = 0 in Z.

The result follows. 2

Exercise 7.17 ∗ (Wolstenholme’s Theorem) Prove that if p ≥ 5 is a prime number, then

1 + 1/2 + · · ·+ 1/(p− 1) ≡ 0 mod p2.

7.6.2 The Polynomials en(X) = Xφ(n) − 1 and fn(X) =
∏

a∈R(n)(X − a)

Denote by R(n) the natural numbers less than n and relatively prime with n.

R(n) = {m | 1 ≤ m < n, gcd(m,n) = 1}.

Obviously, the set R(n) is a reduced residue system for n.

Consider the polynomial with integer coefficients en(X) := Xφ(n) − 1.
By Euler’s generalization of FLT, we have that R(n) is a set of solutions to en(X) ≡ 0 mod n.
Consider now fn(X) =

∏
a∈R(n)(X − a) over the integers. Obviously, R(n) consists of solutions of

fn(X) ≡ 0 mod n as well.
More is actually true.
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Proposition 7.6.4 All solutions of en(X) ≡ 0 mod n and of fn(X) ≡ 0 mod n belong to R(n).

Proof Exercise! 2

So, en(X)and fn(X) are two polynomials having the same φ(n) pairwise distinct roots. When
n = p is a prime number, as we know, the two polynomials coincide. But this is not at all true in
general.

Exercise 7.18 Verify that the difference en(X)−fn(X) is a polynomial of degree strictly less than
φ(n), and that it has φ(n) distinct roots. Can you conclude from this that

Xφ(n) − [1] =
∏

[a]∈(Z/nZ)×
(X − [a]) ?

Give arguments to your answer: that is, either prove they are equal, or give a counterexample if they
aren’t.

Remark 7.6.1 It is a natural question for which composite n do the polynomials [en(X)]n and
[fn(X)]n coincide. The answer is quite exciting: n = 2Fk where Fk is a Fermat prime number, that

is, a prime number of the form Fk = 22
k

+ 1. (M. Hernandez - M. Yotov, 2014.) 2
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Chapter 8

Quadratic Equations Modulo n

We are presenting in this chapter the theory of solving quadratic equations modulo a positive nat-
ural number. This theory turns out to be very rich mathematically and historically led to many
discoveries and generalizations in modern Number Theory. Its development was initiated by Fermat,
Euler, Lagrange, and Legendre, and culminated in the work of Gauss who included it in his book
Disquisitiones Arithmeticae (1801), Arithmetical Investigations, which he wrote at the age of 21, and
published three years later. The first text book on Number Theory was written by A.-M. Legendre
and titled Essai sur la théorie des nombres (1798). But the work that made Number Theory a
systematic science is Gauss’s Disquisitiones. After this chapter we will have covered the first four of
the eight chapters of Gauss’s book.

The central theorem of this chapter is a beautiful result, conjectured by Euler and Legendre, and
proved by Gauss: the Law of Quadratic Reciprocity. The Law expresses a relation between
pairs of congruences

X2 ≡ q mod p and X2 ≡ p mod q

where p and q are distinct odd prime numbers. The proof of the Law we chose to present here is
the simplest known ( and the third of the eight given by Gauss!). It has two ingredients: Gauss’s

Lemma (computing the Legendre symbol as
(

a
p

)
= (−1)µ(a,p)), and the ingenious observation

of Eisenstein, a student of Gauss’s, (showing that µ(p, q) + µ(q, p) ≡ (p− 1)(q − 1)/2 mod 2).

8.1 General Remarks

8.1.1 Reduction to X2 − a ≡ 0 mod n with gcd(a, n) = 1

We want to solve a degree two equation

aX2 + bX + c ≡ 0 mod n

where n ≥ 2, a, b, c ∈ Z, [a]n ̸= [0]n. This equation is equivalent to the following

4a2X2 + 4abX + 4ac ≡ 0 mod 4an

which can be given a simpler form

(2aX + b)2 − (b2 − 4ac) ≡ 0 mod 4an.

Denoting by Y = 2aX + b and D = b2 − 4ac, we see that the original equation reduces to solving
for X mod n

Y 2 −D ≡ 0 mod 4an and 2aX + b ≡ Y mod 4an.

The degree two equation we got has a very special form. It is called a binomial quadratic
equation. One can easily recognize inD the discriminant of a quadratic polynomial from elementary

78



8.1. General Remarks Chapter 8. Quadratic Equations Modulo n

mathematics. Solving the binomial equation mod 4an is equivalent to figuring out if ”
√
D” exists

in Z/4anZ. To solve for X the system of two equations, we have to first solve the quadratic one.
After having solved for Y , finding X is a matter of solving a linear equation which we know how to
do. This chapter is therefore devoted to solving binomial quadratic equations

f(X) = X2 − a ≡ 0 mod n.

A very straightforward case to solve is when a ≡ 0 mod n. Indeed, let M be the largest integer
whose square divides n so that n =M2 · n′. Note that n′ is a square-free natural number: if n′ > 1,
then n′ = p1 · · · pl with p1 < · · · < pl.

Exercise 8.1 Prove that X2 ≡ 0 mod n if, and only if X ≡ 0 mod Mn′. So, the solutions to
the binomial equation are given by the classes mod n of the numbers {Mn′q | 0 ≤ q ≤M − 1 }.

Having dealt with the case n | a, we assume in what follows that n ∤ a.

We are showing now that the binomial equation can be reduced in this case (with n ∤ a) to a
very specific one in which gcd(a, n) = 1. To this end, let d = gcd(a, n), and let a = da1 and n = dn1.
If x0 ∈ Z is a solution to X2 ≡ a mod n, then, since d |x20 − a and d | a, we see that d |x20. In other
words, x0 provides a solution to X2 ≡ 0 mod d as well. Denoting by m the largest integer whose
square divides d, and expressing d = m2d′, we get that md′ |x0, and therefore that x0 = md′x′0.
Now, for x′0 we compute that

(md′x′0)
2 ≡ m2d′a1 mod m2d′n1 ⇔ d′(x′0)

2 ≡ a1 mod n1,

and therefore x′0 provides a solution to

d′X2 ≡ a1 mod n1

for relatively prime a1 and n1.

Exercise 8.2 Prove that the existence of a solution to the last equation forces gcd(d′, n1) = 1 to
hold true.

Since gcd(d′, n1) = 1, we can cancel out d′, and express the equation as

X2 ≡ a1(d′)−1 mod n1.

The RHS of this equation is relatively prime with the modulus. Every solution x0 to X2 ≡ a mod n
has the form x0 = md′x′0 where x′0 is a solution to X2 ≡ a1(d′)−1 mod n1.

The moral from the last discussion is that W.L.O.G. we may consider solving binomial equations

X2 ≡ a mod n

for gcd(a, n) = 1, and n ≥ 2.

Exercise 8.3 Consider, as above, the equation aX2 + bX + c ≡ 0 mod n, where n ∤ a. Let s be
the maximal integer such that s | 4a and gcd(s, n) = 1. Denote d = 4a/s. Prove that

aX2 + bX + c ≡ 0 mod n ⇔ 4a2X2 + 4abX + 4ac ≡ 0 mod dn.

In particular, if gcd(2a, n) = 1, then the original equation is equivalent to 4a2X2 + 4abX + 4ac ≡ 0
mod n.

As we know from the previous chapter: solving equations mod n reduces to solving them modulo
the prime divisors of n, and then applying the Hensel’s Lifting lemma. In this lemma the derivative,
f ′(X) = 2X, of the polynomial of the equation plays an important role: if x0 is a solution to
f(X) ≡ 0 mod p, and if p ∤ f ′(x0), the solution has a unique lift to f(X) ≡ 0 mod pk for every
positive integer k. Since, in our case, this derivative is zero mod 2 we will have to consider this
case separately.
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8.1.2 The Equation X2 − a ≡ 0 mod 2α with gcd(a, 2) = 1

The case p = 2 needs no deep theory to handle it. The diligent student should have done this already
for the particular case of a = 1 in an exercise related to the generalized Wilson’s theorem.
Notice that if X2 ≡ a mod 2α for gcd(a, 2) = 1 is solvable, then the number of solutions are as
many as they are for a = 1. Indeed, if x20 ≡ a mod 2α, then x0 is odd, and the equations

X2 ≡ a mod 2α and X2 ≡ 1 mod 2α

are equivalent via associating with any solution [x] to the first equation the solution [xx−1
0 ] to the

second. So, the main question here is whether there are solutions at all. Here is the corresponding
general result.

Theorem 8.1.1 Suppose a is an odd integer, and α ≥ 1. Consider the equation X2 − a ≡ 0
mod 2α. We have the following cases.
(1) If α = 1, there is one solution: x ≡ 1 mod 2.
(2) If α = 2, solutions exist if, and only if, a ≡ 1 mod 4. If that is the case, there are two solutions:
x ≡ ±1 mod 4.
(3) If α ≥ 3, solutions exist if, and only if, a ≡ 1 mod 8. If that is the case, there are four solutions.

Proof Item (1) is obvious. Item (2) follows from the fact that any solution should be odd, since a is
odd, and that the square of an odd number is congruent to 1 mod 8. We are proving, by induction
on α ≥ 3, a refined version of item (3): (i) if a solution exists, then a ≡ 1 mod 8, and (ii) if a ≡ 1

mod 8, then for every α ≥ 3, there are four solutions, x
(i)
α , i = 1, 2, 3, 4 and only two of which, we

call them x
(1)
α , x

(2)
α have lifts mod 2α+1.

Proving (3, i). Since a is odd, any solution to X2 − a ≡ 0 mod 2α would be an odd number, and
therefore its square is congruent to 1 modulo 8. So, since α ≥ 3, we have that a ≡ 1 mod 8 is a
necessary condition for solving the equation.
Proving (3, ii). We argue by induction on α ≥ 3. Before doing that recall that according to Hensel’s
lifting Lemma, any lift of a solution x to X2−a ≡ 0 mod 2α to a solution mod 2α+1 has the form
x′ = x+ 2αt where

f(x) + 2αf ′(x)t = f(x) + 2α+1xt ≡ 0 mod 2α+1,

that the lift exists if and only if 2α+1 | f(x), and when this is the case x has two lifts, for t = 0 and
for t = 1.
Base case (α = 3). The equation f(X) = X2 − a ≡ 0 mod 8 has obviously four solutions:
x ≡ 1, 3, 5, and 7 mod 8. We are proving next that only two of these has a lift mod 16. Indeed,
any such lift would have the form x′ = x+ 8t where t is a solution to the equation

f(x) + 8tf ′(x) ≡ 0 mod 16, that is x2 − a+ 16xt ≡ 0 mod 16.

So, solutions for t exist (and will be two such: for t ≡ 0 mod 2 and for t ≡ 1 mod 2) if, and only
if 16 |x2 − a. Observe that since a ≡ 1 mod 8, then a ≡ 1 mod 16 or a ≡ 9 mod 16. In the
former case only x ≡ 1, 7 have lifts, while in the latter case - only x ≡ 3, 5 do. Denoting the liftable

solutions by x
(1)
3 and x

(2)
3 we find the solutions mod 16 to be

x′ ≡ x(1)3 , x
(1)
3 + 8, x

(2)
3 , x

(2)
3 + 8 mod 16.

Inductive step (α ⇒ α + 1). Suppose there are only for solutions x
(i)
α , i = 1, 2, 3, 4, to f(X) ≡ 0

mod 2α, that only the first two of them have lifts mod 2α+1. So the solutions mod 2α+1, being
lifts of solutions to f(X) ≡ 0 mod 2α are four and have the form

x(1)α , x(1)α + 2α, x(2)α , x(2)α + 2α mod 2α+1.

It remains to show that only two of these solutions have lifts mod 2α+2. For the four solutions
mod 2α+1 listed above we have

f(x(i)α ) = (x(i)α )2 − a = 2α+1A
(i)
α+1 and
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f(x(i)α + 2α) = (x(i)α + 2α)2 − a = (x(i)α )2 − a+ 2α+1x(i)α + 22α

= 2α+1(A
(i)
α+1 + x(i)α ) + 22α ≡ 2α+1(A

(i)
α+1 + x(i)α ) mod 2α+2.

Since x
(i)
α are odd, the integers, for a fixed i = 1, 2,

x(i)α and A
(i)
α+1 + x(i)α

have different parity. This means that among the four values computed, f(x
(i)
α ), f(x

(i)
α +2α), i = 1, 2,

only two are divisible by 2α+2. Therefore, only two of the solutions mod 2α+1 lift to solutions
mod 2α+2. This finishes the proof of the inductive step. The theorem is proved. 2

Example 8.1.1 Find the solutions to X2 − 33 ≡ 0 mod 64.
Solution 64 = 26, so solution exists if, and only if, 33 ≡ 1 mod 8 which is actually the case.
Also, the solutions have to be four. We are finding them now. We start with the solutions mod 8:
1, 3, 5, and 7. Among the numbers 12 − 33, 32 − 33, 52 − 33 and 72 − 33 only the first and the last
are divisible by 16, so 1 and 7 lift to solutions mod 16, and all solutions mod 16 are 1, 7, 9, and
15. In a similar fashion we see that the solutions who have lifts to mod 32 are 1 and 15, and
the solutions mod 32 are 1, 15, 17, and 31. Once more we find the two liftable solutions: 17 (b/c
(16+1)2− 33 = 64+32+1− 33 = 64), and 31 (b/c, for instance, 1 and 15 are not liftable!). So the
solutions mod 64 are: 17, 31, 49, and 63. All these mod 64 of course. 2

8.1.3 The General Theorem on Solving X2 − a ≡ 0 mod n

In this subsection we are summarizing the results on solving X2 − a ≡ 0 mod n for gcd(a, n) = 1
obtained so far.

Theorem 8.1.2 Let 1 < n ∈ N have the canonical decomposition n = 2αpα1
1 · · · p

αk

k where α ≥ 0
and α1, . . . , αk ≥ 1. Let a ∈ Z be such that gcd(a, n) = 1. Denote by Mi, i = 1, . . . , k the number of
solutions to X2 − a ≡ 0 mod pi. Then, for every i = 1, . . . , k, either Mi = 0 or Mi = 2. Denote by
M the number of solutions to X2 − a ≡ 0 mod n. Then we have
(i) if α = 0 or 1, then M =M1 · · ·Mk (so, M = 0 or M = 2k);
(ii) if α = 2, then M = 2M1 · · ·Mk if a ≡ 1 mod 4, and M = 0 otherwise (so, M = 0 or
M = 2k+1);
(iii) if α ≥ 3, then M = 4M1 · · ·Mk if a ≡ 1 mod 8, and M = 0 otherwise (so, M = 0 or
M = 2k+2).

Proof We know that the number of solutions to X2− a ≡ 0 mod n is a product of the numbers of
solutions to the same equation modulo the maximal powers of the primes dividing n. But since the
derivative of X2− a is 2X, and since gcd(a, n) = 1 we get that the number of solutions mod pαi

i is
the same as the number of solutions mod pi (every solution mod pi has a unique lift to a solution
mod psi for any positive integer s). Considering X2−a ≡ 0 mod pi, we know that there are no more
than two solutions (the degree of the equation!). Also, if the equation at hand has one solution,
it will have a second one as well (why?). So Mi = 0 if X2 − a ≡ 0 mod pi has no solutions, and
Mi = 2 if it does. The formualae for M follow now from what we proved about the solutions to
X2 − a ≡ 0 mod 2α in the previous subsection. 2

8.2 Quadratic Residues Modulo p

We are studying in this section the quadratic polynomials of the form X2 − [a] in Z/pZ where
[a] ̸= [0]. We want to understand when such an equation does have a solution. Since the solutions
can only be non-zero in Z/pZ, we will effectively be studying (Z/pZ)× by solving quadratic equations
in Z/pZ. For a reason discussed in the previous section, we are considering only odd primes p in
what follows.
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8.2.1 Quadratic Residues and Non-Residues Modulo n

We begin with a definition concerning mod n for any positive integer.

Definition 8.2.1 The element [a] ∈ (Z/nZ)× is called a quadratic residue modulo n (QRn)
if the equation X2 − [a]n = [0]n has a solution in Z/nZ. The element [a] is called a non-residue
modulo n (NRn) if it is not a QRn. The set of all quadratic residues modulo n is denoted by

(Z/nZ)×2
.

As usually happens, whenever no confusion is feared, we will write QR and NR instead of QRn and
NRn respectively. By the definition it follows that

(Z/nZ)×2
= {[a1]2, [a2]2, . . . , [aφ(n)]

2}

where the classes we square form a reduced residue system mod n:

(Z/nZ)× = {[a1], [a2], . . . , [aφ(n)]}.

We know that ((Z/nZ)× , ·) is a group. This fact makes the QRs and NRs behave well under
multiplication. On the contrary, the other operation in Z/nZ messes up the QRs and NRs, as you
will see doing some of the exercises later on.

Theorem 8.2.1 Let p be an odd prime, and let k > 0 be an integer. Then there is equal number of

QRs and NRs modulo pk. That is, the set
(
Z/pkZ

)×2
constitutes half of the set

(
Z/pkZ

)×
.

Proof The set of quadratic residues consists of the squares of elements of
(
Z/pkZ

)×
. We need to

know when two such squares are identical. To this end observe that if p is odd, p | a− b and p | a+ b,
then p | 2a, and p | 2b, and therefore p | a and p | b. From this it follows that, for [a], [b] ∈

(
Z/pkZ

)×
,

[a]2 = [b]2 ↔ pk | (a− b)(a+ b) ↔ (pk | a− b ∨ pk | a+ b) ↔ ([a] = [b] ∨ [a] = [−b]).

This means that every quadratic residue comes as the square of EXACTLY TWO distinct elements

of
(
Z/pkZ

)×
. The theorem is proved. 2

Exercise 8.4 (1) Show by examples that the claim of the theorem above is not true of n ̸= pk for
an odd prime p, and positive integer k.

(2) Prove that
(
Z/pkZ

)×2
= {[a]2 | 1 ≤ a ≤ (pk − 1)/2 ∧ gcd(a, p) = 1}. Conclude that

|
(
Z/pkZ

)×2 | = (pk − pk−1)/2 = φ(pk)/2.

The next theorem says, in professional terms, that the set (Z/nZ)×2
of QRs forms a sub-group of

(Z/nZ)×, and because of the previous theorem - when n = pk it is a subgroup of index 2. We denote
the latter fact by

[
(
Z/pkZ

)×
:
(
Z/pkZ

)×2
] = 2.

In the end of this chapter, we will be able to compute the index of the sub-group of quadratic
residues mod n for any n. More about subgroups and their indices can be learned in Algebraic
Structures!

Theorem 8.2.2 Let n be a positive integer. The following hold true
(1) If [a] is a quadratic residue modulo n, then so is its reciprocal [a]−1;
(2) a product of two quadratic residues modulo n is a quadratic residue modulo n: (QR×QR = QR);
(3) a product of a quadratic residue with a non-residue modulo n is a non-residue modulo n: (QR×
NR = NR);
(4) product of two quadratic non-residues modulo pk is a quadratic residue modulo pk: (NRpk ×
NRpk = QRpk).
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Proof Item (1) is obvious: [a] = [x]2 ⇔ [a]−1 = ([x]−1)2.
The items (3) and (4) follow from (1), (2), and the previous theorem.
For (2), observe that if [a] = [a1]

2 and [b] = [b1]
2 , then [a][b] = [a1b1]

2 , so, [a][b] is a quadratic
residue modulo n as well.
For (3), assume [a] = [a1]

2 and [c] = [c1]
2, and that [a][b] = [c]. Then, since [b] = [a]−1[c], and by

items (1) and (2), the element [b] is a quadratic residue modulo n. Equivalently, if [a] is a quadratic
residue, and [b] is a non-residue modulo n, then the product [a][b] is a non-residue modulo n.

We are proving (4) now. Obviously (Z/nZ)× \ (Z/nZ)×2 ̸= ∅, there are quadratic non-residues
modulo n. Let [b] be a NRn. By (3), the set

[b] (Z/nZ)×2
= {[b][a] | [a] ∈ (Z/nZ)×2 }

is disjoint from (Z/nZ)×2
, and has the same cardinality. By the preceding theorem, when n = pk,

[b]
(
Z/pkZ

)×2 ∪
(
Z/pkZ

)×2
=
(
Z/pkZ

)×
.

Therefore
[b]
(
Z/pkZ

)×2
=
(
Z/pkZ

)× \ (Z/pkZ)×2

and the non-residues modulo pk constitute the set [b]
(
Z/pkZ

)×2
. Let now [b1] and [b2] be NRpk .

According to the last thing we proved [b1] = [b][a1] and [b2] = [b][a2] for some quadratic residues [a1]
and [a2]. Therefore [b1][b2] = [b]2[a1][a2] which is a quadratic residue as a product of three such.
The theorem is proved. 2

Exercise 8.5 (1) Does there exist a perfect square of the form 1! + 2! + · · ·+ n! where n > 3?
(2) Prove that for no n > 1 is the sum (1!)2 + (2!)2 + · · ·+ (n!)2 a perfect square.

8.2.2 The Legendre Symbol, and the Euler’s Criterion

The following theorems are true for n = p is an odd prime number. As we know, this case is enough
in order to study the theory of solving binomial equations modulo any n.

Definition 8.2.2 Let p be an odd prime, and a ∈ Z be relatively prime with p (that is, [a] ∈
(Z/pZ)×). Define

(
a
p

)
, the Legendre symbol of a modulo p, as follows(

a

p

)
= 1 if [a] ∈ (Z/pZ)×2

and (
a

p

)
= −1 if [a] /∈ (Z/pZ)×2

.

Notice that, the Legendre symbol of a modulo p depends actually on the class of a modulo p:

a ≡ b mod p →
(
a

p

)
=

(
b

p

)
.

In these notations, the theorem above gets the form

Theorem 8.2.3 Let p be an odd prime, and let a, b ∈ Z be non-zero modulo p. Then(
ab

p

)
=

(
a

p

)
·
(
b

p

)
.

Proof Obvious. 2

In professional terms, the Legendre symbol is a homomorphism from the group (Z/pZ)× to the

group ({−1, 1}, ·) whose kernel is (Z/pZ)×2
.
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Exercise 8.6 (1) Let p and q be two odd prime numbers such that p = q + 4a. Is it true that(
p

q

)
=

(
a

q

)
?

(2) Let p be an odd prime number. Prove that

p−1∑
j=1

(
j

p

)
= 0.

(3) Let p > 3 be a prime number. Show that∑
1≤j≤p−1,( j

p )=1

j ≡
∑

1≤j≤p−1,( j
p )=−1

j ≡ 0 mod p.

(4) Let p be an odd prime. Show that∏
1≤j≤p−1,( j

p )=1

j ≡ (−1)
p+1
2 mod p,

∏
1≤j≤p−1,( j

p )=−1

j ≡ (−1)
p−1
2 mod p.

It is obvious that, to answer if the polynomial X2 − [a], [a] ̸= [0], has a root in Z/pZ we have to

compute the Legendre symbol
(

a
p

)
. The following result gives us a means to do so.

Theorem 8.2.4 (Euler’s Criterion) Let p be an odd prime number, and let a ∈ Z be a non-zero
modulo p integer. Then

a(p−1)/2 ≡
(
a

p

)
mod p.

Proof Since p is an odd prime, we have the factorization of polynomials in Z/pZ

Xp−1 − [1] = (X(p−1)/2 − [1])(X(p−1)/2 + [1]).

We know, by Fermat’s Little Theorem, that the LHS polynomial has p− 1 roots in Z/pZ, and that
they constitute the set (Z/pZ)×. Therefore the RHS has the same roots. Each of the factors there
has at most (p− 1)/2 roots in Z/pZ, and since their total is p− 1, each of the factors has (p− 1)/2
roots in Z/pZ. But, obviously, every quadratic residue modulo p is a root of the first factor (b/c

if [a] = [b]2, then [a](p−1)/2 = [b]p−1 = [1] by FLT!), so that (Z/pZ)×2
consists of all the roots

of X(p−1)/2 − [1]. Therefore, the non-residues modulo p must all be roots of the second factor:
X(p−1)/2 + [1]. Put another way, this means that

a(p−1)/2 ≡ 1 mod p ↔ [a] ∈ (Z/pZ)×2 ↔
(
a

p

)
= 1

and this is exactly what the Euler’s Criterion states. 2

Exercise 8.7 Euler’s criterion says that, for a ∈ Z and an odd prime p, s
p−1
2 ≡ ±1 mod p, and

that a is a quadratic residue mod p if, and only if, a
p−1
2 ≡ 1 mod p.

(1) Prove that the same holds true mod pk as well: a
φ(pk)

2 ≡ ±1 mod pk, and a is a quadratic

residue mod pk if, and only if, a
φ(pk)

2 ≡ 1 mod pk.
(2) Can the criterion be generalized to the case of any (odd) modulus?
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8.2.3 Computing
(

−1
p

)
and

(
2
p

)
The statements about the values of the two cases of Legendre symbols written in the title of this
subsection are known as supplementary laws of quadratic reciprocity.

Theorem 8.2.5 Let p be an odd prime number. Then [−1] ∈ (Z/pZ)×2
if, and only if, p ≡ 1

mod 4. Informally,
√
−1 exists in Z/pZ if, and only if, p is 1 mod 4.

Proof This immediately follows from the Euler’s Criterion:

(−1)(p−1)/2 ≡ 1 mod p ↔ (p− 1)/2 is even. 2

This was an easy, and not quite interesting application of Euler’s Criterion to compute a Legendre
symbol! The next one, done for the first time by Gauss, is much more interesting.

Theorem 8.2.6 Let p be an odd prime. Then(
2

p

)
= (−1)

p2−1
8 .

Proof The goal is to compute 2(p−1)/2 modulo p. Here is the ingenious way Gauss did that! Consider

2(p−1)/2(
p− 1

2
)! = 2 · 4 · · · (p− 3) · (p− 1)

instead. Some of the factors of the RHS of the last identity are less than or equal to (p− 1)/2, some
are bigger. We will change the latter ones substituting any such 2a with 2a − p (which is an odd
number!). Notice that

−(p− 1)/2 ≤ 2a− p < 0,

so, these are negative numbers. Let’s denote the amount of these numbers by µ(2, p). On the other
hand, 2a ≡ p − 2b mod p if, and only if, 2a + 2b ≡ 0 mod p which is impossible to happen if
0 < a, b ≤ (p−1)/2. So, after changing every 2a in the range (p−1)/2 < x ≤ p−1 with (−1)(p−2a)
we get

2 · 4 · · · (p− 3) · (p− 1) ≡ (−1)µ(2,p) · 1 · 2 · · · p− 3

2
· p− 1

2
,

and, therefore,

2(p−1)/2 · (p− 1

2
)! ≡ (−1)µ(2,p) · (p− 1

2
)! mod p.

Cancelling the factor (p−1
2 )! from both sides of the last identity, we get that(

2

p

)
= (−1)µ(2,p).

Claim 8.2.7 We have

p = 8k + 1 → µ(2, p) = 2k p = 8k + 3 → µ(2, p) = 2k + 1;

p = 8k + 5 → µ(2, p) = 2k + 1 p = 8k + 7 → µ(2, p) = 2k + 2.

Proof of Claim The proof of this claim is a simple counting! (do it as an Exercise!). 2

To finish the proof of the Theorem, we need to check that (p2 − 1)/8 is even exactly when p is 1 or
7 mod 8. This is also straightforward (and comprises another Exercise!). The theorem is proved. 2
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Suppose a = ±pα1
1 pα2

2 · · · p
αk

k is the canonical presentation of a ∈ Z\{0,±1}, and that gcd(a, p) = 1.
Then, by the properties of the Legendre symbol, we have that(

a

p

)
=

(
±pα1

1 pα2
2 · · · p

αk

k

p

)
=

(
±1
p

)(
p1
p

)α1
(
p2
p

)α2

· · ·
(
pk
p

)αk

.

So, learning how to compute the Legendre symbol in general, one needs to know how to compute

the Legendre symbol
(

p
q

)
where q is a prime number different from p. We know already how to

compute
(

2
p

)
, so what is left is to deal with odd prime numbers q. This we will do in the next

section. We are finishing this one with an application of what we know so far and with an exercise.

Theorem 8.2.8 The prime numbers 1 mod 4 are infinitely many.

Proof Assuming, by contradiction, these primes are finitely many: p1 < p2 < · · · < pk, consider the
number (2p1p2 · · · pk)2 + 1. This is a bigger than one odd integer, so it has a divisor an odd prime,

say p. We have for this prime that −1 ∈ (Z/pZ)×2
, because x0 = 2p1p2 · · · pk is a solution to

X2 + 1 ≡ 0 mod p.

So,
(

−1
p

)
= 1 and, therefore, p ≡ 1 mod 4. This means that, according to our assumption,

p ∈ {p1, p2, . . . , pk}. This immediately leads to a contradiction! 2

Exercise 8.8 (1) Let p be an odd prime. Prove that(
(p− 1)/2

p

)
= (−1)(p−1)(p+5)/8.

(2) Does there exist a perfect square of the form (−1) mod 1997?
(3) Let n ∈ N. Prove that the odd prime divisors of n2 + 1 have the form 1 mod 12 or 5 mod 12.
(4) Does the congruence X2 ≡ 2 mod 231 have any solutions? If yes, what are they? If not, explain
why not?
(5) Is it true that there are infinitely many natural numbers n such that 23 |n2+14n+47? Explain.
(6) Let q = 2p+ 1 and p = 4m+ 3 ≥ 7 be prime numbers. Prove that q |Mp = 2p − 1.

8.3 Gauss’s Lemma

Let a ∈ Z be relatively prime with the prime number p. We want to compute the Legendre sym-

bol
(

a
p

)
. By Euler’s Criterion,

(
a
p

)
≡ a(p−1)/2 mod p. To simplify our notations, we denote

P := (p− 1)/2.

As in the case of a = 2, consider the product

(1 · a)(2 · a) · · · (P · a) = aP · P !.

If 1 ≤ k ≤ P , then both a and k are relatively prime with p, and so p does not divide ka. This
means that, by the division with quotient and remainder,

ka = p · qk + rk, 0 < rk < p.

There are two options for rk: either 0 < rk ≤ P , or P < rk < p. In the latter case P−p < rk−p < 0,
and so, in that case,

−P = P − (p− 1) ≤ rk − p < 0.

This means that, in both cases above, we can replace ka with an integer ak such that

ka ≡ ak mod p, and − P ≤ ak ≤ P.
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Definition 8.3.1 In the notations above, denote by µ(a, p) the amount of negative aks. That is

µ(a, p) := |{ ak | ak < 0 }|.

Obviously,

(1 · a)(2 · a) . . . (P · a) ≡ a1 · a2 · · · aP = (−1)µ(a,p)|a1| · |a2| · · · |aP | mod p.

Lemma 8.3.1 In the notations above, |a1| · |a2| · · · |aP | = P !.

Proof Since −P ≤ ak ≤ P , and since ak ̸= 0 for every k = 1, 2, . . . P , we have that

0 < |ak| ≤ P for all k = 1, 2, . . . , P.

It is enough, therefore, to prove that |ai| ̸= |aj | for all 1 ≤ i < j ≤ P . But we have that ak ≡ ka
mod p, and hence

|ai| = |aj | → ai = ±aj → ia ≡ ±ja mod p.

The latter congruence means that
(i± j) · a ≡ 0 mod p

which, because of gcd(a, p) = 1, implies that i ± j ≡ 0 mod p. Recall that 1 ≤ i < j ≤ P . This
means that 0 < |i ± j| < P , and so, the number i ± j is never divisible by p. This contradiction
rules out the possibility of having |ai| = |aj | for any 1 ≤ i < j ≤ P , and completes the proof of
lemma. 2

Theorem 8.3.2 (Gauss’s Lemma) For an odd prime p and a relatively prime with p integer a,
we have (

a

p

)
= (−1)µ(a,p).

Proof. We have that

aP · P ! ≡ (−1)µ(a,p)|a1| · |a2| · · · |aP | = (−1)µ(a,p) · P ! mod p,

and so,
aP ≡ (−1)µ(a,p) mod p.

By the Euler’s criterion, therefore, we immediately get that(
a

p

)
≡ (−1)µ(a,p) mod p

which means that p |
(

a
p

)
− (−1)µ(a,p). But the latter difference can be equal to ±2 or 0 only. Since

p is an odd prime, the divisibility is possible only if the difference is 0, that is, only if(
a

p

)
= (−1)µ(a,p). 2

Exercise 8.9 1) Prove that, for any a with (a, p) = 1 we have

µ(a, p) =

∣∣∣∣ [(p2 , p) ∪
(
3p

2
, 2p

)
∪ · · · ∪

(
2b− 1

2
p, bp

)]
∩ {a, 2a, . . . , Pa}

∣∣∣∣
where b = ⌊a/2⌋ and P = (p− 1)/2.
2)Prove that, in the notations of 1),

µ(a, p) =

∣∣∣∣ [( p2a, pa) ∪
(
3p

2a
,
2p

a

)
∪ · · · ∪

(
2b− 1

2a
p,
bp

a

)]
∩ {1, 2, . . . , P}

∣∣∣∣ ,
and conclude that

µ(a, p) =

∣∣∣∣ [( p2a, pa) ∪
(
3p

2a
,
2p

a

)
∪ · · · ∪

(
2b− 1

2a
p,
bp

a

)]
∩ Z

∣∣∣∣ .
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8.4 Eisenstein’s Theorem

Theorem 8.4.1 (Eisenstein’s Theorem)Let p and q be distinct odd prime numbers. Then, mod-
ulo 2, µ(p, q) + µ(q, p) is the number of points with integer coordinates on the rectangle

{ (x, y) | 1/2 < x ≤ (p− 1)/2), 1/2 < y ≤ (q − 1)/2 },

and, therefore,

µ(p, q) + µ(q, p) ≡ p− 1

2
· q − 1

2
mod 2.

Proof To prove the theorem, we need an additional observation to make.

Lemma 8.4.2 Let [a] ̸= [0] in Z/pZ, and let a = p · m + r where 0 < r < p. We have (with
P := (p− 1)/2
(1) 0 < r ≤ P → ⌊ 2ap ⌋ = 2m;

(2) P < r ≤ p− 1 → ⌊ 2ap ⌋ = 2m+ 1.
Therefore,

µ(a, p) ≡
P∑

j=1

⌊2ja
p
⌋ mod 2.

Proof of Lemma An easy exercise! 2

The following is a very important technical result on the way of proving the theorem.

Claim 8.4.3 For odd a ∈ Z, and for odd prime numbers p we have that

µ(a, p) ≡
P∑

j=1

⌊ja
p
⌋ mod 2.

Proof of Claim It follows from this lemma that, for any integer a not divisible by p,(
a

p

)
= (−1)µ(a,p) = (−1)

∑P
j=1⌊

2ja
p ⌋.

When a is also odd, so that (a+ p)/2 is an integer, we can say more:(
2

p

)
·
(
a

p

)
=

(
2a

p

)
=

(
4·(a+p)

2

p

)
=

(
4

p

)
·
(
(a+ p)/2

p

)
=

(
(a+ p)/2

p

)
= (−1)µ(

a+p
2 ,p),

and, by lemma above, (
(a+ p)/2

p

)
= (−1)

∑P
j=1⌊

2j(a+p)/2
p ⌋.

A simple computation is in order now:

P∑
j=1

⌊2j(a+ p)/2

p
⌋ =

P∑
j=1

⌊j · (a+ p)

p
⌋ =

P∑
j=1

⌊ja+ jp

p
⌋ =

P∑
j=1

(
⌊ja
p
⌋+ j

)

=

P∑
j=1

⌊ja
p
⌋+

P∑
j=1

j =

P∑
j=1

⌊ja
p
⌋+ P (P + 1)

2
=

P∑
j=1

⌊ja
p
⌋+ p2 − 1

8
.

Recalling that (
2

p

)
= (−1)

p2−1
8 ,
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8.4. Eisenstein’s Theorem Chapter 8. Quadratic Equations Modulo n

we get that (
2

p

)
·
(
a

p

)
=

(
2

p

)
· (−1)

∑P
j=1⌊

ja
p ⌋,

and, therefore, that

(−1)µ(a,p) =
(
a

p

)
= (−1)

∑P
j=1⌊

ja
p ⌋.

The last equalities are equivalent to

µ(a, p) ≡
P∑

j=1

⌊ja
p
⌋ mod 2.

The Claim is proved. 2

Returning to the proof of the theorem, specifying the result in the Claim, we get

µ(p, q) + µ(q, p) ≡
P∑
i=1

⌊ iq
p
⌋+

Q∑
j=1

⌊jp
q
⌋ mod 2.

To finish the proof we are establishing, through an ingenious geometric argument, the important
relation (here Q := (q − 1)/2)

P∑
i=1

⌊ iq
p
⌋+

Q∑
j=1

⌊jp
q
⌋ = P ·Q.

Let’s observe now that the RHS of this equality has a nice geometric meaning. In the following
diagram we have plotted the graph l of y = (q/p)x in a closed proximity of the rectangle with
vertices

(0, 0), (p/2, 0), (p/2, q/2), (0, q/2).

The grid shown in the diagram has as vertices the integral points in that rectangle. Notice that,
since gcd(p, q) = 1, no points of this grid lie on the line l.

P = p−1
2

i1
2 ⌊ jp

q
⌋

p
2

Q = q−1
2

j

1
2

⌊ iq
p
⌋

q
2

y = q
p
x

(0, 0)
x

y

Let 1 ≤ i ≤ P be fixed. The point (i, iq/p) belongs to l, and ⌊iq/p⌋ is the length of the segment
connecting (i, 0) to (i, ⌊iq/p⌋), which is equal to the number of the nodes of the grid above (i, 0),
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and below l. Therefore the sum
P∑
i=1

⌊ iq
p
⌋

is equal to the number of nodes of the grid lying below the line l. In a similar way, we have that
for every fixed 1 ≤ j ≤ Q, the point (jp/q, j) belongs to l, and the number ⌊jp/q⌋ is equal to the
length of the segment connecting (0, j) to (⌊jp/q⌋, j). This length is equal to the number of nodes
to the right of (0, j), and to the left of l. Therefore, the sum

Q∑
j=1

⌊jp
q
⌋

is equal to the number of the nodes of the grid above the line l. Noticing that the total number of
nodes in the rectangle with vertices

(1/2, 1/2), (p/2, 1/2), (p/2, q/2), (1/2, q/2)

is P ·Q, we get that
P∑
i=1

⌊ iq
p
⌋+

Q∑
j=1

⌊jp
q
⌋ = P ·Q.

This completes the proof of Eisenstein’s theorem. 2

Exercise 8.10 1) Let (x, y) ⊂ R be an open interval. Prove that, for every integer n ∈ Z, we have

| (x+ n, y + n) ∩ Z | = | (x, y) ∩ Z |.

2) Let n ∈ N, and let (x, y) be as in 1). Prove that

| (x, y + n) ∩ Z | = | (x− n, y) ∩ Z | = | (x, y) ∩ Z |+ n.

3) For (x, y) as in 1) show that

|(x, y) ∩ Z| = |(−y,−x) ∩ Z| .

4) If (x, y) is as in 1), and x, y /∈ Z, then for every n ∈ N such that y < x+ n we have

|(x, y) ∩ Z|+ |(y, x+ n) ∩ Z| = n.

Exercise 8.11 1) Let (a, p) = 1, and let p = 4ak+r with 0 < r < 4a. Using the results in Exercises
8.9 and 8.10 prove that

µ(a, p) ≡
∣∣∣∣ [( r2a, ra) ∪

(
3r

2a
,
2r

a

)
∪ · · · ∪

(
(2b− 1)r

2a
,
br

a

)]
∩ Z

∣∣∣∣ mod 2

where b = ⌊a/2⌋ as before.
2) Let (a, p) = 1, and let −p = 4ak + r with 0 < r < 4a. Using Exercises 8.9 and 8.10 prove that

µ(a, p) ≡
∣∣∣∣ [(−2− r

2a
,− r

a

)
∪
(
−2− 3r

2a
,−2r

a

)
∪ · · · ∪

(
−2− (2b− 1)r

2a
,−br

a

)]
∩ Z

∣∣∣∣ mod 2

≡
∣∣∣∣ [( ra , r2a + 2

)
∪
(
2r

a
,
3r

2a
+ 2

)
∪ · · · ∪

(
br

a
,
(2b− 1)r

2a
+ 2

)]
∩ Z

∣∣∣∣ mod 2

≡
∣∣∣∣ [( r2a, ra) ∪

(
3r

2a
,
2r

a

)
∪ · · · ∪

(
(2b− 1)r

2a
,
br

a

)]
∩ Z

∣∣∣∣ mod 2

where, as before, b = ⌊a/2⌋.

90



8.5. The Law of Quadratic Reciprocity Chapter 8. Quadratic Equations Modulo n

8.5 The Law of Quadratic Reciprocity

The celebrated Law states the following

Theorem 8.5.1 (Legnedre-Gauss) Suppose p and q are two distinct odd prime numbers. We have
the following about the Legendre symbols.

(1)
(

−1
p

)
= (−1)

p−1
2 and

(
2
p

)
= (−1)

p2−1
8

(2)
(

p
q

)
·
(

q
p

)
= (−1)

p−1
2 · q−1

2 .

Item (1) consists of the supplementary laws of quadratic reciprocity, while item (2), the Law of
Quadratic Reciprocity proper, expresses a relation between the solutions of the pair of equations

X2 − p ≡ 0 mod q and X2 − q ≡ 0 mod p.

Namely, the Law says that (this is the form of the Law formulated in Gauss’ ”Discuisitiones Arith-
meticae”)

if either p or q is 1 mod 4, then the equations have solutions at the same time,
and that
if p and q are 3 mod 4, then one equation has a solution exactly when the other
one doesn’t.

But besides this theoretical aspect of the Law, it, in combination with the supplementary Laws,

provides also a very effective method for computing the Legendre symbol
(

p
q

)
as we will see in the

examples below.

Remark 8.5.1 Legendre, together with Euler, Lagrange, and Gauss, was one of the discoverers of
the Law of Quadratic Reciprocity. He tried to prove the Law too, and almost succeeded. As a matter
of fact, Legendre based his arguments on his theorem about solvability of aX2 + bY 2 + cZ2 = 0
we discussed earlier in these Notes, and to complete them he needed to use that there are infinitely
many prime numbers in an arithmetic progression {an+ b | gcd(a, b) = 1, n ∈ N}. Legendre was not
able to prove this claim, and formulated it as a conjecture. The conjecture was eventually proved
by P.G.L. Dirichlet.

Proof of Theorem 8.5.1 Only item (2) needs a proof, item (1) being a subject of the previous
section. But, according to the Gauss’s Criterion,(

p

q

)
·
(
q

p

)
= (−1)µ(p,q) · (−1)µ(q,p) = (−1)µ(p,q)+µ(q,p)

which, because of Eisenstein’s theorem, gives immediately the result. 2

Example 8.5.1 Here are some computations illustrating the way the Law of Quadratic Reciprocity
is applied. (

7

29

)
= (−1)(7−1)/2·(29−1)/2

(
29

7

)
=

(
1

7

)
= 1.(

17

103

)
=

(
103

17

)
=

(
1

17

)
= 1.(

17

97

)
=

(
97

17

)
=

(
12

17

)
= (

(
2

17

)
)2 ·
(

3

17

)
= ((−1)(17

2−1)/8)2
(
17

3

)
=

(
−1
3

)
= (−1)(3−1)/2 = −1. 2

Exercise 8.12 (Euler’s form of the LQR) Let p and q be distinct odd primes, and let a ∈ N be

such that p ∤ a and q ∤ a. Prove, using Exercise 8.11, that if q ≡ ±p mod 4a, then
(

a
p

)
=
(

a
q

)
.
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8.5.1 The General Theorem on Solving X2 − a ≡ 0 mod n Revisited

We are restating here an augmented version of the General Theorem using the notations we intro-
duced after we proved that theorem in the end of the first section of this chapter. Before that,
denote by An the number of quadratic residues modulo n:

An = | (Z/nZ)×2 |.

Recall that (Z/nZ)×2
is a subgroup of the group (Z/nZ)×. As mentioned already, every subgroup

H of a group G has an index as such, denoted by [G : H]. By definition, when G is a finite set,
[G : H] = |G|/|H| is the quotient of the cardinalities of G and H. By a theorem of Lagrange (proved
in Algebraic Structures), the index of a subgroup is always an integer. In our case we have

[(Z/nZ)× : (Z/nZ)×2
] = | (Z/nZ)× |/| (Z/nZ)×2 | = φ(n)/An.

We know already that Apk = (pk − pk−1)/2 = φ(pk)/2. In the augmented General Theorem, we are
giving a formula for An in general.

Theorem 8.5.2 Let 1 < n ∈ N have the canonical decomposition n = 2αpα1
1 · · · p

αk

k where α ≥ 0
and α1, . . . , αk ≥ 1. Let a ∈ Z be such that gcd(a, n) = 1. Then the equation

X2 − a ≡ 0 mod n

has solutions if , and only if, the following restrictions are met(
a

p1

)
= · · · =

(
a

pk

)
= 1 ∧ (α = 2→ a ≡ 1 mod 4) ∧ (α ≥ 3→ a ≡ 1 mod 8).

When this is the case, for the number M of solutions to this equation we have
(i) M = 2k if α ≤ 1;
(ii) M = 2k+1 if α = 2;
(iii) M = 2k+2 if α ≥ 3.

In addition to that, we have that, for every n, An ·M = φ(n).

Proof We have to prove only the addendum to the General Theorem: An ·M = φ(n). To this end,
consider that map

ψ : (Z/nZ)× → (Z/nZ)×2
[a] 7→ ψ([a]) = [a]2.

This map is a surjection with fibres, (Z/nZ)×[a] = ψ−1([a]), [a] ∈ (Z/nZ)×2
, of cardinalityM . Indeed

we have that ψ([b1]) = ψ([b2]) = [a] if, and only if [b] = [b1][b2]
−1 is a solution to X2−1 ≡ 0 mod n.

So, the cardinality of (Z/nZ)×[a] is the same as the cardinality of (Z/nZ)×[1]. But [1] is a quadratic

residue modulo n, so that the cardinality of the latter fibre is M . Since (Z/nZ)× is a disjoint union
of the fibres of ψ, then the cardinality of the latter set is a sum of the cardinalities of those fibres,
and we have

φ(n) =
∑

[a]∈(Z/nZ)×2

| (Z/nZ)×[a] | = | (Z/nZ)
×2 | ·M = An ·M

as needed. The theorem is proved. 2

Remark 8.5.2 The proof of the theorem above is a particular instance of application of the First
Isomorphism Theorem in Group Theory (proved in Algebraic Structures). It implies in general
that if ψ : G1 → G2 is surjective map which is a group homomorphism, these are called (group)
epimorphisms, and if G1 is finite, then

|G1| = |G2| · |ker(ψ)|
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where ker(ψ) := {g ∈ G1 |ψ(g) = eG2
}, the kernel of ψ, is a subgroup of G1, and consists of all

elements mapped to the identity element of G2. It is straightforward to check that ψ : (Z/nZ)× →
(Z/nZ)×2

is a homomorphism, so it is an epimorphism, and that ker(ψ) consists of the square roots
of identity of (Z/nZ)×. So, the formula we obtained in the proof is a consequence of the general
algebraic result. 2

Exercise 8.13 (1) Compute
(
503
773

)
and

(
501
773

)
. (All integers involved are prime).

(2) Prove that
(

−7
p

)
= 1 if, and only if, p ≡ 1, 2 or 4 mod 7.

(3) Show that the statement in the Law of Quadratic Reciprocity can be written (in the form Gauss
did) as (

p

q

)
=

(
(−1)

q−1
2 q

p

)
.

(4) Show that 5 is a quadratic non-residue modulo any prime number of the type p = 6n + 1.
(5) (Euler’s version of the Law of Quadratic Reciprocity) Using Gauss-Legendre LQR prove that if
q and p = ±q + 4a are odd prime numbers with a ∈ N, then(

a

p

)
=

(
a

q

)
.

(6) Let a be an integer such that gcd(a, p) = 1. Determine all prime numbers p such that(
a

p

)
=

(
p− a
p

)
.

(7) Let p be a prime number of type 1 mod 4. Prove that

(p−1)/2∑
j=1

(
j

p

)
= 0.

(8) Find all primes p for which the equation has a solution

(i) X2 − 11 ≡ 0 mod p, (iii) X2 − 6 ≡ 0 mod p,

(ii) X2 − 10 ≡ 0 mod p (iv) X2 − 14 ≡ 0 mod p.

(9) Find all prime numbers p for which both equations

X2 − 2 ≡ 0 mod p and X2 − 3 ≡ 0 mod p

have solutions.
(10) Prove that the congruence

X2 + 3 ≡ 0 mod n

has no solutions when n = 72 · 192 · 23, and has eight solutions when n = 72 · 192 · 31.
(11) Let a, b ∈ Z, and let p be an odd prime number with gcd(a, p) = 1.

(i) Prove that if a and b are quadratic residues mod p, then the equation aX2 − b mod p does
have a solution.

(ii) What if both a and b are non-residues mod p?
(iii) What if one of a or b is a quadratic residue and the other is a non-residue?

Give a concrete example of each type, and exhibit a solution when it exists.
(12) Let p be an odd prime number, and a, b, c ∈ Z be such that p ∤ a. Denote by D = b2 − 4ac the
discriminant of the quadratic polynomial f(X) = aX2 + bX + c. Prove for the equation

f(X) ≡ 0 mod p

that
(i) there are no solutions if p ∤ D and

(
D
p

)
= −1;

(ii) there is one solution when p |D;

(iii) there are two solutions when p ∤ D and
(

D
p

)
= 1.
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8.6 An Example

This short section is devoted to an interesting example related to the application of Modular Arith-
metic to solving Diophantine equations. We know that using divisibility modulo appropriate natural
numbers one can show that certain Diophantine equations have no interesting solutions (in Z). Re-
call the example of X2 + Y 2 = 3Z2 having no non-zero integer solutions.

On the other hand, if a Diophantine equation does have solutions, then, considering the equa-
tion modulo any positive integer n, each of those would be solutions modulo n as well. So, the
interesting question here is the following.

Suppose a Diophantine equation does have (interesting) solutions modulo every
positive integer n. Is it true that this equation should have (interesting) solutions
in integers as well?

The example below gives negative answer to this question!

Example 8.6.1 The polynomial f(X) = (X2 + 1)(X4 − 4)(X2 +X + 2) does have solutions for
every positive modulus, but does not have integer solutions.
Proof Do this as an exercise. Prove that f(X) ≡ 0 mod p does have solutions for every prime
number p, and show that Hensel’s lifting lemma allows one to find a solution for every power of a
prime number, and therefore, by the CRT, for every positive modulus n. 2

Remark 8.6.1 For the fans of equations of more than one variable: it can be shown (T.Nagell)
that the Diophantine equation 2X2 − 219Y 2 + 1 = 0 has no solutions in Z, but does have solutions
in Z/nZ for every positive integer n. 2

8.7 Vista: Local-to-Global Principle

We reveal in this section that the analytic nature of the p-adic numbers (these are completions of Q
with respect to p-adic norms), and discus a very important fact related to proving the existence of
non-trivial integer solutions of quadratic equations of any number of variables through solving them
in R and in Qp for every prime number p (the Local-to-Global Principle).

8.7.1 Qp as a Completion of Q
The algebraic construction of p-adic numbers we gave in the previous chapter does not reveal an
important ”analytic” property of these numbers which makes them close ”relatives” with the real
numbers. As the reader might know (from the course of Introduction to Advanced Mathematics for
instance), the real numbers R are constructed as a space containing the rational numbers Q, and
with a metric which extends the metric on the rational numbers in such a way that the rational
numbers are a dense subset of the real numbers, and every Cauchy sequence of rational numbers
has a limit in that extension. It is a consequence of this that any Cauchy sequence of real numbers
has a limit in R as well. This last property means that R is a complete metric space. Since R is a
complete metric space containing Q as a dense subset, it is called a completion of Q. The metric
on Q which is extended to a metric on R is the absolute value of the difference of two numbers

d(x, y) = |x− y|.

This means that it is actually the absolute value, or the norm, function on | ◦ | : Q → Q≥0 which
determines the metric, and then the completion of Q. Norm functions on Q are by definition
functions ∥ ◦ ∥: Q→ Q having the properties

(N1) (∀x ∈ Q)(∥ x ∥≥ 0), and (∥ x ∥= 0→ x = 0);
(N2) (∀x, y ∈ Q)(∥ xy ∥=∥ x ∥∥ y ∥;
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(N3) (∀x, y ∈ Q)(∥ x+ y ∥≤∥ x ∥ + ∥ y ∥.

Given a norm ∥ ◦ ∥ on Q, one can define d : Q × Q → Q setting d(x, y) =∥ x − y ∥. It is
straightforward to check that the newly defined function has the properties

(M1) (∀x, y ∈ Q)(d(x, y) ≥ 0), and d(x, y) = 0 only if x = y;
(M2) (∀x, y ∈ Q)(d(x, y) = d(y, x));
(M3) (∀x, y, z ∈ Q)(d(x, z) ≤ d(x, y) + d(x, z)).

A function d satisfying the last three properties is called a metric on Q. When the metric is
defined using a norm, then we say that it is the associated (with the norm) metric. For in-
stance, the absolute value function | ◦ | is a norm on Q, denoted by ∥ ◦ ∥∞, and called the infinity
norm on Q . It’s associated metric is the classical one on Q we use in Calculus.

Given a metric d on Q, not necessarily associated with a norm, one defines Cauchy sequences of
rational numbers w.r.t. the metric as follows: the sequence < xn >⊆ Q is Cauchy if

(∀N ∈ N \ {0})(∃n0)(∀m,n)(m,n ≥ n0 → d(xn, xm) < 1/N).

As mentioned above, the real numbers R form a field with a metric on it d̃ : R×R→ R. This metric
has the properties (M1)− (M3) above with Q replaced with R, it is an extension of the metric d on
Q in the sense that, for x, y ∈ Q ⊆ R we have

d̃(x, y) = d(x, y),

it has Q as a dense subset in the sense that for every ϵ > 0, and for every x ∈ R, there is a y ∈ Q
such that d̃(x, y) < ϵ, and is such that every Cauchy sequence in R has a limit (in R). This last
property is abbreviate to saying that (R, d̃) is a complete metric space. All the properties of (R, d̃)
with respect to Q above are abbreviated to saying that (R, d̃) is a completion of (Q, d).

The real numbers are instrumental in defining what a metric on any set, not only on Q and R,
is. Thus we have that (X, d : X ×X → R) is a metric space if

(M1) (∀x, y ∈ X)(d(x, y) ≥ 0), and d(x, y) = 0 only if x = y;
(M2) (∀x, y ∈ X)(d(x, y) = d(y, x));
(M3) (∀x, y, z ∈ X)(d(x, z) ≤ d(x, y) + d(x, z)).

We know that R is a completion of Q. But Q can have many completions, each depending on
a metric on Q. More precisely, the metric space (K, d̃′) is a completion of (Q, d′) if K is a field which
is a complete metric space containing Q as a dense subset, and the metric d̃′ is an extension of the
metric d′.

Turns out that for every prime number p, there is a norm ∥ ◦ ∥p on Q, called the p-adic norm
on Q. Every such norm, through its associated (p-adic) metric, defines a completion of Q which is
exactly the field of p-adic numbers. This subsection is devoted to explaining how this is done.

p-adic Valuations on Q

We have an interpretation of the Fundamental Theorem of the Arithmetic of Z through the group
of non-zero rational numbers Q×. Namely, every x ∈ Q× has a unique expression in the form
(canonical expression of x)

x = ±
∏
k∈N

pαk

k

where p0 = 2, p1 = 3, . . . , pk, . . . is the sequence of prime numbers, and only finitely many αk are
non-zero.

For a fixed prime number p = pk define the function

vp : Q→ Z ∪ {∞}
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by vp(x) = αk when x = ±
∏

k∈N p
αk

k , and v(0) = ∞. This function has the properties that, for
every x, y ∈ Q,

(V1) vp(xy) = vp(x) + vp(y);
(V2) vp(x+ y) ≥ min{vp(x), vp(y)};
(V3) if vp(x) ̸= vp(y), then vp(x+ y) = min{vp(x), vp(y)}

where, by definition, for any n ∈ Z we have

∞+ n = n+∞ =∞, ∞+∞ =∞, ∞ ≥ n, ∞ ≥∞.

Exercise 8.14 Verify that the properties (V1), (V2) and (V3) are satisfied by the function vp.

Exercise 8.15 Prove that if x ̸= 0, then |x| =
∏

p p
vp(x). Conclude that the rational number x is

an integer if, and only if, for every p we have vp(x) ≥ 0, and that a rational number is a non-zero
integer if, and only if, for every prime number p, we have vp(x) ∈ N.

We abbreviate the fact that (V1)− (V3) are satisfied by vp by saying that vp is a discrete valuation
on Q. The valuation vp is referred to also as p-adic valuation on Q.

p-adic Norms on Q

Let p be a prime number. The p-adic norm on Q

∥ ◦ ∥p: Q→ Q

is defined by ∥ x ∥p= p−vp(x). In other words, if x = 0, then ∥ 0 ∥p= 0, and if x = ±
∏

p p
vp(x), then

∥ x ∥p= p−vp(x).

Exercise 8.16 Prove that ∥ ◦ ∥p satisfies the properties (N1)− (N3), that is - it is a norm indeed.
As matter of fact, this norm satisfies a stronger property than (N3): ∥ x+y ∥p≤ max{∥ x ∥p, ∥ y ∥p}
with equality if ∥ x ∥p ̸=∥ y ∥p. We will denote this property by (N ′

3).

The norm ∥ ◦ ∥p is referred to as the p-adic norm on Q.

Exercise 8.17 Prove that
Z = {x ∈ Q | (∀p)(∥ x ∥p≤ 1)}.

Prove also that {−1, 1} = {x ∈ Q | (∀p)(∥ x ∥p= 1 }.

The fact that integers have p-adic norms bounded by 1 is very different from what we have about
the norm ∥ ◦ ∥∞. More precisely, the rational numbers with the latter norm have the property that
for any x ∈ Q, there is a n ∈ Z such that ∥ x ∥∞<∥ n ∥∞ while with the p-norms, this property
is not satisfied (check this out!). Since Archimedes was one of the first mathematicians who used
this property in their work, a norm having it is called an Archimedean norm. The rest are called
non-Archimedean norms. As a matter of fact, the norm boundedness of the integers by 1 is
equivalent to the stronger property (N ′

3).

Proposition 8.7.1 Suppose ∥ ◦ ∥ is a norm on Q. Then the norms of the integers are bounded by
1 if, and only if, the norm satisfies (N ′

3).

Proof The ”if” direction of the statement is straightforward. For the ”only if” one, consider the
binomial formula, for any natural number n and any two rational numbers x and y,

(x+ y)n =

(
n

0

)
xn + · · ·+

(
n

k

)
xn−kyk + · · ·+

(
n

n

)
yn.

Taking the norm from both sides, and using the boundedness of the norms of the integers by 1, we
get

∥ x+ y ∥n≤∥ x ∥n + · · ·+ ∥ x ∥n−k∥ y ∥k + · · ·+ ∥ y ∥n≤ (n+ 1)max{∥ x ∥n, ∥ y ∥n}.
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Therefore, taking n-th root from the left most and the right most sides of these inequalities, we get

∥ x+ y ∥≤ n
√
n+ 1max{∥ x ∥, ∥ y ∥}.

Letting n go to infinity, we see that the norm satisfies the property (N ′
3). 2

Exercise 8.18 Make sense of the following expression: the rational number x is ”small” in the
p-adic norm if an, and only if, it is divisible by a large power of p.

There is a very important relation between the different norms on Q. It is revealed in the following
exercise.

Exercise 8.19 Prove that, for every non-zero x ∈ Q, there are only finitely many prime numbers p
such that ∥ x ∥p ̸= 1. Prove also that we have(∏

p

∥ x ∥p

)
· ∥ x ∥∞= 1.

p-adic Metric on Q

The p-adic metric dp on Q is the one associated with the p-adic norm ∥ ◦ ∥p.

Qp as a Completion of Q

Having defined the p-adic metric dp on Q, we can find the completion of Q with respect to this metric.
It is a general fact that the completions always exist and are essentially unique. To explain the
last, recall that we wanted originally to have Q as a dense subset of its completion K such that the
metric d′p on K extends the metric on Q. What this means is actually that there is a homomorphism
of fields φK : Q→ K which is an isometry (for every x, y ∈ Q we have d′p(φK(x), φK(y)) = dp(x, y)),
and such that Ran(φK) ⊆ K is a dense subset. Well, the completions are not unique as fields, but
they are identifiable in a nice way. More precisely, if (L, d′′p) is another completion of (Q, dp), there
is a unique map ψ : K → L such that φL = φK ◦ψ. Moreover, this map is an isomorphism of fields,
which is an isometry thereof. This is what essential uniqueness is.

Now, we know from the above that the completion of (Q, dp) exists and is essentially unique. This
means that knowing a completion, we know all of them. We are ending this subsection by proving
that Qp with an appropriate metric on it, is a completion of (Q, dp).

Recall from subsections 7.1.1 and 7.1.2 that the non-zero p-adic numbers have the form

α = φp(p)
n · x

where n ∈ Z, and x is an invertible p-adic integer, that is,

x = (a1, a2, . . . , ak, . . . ), ai ∈ Z, ai ≡ ai+1 mod pi (i = 1, 2, . . . ), [a1]p ̸= [0]p.

Here φp : Z→ Zp defined by φp(a) = (a, a, . . . , a, . . . ).

We first notice that the p-adic norm on Q is extended to a norm on Qp as well.

Exercise 8.20 For 0 ̸= α ∈ Qp, define ∥ α ∥p= 1/pn where α = φp(p)
n · x with x ∈ Z×

p , and set
∥ 0 ∥p= 0. Prove that ∥ ◦ ∥p: Qp → R is a non-Archimedean norm which extends the one on Q. The
latter means that ∥ φp(y) ∥p=∥ x ∥p for every y ∈ Q.
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We are proving next that φp(Q) ⊆ Qp is a dense subset with respect to this norm. We have to show
that for every α ∈ Q, and for every ϵ > 0, there is a y ∈ Q such that ∥ α − φp(y) ∥p< ϵ. Since
φp(0) = 0, we may assume that α ̸= 0, and therefore that α = φp(p)

n · (a1, a2, . . . , ak, . . . ) as above.
Notice that

φp(p
n · ak) = φp(p)

n · (a1, a2, . . . , ak−1, ak, . . . , ak, . . . )

and that
α− φp(p

n · ak) = φp(p)
n+k(ak+1 − ak, . . . , ak+s − ak, . . . ).

Therefore,

∥ α− φp(p
n · ak) ∥p≤

1

pn+k
< ϵ

for k ∈ N big enough. The density property is established.

Finally, we have to show that Qp with this norm is a complete metric space: every Cauchy se-
quence in Qp is convergent in Qp.

Let < αk > be a Cauchy sequence of p-adic numbers.

Exercise 8.21 Prove that if < αk > has infinitely many zero elements, then < αk >→ 0.

After this exercises, we may assume that the sequence has finitely many zero elements. By a standard
argument know from Calculus, the convergence of a sequence doesn’t depend on any finite number
of elements of that sequence. So, W.L.O.G., we may assume that αk ̸= 0 for every k ∈ N. As we
know, in such a case, for every k ∈ N, we have

αk = φp(p)
nk · xk, nk ∈ Z, xk ∈ Z×

p .

Exercise 8.22 Assuming that < αk > is Cauchy sequence of non-zero p-adic numbers, prove that
the sequence of exponents < nk > is bounded below. That is, there is an integer m such that m ≤ nk
for every k ∈ N.

This integer m will help us reduce our task to working with a sequence of p-adic integers.

Exercise 8.23 In the setting of the previous exercise denote βk = φp(p)
−mαk. Prove that the

sequence < βk > is a Cauchy sequence of p-adic integers.

Again a standard argument from Calculus shows that < βl > is convergent if, and only if < αk >
is, and that in case of convergence we have

lim
k
αk = φp(p)

m · lim
k
βk.

So, it remains to prove that a Cauchy sequence of p-adic integers is convergent (to a p-adic integer).
We will prove this by using a version of the diagonal method invented by Cantor, and widely used
in Mathematics, but before that - the following straightforward fact.

Exercise 8.24 Suppose x = (a1, . . . , ak, . . . ) and x
′ = (a′1, . . . , a

′
k, . . . ) are p-adic integers such that

∥ x− x′ ∥p< 1/ps for s ∈ N. Prove that as ≡ a′s mod ps.

Let now < αk > be a Cauchy sequence of p-adic integers. We know that, for every k ∈ N there is
an index mk such that ∥ αs − αt ∥p< 1/pk as long as s, t ≥ mk. Without a loss of generality, we
may assume that < mk > is a strictly increasing sequence. For every k ∈ N we have

αk = (a1k, a2k, . . . , ask, . . . ).

Consider the map f : N→ Z given by f(t) = mk if mk−1 ≤ t < mk, where m−1 := 0. The following
exercises exhibit a limit of our sequence.

Exercise 8.25 (1) Prove that the function f constructed above is a p-adic number. That is, show
that (f(0), f(1), . . . , f(k), . . . ) ∈ Zp. Call this number α.
(2) Prove that α is a limit of < αk >.
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8.7.2 Ostrowski’s Theorem

We know that given a metric on Q, the completion of Q with respect to this metric is (essentially)
unique. But different metrics may define the same completions on Q.

Exercise 8.26 Prove that the completions of Q

{R,Qp | p prime number}

are all pairwise non-isomorphic. [Hint: For any two completions find a sequence of rational numbers
which is convergent in one completion, and divergent in the other.]

A concept that allows us to compare norms is the concept of equivalent norms. Given norms ∥ ◦ ∥
and ∥ ◦ ∥′ on Q, we say that they are equivalent if there exist two positive (rational) numbers α and
β such that, for every x ∈ Q we have

α ∥ x ∥≤∥ x ∥′≤ β ∥ x ∥ .

Exercise 8.27 Prove that equivalent norms on Q define isomorphic completions of Q.

A remarkable theorem reveals that, up to equivalence of norms, we already know all norms on Q.

Theorem 8.7.2 (A. Ostrowski, 1916) Let ∥ ◦ ∥ be a norm on Q. If this norm is Archimedean,
then it is equivalent to ∥ ◦ ∥∞. If the norm is non-Archimedean, then there is a (unique) prime
number p such that the norm is equivalent to ∥ ◦ ∥p.

In other words, all completions of Q with respect to a metric coming from a norm are the fields of
real numbers R, and the fields of p-adic numbers Qp.

8.7.3 Hasse-Minkowski’s Principle

After explaining the analytic nature of the algebraically constructed p-adic numbers, a Number
Theory application is in order.

Suppose that F (x1, . . . , xk) = 0 is a Diophantine equation that we want to solve. The first question
to ask here is whether this equation has solutions at all. We know that non-existence can be proved
by using modular methods (considering the equation modulo n for every n ∈ N) The Chinese Re-
mainder Theorem tells us that it is actually enough to work modulo the powers of prime numbers:
n = pm. Obviously, if there is no solution to the equation for some power of a prime, then it has
no solutions in Z either. Similarly, if F (x1, . . . , xk) = 0 has no solutions in R, then it has no integer
solutions either.
One can restate the results of this discussion as follows:

If F (x1, . . . , xk) = 0 has solutions in Z, then it has solutions in all completions R and
Qp for p a prime number.

The natural question to ask here is whether the converse is true as well. The example we discussed
in the previous section shows that this is not true in general. Indeed,

f(X) = (X2 + 1)(X4 − 4)(X2 +X + 2) = 0

has solutions in every Qp, and in R, but has no integer solutions. The following deep theorem gives
a positive answer in an important case.

Theorem 8.7.3 ( Hasse-Minkowski’s Principle) Let F (x1, . . . , xn) =
∑

1≤i≤j≤n aijxixj be a non-
trivial homogeneous polynomial of degree 2 with integer coefficients. Then F = 0 has non-zero
solution in Q if, and only if, it has non-zero solutions in R and in Qp for every prime number p.
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Observe that, since F is homogeneous, existence of solutions in Z is equivalent to having solutions
in Q. Another important (Linear Algebra) fact is that with a linear change of the variables one can
express any quadratic form in ”diagonal form”

F (x1, . . . , xn) =
∑

1≤i<j≤n

aijxixj

= a1y
2
1 + · · ·+ aky

2
k =: G(y1, . . . , yn)

where k ≤ n, a1, . . . , ak ∈ Q, and a1a2 · · · ak ̸= 0.
Solving F (x1, . . . , xn) = 0 is equivalent to solving G(y1, . . . , yn) = 0, and non-trivial solutions of the
former correspond to non-trivial solutions of the latter.
Obviously if k < n, there is a non-trivial solution of G(a1, . . . , yn) = 0, and the Hasse-Minkowski’s
Principle is trivially true. So, the interesting case is when k = n, that is when the quadratic form
is called non-degenerate. We will prove now the theorem when the form is non-degenerate, and
n = 3. This case is familiar to us from previous Vistas: the Legendre theorem 2.3.1 gives necessary
and sufficient conditions for solvability of the form of a different type.

Proof of Hasse-Minkowski’s Principle for F (x, y, z) = ax2 + by2 + cy2 with a, b, c ∈ Q×.

We are proving that solubility of F = 0 in all completions of Q implies its solubility in Q the
other direction of the claim being obvious. Since F = 0 is solvable in R, not all coefficients of F are
of the same sign. W.L.O.G. we may assume that F (x, y, z) = ax2 + by2 − z2 where either a > 0 or
b > 0. Standard arguments reduce the equation to one with integer coefficients a and b with ab a
square-free number. We will prove the theorem by induction on n = |a|+ |b| ≥ 2.
If n = 2, then F (x, y, z) = ±x2± y2− z2 with not all coefficients negative numbers, and has obvious
solution. Assume the theorem is true for all n ≤ k, and consider the case n = k+1. W.L.O.G. we may
assume |a| ≤ |b|. Since n = k + 1 > 2, we have that |b| = p1 · · · ps is a product of s distinct primes.
Since ax2 + by2 − z2 is soluble in every Qpi

for i = 1, . . . , s, we have that, for every i = 1, . . . , s the
congruence ax2 ≡ z2 mod pi has a solution. Since we may assume that ∥x∥pi

= ∥y∥pi
= ∥z∥pi

= 1
for the solution in Qpi

, we conclude that a is a quadratic residue mod pi for every i = 1, . . . , s. By
the CRT then we get that a is a quadratic residue mod |b| as well, and we have

r2 − a = bc, 0 ≤ r ≤ |b|
2
, c ∈ Z.

Using the well known from the proof of Legendre’s theorem 2.3.1 trick, we have the identity

a(rx+ z)2 + b(cy)2 − (ax+ rz)2 = bc(ax2 + cy2 − z2).

This together with the inequalities

|c| = |r
2 − 1

b
| ≤ |r

2

b
|+ |a

b
| ≤ |b|

4
+ 1 < |b|,

so that |a|+|c| ≤ k, allows us to use induction, and get prove that the case of n = k+1 is also true. 2

This theorem is an example of a ”Local-to-Global Principle”. Solving an equation in Q is con-
sidered a global event, while solving it in R and Qp is considered a local event. The theorem says
that if we can solve the equation locally, then we can solve it globally.
Of course, if a Diophantine equation, homogeneous or not, is solvable in Z, it is also solvable in
any of the completions of Q. This is an obvious fact which can be interpreted as a Global-to-Local
Principle. It is always valid. Contrary to that, the Local-to-Global Principle is not valid if the
degree of F is bigger than 2 even if the equation remains homogeneous!
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8.7.4 The Groups Q×2
p

Let α ∈ Q×
p . We want to characterize those α which are in Q×2

p . In other words, we want to find
the necessary and sufficient conditions on α under which the equation

x2 = α

is solvable in Q×
p . We know that α = φp(p

s)a where a ∈ Z×
p . Obviously, if α = β2 for some β ∈ Qp,

then s is an even number: s = 2s1. Now solving

x2 = φp(p
2s1)a

in Qp is equivalent to solving
x2 = a

in Zp.

Case of an Odd Prime p

Let a = (a1, a2, . . . , an, . . . ) ∈ Z×
p . The equation x

2 = a is solvable only if, and only if, the equations
y2 ≡ an mod pn are solvable for every n ≥ 1. By the Hensel’s lifting lemma, these equations either
are solvable, and have two solutions each, precisely when y2 ≡ a1 mod p is solvable. Moreover the
solutions of the equations form two elements of Zp x1 and x2 = −x1 which are the (two) solutions
to the original equation. We conclude fro this discussion that

Proposition 8.7.4 Let p be an odd prime. Then Q×2
p = {φp(p

n)a |n ∈ 2Z and a ∈ Z×2
p } where

Z×2
p = {a = (a1, . . . ) ∈ Zp |

(
a1
p

)
= 1}.

Case of p = 2

Let now a = (a1, a2, . . . , an, . . . ) ∈ Z×
2 . This means in particular that all components of a are odd

integers. As before, solving x2 = a in Z×
2 is equivalent to solving the equations y2 =≡ an mod 2n

for all n ≥ 1. As we know, the latter is possible if, and only if, an ≡ 1 mod 8 for n ≥ 3 which
reduces to just a1 ≡ 1 mod 8. In this case, the original equation x2 = a has two solutions. We have
proven the following

Proposition 8.7.5 We have Q×2
2 = {φ2(2

n)a |n ∈ 2Z, and a ∈ Z×2
2 } where

Z×2
2 = {a = (a1, . . . ) ∈ Z2 | a1 ≡ 1 mod 8 }.

Exercise 8.28 Examine the solutions of y2 ≡ an mod 2n for a = (a1, a2, . . . , an, . . . ) ∈ Z×
2 , and

figure out how the solutions mod 2n for every n organize in two solutions in Q2.

8.8 The Generalized Law of Quadratic Reciprocity

In order to use the Law of Quadratic Reciprocity for calculating the Legendre symbol
(

a
p

)
, we have

to factor a out as a product of primes. This, as already mentioned, is a hard to do in general. Turns
out, a fact noticed by Jacobi, there is no need for such a factorization!

Definition 8.8.1 Let Q = p1p2 · · · pk be an odd number with its representation as product of primes
(2 < p1 ≤ p2 ≤ · · · ≤ pk). If a is an integer, relatively prime with Q, define the Jacobi symbol of
a modulo Q to be (

a

Q

)
:=

(
a

p1

)
·
(
a

p2

)
· · ·
(
a

pk

)
.
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Exercise 8.29 Show that, for every odd Q ∈ N and for every a, b ∈ Z, we have(
ab

Q

)
=

(
a

Q

)
·
(
b

Q

)
and (a ≡ b mod Q) →

((
a

Q

)
=

(
b

Q

))
.

The amazing fact is that the Jacobi symbol satisfies similar Law of Quadratic Reciprocity as Legendre
symbol does!

Theorem 8.8.1 (Generalized Law of Quadratic Reciprocity) Suppose P and Q are relatively
prime odd natural numbers. The following formulae hold true for the Jacobi symbol.

(1)
(−1

P

)
= (−1)P−1

2 and
(
2
P

)
= (−1)P2−1

8

(2)
(

Q
P

)
·
(

P
Q

)
= (−1)P−1

2 ·Q−1
2 .

Proof Let P = p1p2 · · · pk and Q = q1q2 · · · ql where p1 ≤ p2 ≤ · · · ≤ pk and q1 ≤ q2 ≤ · · · ≤ ql
are prime numbers. By assumption {p1, p2, . . . , pk} ∩ {q1, q2, . . . , ql} = ∅. Obviously, proving the
formulae in (1) is equivalent to showing that

P − 1

2
≡

k∑
i=1

pi − 1

2
mod 2 and

P 2 − 1

8
≡

k∑
i=1

p2i − 1

8
mod 2,

while proving the formula in (2), we have to show that

P − 1

2
· Q− 1

2
≡

k∑
i=1

l∑
j=1

pi − 1

2
· qj − 1

2
mod 2.

We are proving the first equality above. The number P is odd, so pi = 2ni+1 for every i = 1, 2, . . . , k.
Then

LHS1 =
1

2
·

(
k∏

i=1

(2ni + 1)− 1

)
=

4 ·A+ 2
∑k

i=1 ni
2

≡
k∑

i=1

ni mod 2,

and

RHS1 =

k∑
i=1

2ni + 1− 1

2
=

k∑
i=1

ni.

Obviously LHS1 ≡ RHS1 mod 2. The first equality is proved.
For the second equality, we have

LHS2 =
P 2 − 1

8
=

∏k
i=1(2ni + 1)2 − 1

8
=

∏k
i=1(4(n

2
i + ni) + 1)− 1

8

=
16 ·B + 4

∑k
i=1(n

2
i + ni)

8
≡
∑k

i=1(n
2
i + ni)

2
mod 2,

and

RHS2 =

k∑
i=1

(2ni + 1)2 − 1

8
=

k∑
i=1

n2i + ni
2

.

Obviously LHS2 ≡ RHS2 mod 2, and the second equality is proven too.
For the third equality, since Q is odd, and therefore qj = 2mj + 1 for every j = 1, 2, . . . l, we have

LHS3 =

∏k
i=1(2ni + 1)− 1

2
·
∏l

j=1(2mj + 1)− 1

2

=
4 · C + 2

∑k
i=1 ni

2
·
4 ·D + 2

∑l
j=1mj

2
≡

(
k∑

i=1

ni

)
·

 l∑
j=1

mj

 mod 2,
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and

RHS3 =

k∑
i=1

l∑
j=1

(ni) · (mj) =

(
k∑

i=1

ni

)
·

 l∑
j=1

mj

 .

We have once more time LHS3 ≡ RHS3 mod 2, and the third equality is proved.
The theorem is proved as well. 2

The practical value of the Jacobi symbol for this course is in allowing one to compute Legendre
symbols without needing to have the arguments of the symbol prime numbers! On the other hand,
knowing that Legendre symbol is 1 if, and only if, the corresponding congruence equation has a
solution, one may be tempted to use the Jacobi symbol as a criterion for having solutions to the
congruence

X2 ≡ Q mod P

where P is an odd natural number, and gcd(P,Q) = 1. One has to be more careful here! The
exercise below explains why.

Of course, it is not the computation of the Legendre symbol which the Jacobi symbol is used only
for! As a matter of fact, there are many symbols (cubic, biquadratic, quintic, and so on) who bear
the names of their inventors (Kronecker, Dirichlet, Eisenstein, Furtwängler, Hilbert, Artin, Hasse,
... just to mention some!) which were designed to capture in bigger generality the relationship (reci-
procity in a general sense) between numbers detected in its easiest form by the Law of Quadratic
Reciprocity. A bit more about all this can be found in the following Vista. In Chapter 11, we
will see interesting (and at a more elementary level) applications of the Jacobi symbol in answering
non-trivial number theoretical questions.

Exercise 8.30 Let P and Q be integers such that P is odd, and gcd(P,Q) = 1. Consider the
congruence equation X2 ≡ Q mod P . Prove that

(1) If the equation has a solution, then
(

Q
P

)
= 1;

(2) Show, by an example, that the converse of (1) is not true in general.

The following exercises offer equivalent formulations of the Law of Quadratic Reciprocity

Exercise 8.31 (1) (Eisenstein’s form of the Generalized Law of Quadratic Reciprocity) Prove that,
for positive odd integers P,Q, P ′, Q′ such that gcd(P,Q) = 1 and gcd(P ′, Q′) = 1, if P ≡ P ′ mod 4
and Q ≡ Q′ mod 4, then (

P

Q

)(
Q

P

)
=

(
P ′

Q′

)(
Q′

P ′

)
.

(2) Conversely, prove that Eisenstein’s form of the Generalized Law of Quadratic Reciprocity from
(1) is true, then the Gauss-Legendre form of that Law is true as well.

Exercise 8.32 (1) (Euler’s version of the Law of Quadratic Reciprocity) Prove that, for a fixed

integer a, the Legendre symbol
(

a
p

)
depends only on [±p]4a.

[We have to show that if q ≡ ±p mod 4a, then
(

a
p

)
=
(

a
q

)
. If q = p+ 4ak, then(

a
p

)
=
(

4ak
p

)(
k
p

)
=
(

q
p

)(
k
p

)
, and similarly that

(
a
q

)
=
(

−p
q

)(
k
q

)
. Using the properties of the

Jacobi symbol, and the GLQR, we reduce to the case k odd or k = 2k1 with ks odd, and compute

that
(

q
p

)(
k
p

)
=
(

−p
q

)(
k
q

)
.]

(2) Conversely, prove that if the Legendre symbol has the property of (1), then it satisfies the Law
of Quadratic Reciprocity.

[Let p < q be two odd primes. Then either p+ q ≡ 0 mod 4 or p− q ≡ 0 mod 4.

In the former case, let d = (p+ q)/4. We have
(

p
q

)
=
(

p+q
q

)
=
(

4d
q

)
=
(

d
q

)
, and similarly
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(
q
p

)
=
(

d
p

)
. Since p+ q = 4d we have

(
d
p

)
=
(

d
q

)
, and so,

(
p
q

)
=
(

q
p

)
. On the other hand,

(p− 1)(q − 1)/4 = (p− 1)(4d− p− 1)/4 = (4d(p− 1) + 1− p2)/4 ≡ 0 mod 2, and therefore(
p
q

)(
q
p

)
= 1 = (−1)(p−1)(q−1)/4. In the latter case, let d = (q − p)/4. We have in this case that(

q
p

)
=
(

d
p

)
and

(
p
q

)
=
(

−d
q

)
=
(

−1
q

)(
d
q

)
. Therefore,

(
p
q

)(
q
p

)
=
(

−1
q

)
=

(−1)(q−1)/2 = (−1)(q−1)(p−1)/4.]

Remark 8.8.1 (Second Proof of the LQR) Having established that Gauss-Legendre and Euler’s
versions of the LQR are equivalent statements, and using Exercise 8.12, we get a second proof of
the LQR. 2

8.9 Vista: Laws of Reciprocity

As Hecke put it, ”The modern Number Theory begins with the discovery of the Law of Quadratic
Reciprocity”. In a very strong sense, the modern Algebra and Algebraic Number Theory was
developed in order to find the most general form of the law of reciprocity. In this section we briefly
explain the history and the place of the Reciprocity Laws.

8.9.1 Laws of Reciprocity in Math

The Law of Quadratic Reciprocity (LQR) in the form of Legendre and Gauss, reveals a relationship
between pairs of (odd) distinct primes in regard with solving quadratic congruences. A fact which
goes beyond the scope of this course is that solving such congruences leads to studying quadratic
extensions of the field Q. In its generalized form, using the Jacobi symbol, this Law relates pairs
of numbers not necessarily prime (but still prime to each other).

The LQR was rigorously proven for the first time by Gauss in ”Disquisitiones Arithmeticae”. In
his lifetime, Gauss gave eight proofs of this Law (two of which in the ”Disquisitiones”) every one of
which revealed different ways the LQR is connected to math in general. It was also Gauss who first
realised that the LQR can be explained by considering extensions of Q different than quadratic, and
in his studies of such extensions, he discovered the Biquadratic Reciprocity Law.

The generalizations of the LQR take the form of relationship between pairs of elements of extensions
of Q of higher degree: three, four, ..., n. This led to the development of the Local and Global Class
Field Theories in the first half of the last century. The list of people who made generalizations of the
LQR consists of the names of many great mathematicians of that time: Gauss, Jacobi, Eisenstein,
Kummer, Kronecker, Hilbert, Furtwängler, Takagi, Artin, Hasse, etc. Thus, for instance, it was
possible to discover and prove the Law of Quintic Reciprocity only after Kummer introduced and
developed the theory of ideal numbers. It was Hilbert who included finding the most general form
of the laws of reciprocity, as number 9, in the list of (23) most important problems for Mathematics
in the Twentieth Century (he did this at the First Congress of the Mathematicians held in Paris
in 1900). This most general form was found by E. Artin in 1927 (Artin’s Reciprocity Law), and
pertains to what is called Abelian Class Field Theory.

The generalization of the laws of reciprocity didn’t stop there. In recent years the Abelian setup
of the Class Field Theory was vastly generalized to non-Abelian Class Field Theory following the
ideas and the vision of mathematicians like Shimura and Langlands. It was the development of this
non-Abelian case which led to the powerful results of A. Wiles.

The discussion of any of the mentioned generalizations of the LQR goes far beyond the scope
of these Lecture Notes. To complete our discussion of the LQR, in the next subsection, we give a
treatment of the LQR and its close relation to solving quadratic Diophantine equations, and to the
theory of p-adic numbers using the Hilbert’s norm symbol.
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8.9.2 Hilbert’s Norm-Symbol and the Law of Quadratic Reciprocity

The Hilbert’s Norm Symbol (a, b)p

Suppose a, b ∈ Q×. Consider the equation ax2 + by2 = z2 in Qp.

Definition 8.9.1 We define the Hilbert’s norm symbol, (a, b)p, by setting
(a, b)p = 1 if the equation has a non-trivial solution, and
(a, b)p = −1 if the equation has no such a solution.

So, obviously, (a, b)p = (b, a)p.
Although we defined the Hilbert norm symbol for non-zero rational numbers, its computation reduces
to the case of integer square-free integers. Indeed, the non-zero rational numbers a and b can be
written as

a = a1 · x21 b = b1 · y21
where a1 and b1 are square-free integers, and x1 and y1 are rational numbers. It is obvious that
(a, b)p = (a1, b1)p. So, from this moment on we will work with integers a and b.

To see the reason why the function (•, •)p is called norm symbol, lets observe that

Proposition 8.9.1 We have (a, b)p = 1 if, and only if, z2 − by2 = a has (non-trivial) solutions in
Qp.

Proof Indeed, the solution (y0, z0) of z
2 − by2 = a defines a solution (1, y0, z0) of ax

2 + by2 = z2,
and therefore (a, b)p = 1. Suppose now (a, b)p = 1, and let (x0, y0, z0) be a non-trivial solution of

ax2 + by2 = z2. If x0 ̸= 0, we are done: (y0/x0, z0/x0) is a (non-trivial) solution of z2 − by2 = 1. If
x0 = 0, then y0z0 ̸= 0, and b = (z0/y0)

2. Therefore

z2 − by2 = (z − (z0/y0)y)(z + (z0/y0)y).

Since the system
z − (z0/y0)y = a z + (z0/y0)y = 1

is solvable in Qp, we find a solution to z2 − by2 = a as well. 2

In technical terms (from Galois Theory) the expression z20 − by20 = a means that a is the norm
of the element z0 +

√
by0 ∈ Qp(

√
b). In other words, (a, b)p = 1 if, and only if, a is a norm of an

element of Qp(
√
b).

Here are some basic (local) properties of the Hilbert’s norm symbol.

(1) The Hilbert’s norm symbol is multiplicative with respect to its arguments

(a1a2, b)p = (a1, b)p (a2, b)p (a, b1b2)p = (a, b1)p (a, b2)p .

To see this we consider several cases. (i) Let (a1, b)p = (a2, b)p = 1. Then a1 = z21 − by21 and

a2 = z22 − by22 . It is obvious that

a1a2 = (z21 − by21)(z22 − by22) = (z1z2 + by1y2)
2 − b(z1y2 + y1z2)

2,

so that (a1a2, b)p = 1. (ii) Let (a1, b)p (a2, b)p = −1. Assume, by contradiction, that (a1a2, b)p = 1.
W.L.O.G. we have (a1, b)p = 1. Then by (i)

(a1a2, b)p (a1, b)p = (a1a2a1, b)p = (a2, b)p = −1

which is an absurdity, because (a1a2, b)p (a1, b)p = 1 · 1 = 1. So, (a1a2, b)p = −1. (iii) Let (a1, b)p =

(a2, b)p = −1. Observe that, if p is an odd prime, then
(

a1

p

)
=
(

a2

p

)
= −1. This follows from the
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fact that, by the Hensel’s lifting lemma, for any integer c we have
(

c
p

)
= 1 implies that c = z20 for

z0 ∈ Qp. But then
(

a1a2

p

)
= 1 and therefore a1a2 = z20 − b · 02. We conclude that (a1a2, b)p = 1

as needed. When p = 2 we have that none of the square-free integers a1, a2, and b are squares in
Q2. This is equivalent to having them congruent to 2, 3, 5, 6 or 7 modulo 8. Moreover, W.L.O.G. we
may assume, modulo Q×2

2 that a1, a2, and b are equal to 2, 3,−3,−2, or −1. Let’s fix b = −1 say,
and lets find all possible values of a1 so that (a1,−1)2 = −1. Of the equations

−x2 − y2 = z2, 2x2 − y2 = z2, −2x2 − y2 = z2, , 3x2 − y2 = z2, −3x2 − y2 = z2

only the first the third and the fourth do not have non-trivial solutions in Q2. So a1, and a2 for
that matter, can be equal to −1,−2 or 3. But then a = a1a2 is either a square, or equal to 2,−3,
or −6. In all these cases ax2 − y2 = z2 does have non-trivial solutions in Q2. We just proved that

(a1,−1)2 (a2,−1)2 = (a1a2,−1)p .

The rest of the cases: b = 2, 3,−3, and −2 are treated in a similar way proving the multiplicity of
the Hilbert norm symbol for p = 2 as well. 2

The multiplicativity property of Hilbert’s norm symbol reduces the computation of the symbol
to cases such as (±p,±q)r where p, q, r are, not necessarily distinct, prime numbers..

(2) For every odd prime p, and for every a ∈ Z with gcd(a, p) = 1 we have (a, p)p =
(

a
p

)
Indeed, if the equation a = z2 − py2 is solvable in Qp, then a ≡ z2 mod p is solvable as well.

Therefore, (a, p)p = 1 implies
(

a
p

)
= 1. Conversely, if

(
a
p

)
= 1, then, as we know, a ∈ Z×2

p , and

therefore a = z2 − py2 has a non-trivial solution. The latter means that (a, p)p = 1. The claim is
proved. 2

(3) For every odd prime p we have (p, p)p =
(

−1
p

)
This is obvious by looking at when solutions of p = z2 − py2 exist (do this as an exercise). 2

(4) For every integer m, and for any prime number p we have (−m,m)p = 1

Another obvious fact (exercise!). 2

(5) if p is an odd prime, and if ∥a∥p = ∥b∥p = 1 (that is, if p ∤ ab) , then (a, b)p = 1

This is a simple counting: Consider ax2 + by2 ≡ z2 mod p. We may assume that a, b are not
quadratic residues mod p. Consider a+by2 mod p for y = 0, 1, . . . , (p−1)/2. At least one of these
elements of Z/pZ is a quadratic residue mod p, because the nonresidues are (p− 1)/2. So, we have
a+ by20 ≡ z20 mod p. Using Hensel’s lifting lemma, we find a+ by20 = z21 in Qp.

We are missing the values of the Hilbert’s norm symbol for p = 2. Here are the corresponding
results.

(6) If ∥a∥2 = ∥b∥2 = 1, then (a, b)2 = (−1)(a−1)(b−1)/4

Verification of this fact is quickly reduced to the cases when neither a, nor b is a square in Q2.
Therefore, one may assume that a and b are equal to 3, 5, or 7. Direct check in which of the cases a
solution to ax2 + by2 = z2 exists, verifies the formula. (Exercise!)
For the missing value 2 of a or b, we have

(7) For every odd integer a we have (a, 2)2 = (−1)(a2−1)/8
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As before, we may assume that a is not a square in Q2. So, a = 3,−3 or −1. But obviously
(−1, 2)2 = 1, (3, 2)2 = −1 (using arguments mod 8), and (−3, 2)2 = −1 (using arguments mod 8).
The formula is verified. 2

The Hilbert’s norm symbol is defined in connection with solving a homogeneous quadratic equa-
tion in all non-Archimedean completions of Q. Of course, it should be defined for the Archimedean
completion as well. Here is the definition.

Definition 8.9.2 Define (a, b)∞ = 1 if ax2 + by2 = z2 has a non-trivial solution, and (a, b)∞ = −1
if otherwise.

Obviously, (a, b)∞ = −1 if, and only if, both a and b are negative rational numbers. The symbol
(a, b)∞ satisfies the properties (1) and (4) above.

We can prove now a global property of the Hilbert’s norm symbol. This property is called the
Hilbert’s Reciprocity Law

Theorem 8.9.2 (Hilbert’s Reciprocity Law) Let v denote a prime number or the symbol ∞. Then,
for every a, b ∈ Q× we have ∏

v

(a, b)v = 1.

As a matter of fact, the above formula is equivalent to the Legendre-Gauss’s LQR.

Proof Using the multiplicativity property of the symbol, we reduce (a, b)v to the case when a, b are,
−1, or primes, while v is a prime equal to a or b, or is ∞. Let a = p, b = q be distinct odd primes.
Then ∏

v

(p, q)v = (p, q)p (p, q)q (p, q)2 =

(
p

q

)(
q

p

)
(−1)(p−1)(q−1)/4

which is equal to 1 according to the LQR. Let a = −1 and b = q an odd prime.∏
v

(−1, q)v = (−1, q)q (−1, q)2 =

(
−1
q

)
(−1)(−1−1)(q−1)/4 = 1

by one of the supplementary parts of the LQR. We have obviously that∏
v

(−1,−1)v = (−1,−1)2 (−1,−1)∞ = (−1)(−1) = 1.

Let now a = p be an odd prime. We have∏
v

(p, 2)v = (p, 2)p (p, 2)2 =

(
2

p

)
(−1)(p

2−1)/8 = 1

by the second supplementary part of the LDR. Finally, for a = b = 2 we obviously have (2, 2)v = 1.
The formula is proved. 2

Exercise 8.33 Prove that the the Hilbert’s Reciprocity Law implies the Legendre-Gauss LQR.
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Chapter 9

Binomial Equations mod n, the
Structure of (Z/nZ)×

We are discussing in this chapter solving mod n a binomial equations of any degree

Xd − a ≡ 0 mod n gcd(a, n) = 1.

When there is a solution, the number a ∈ Z is called d-the power residue mod n . In the
previous chapter, we found all quadratic residues mod n, and also all solutions to a fixed bino-
mial quadratic equation. Our goal here is to do the same for the binomial equation of degree d: we
will find all d-th power residues, and we will find all numbers whose d-th power is that power residue.

Before going any deeper in the theory, let’s show (as we did in the previous chapter) that con-
sidering gcd(n, a) = 1 is not a loss of generality: solving binomial equations without this restriction
reduces to solving equations with it.
Indeed, let s = gcd(a, n), so that n = s · n1 and a = s · a1 with gcd(n1, a1) = 1. Let further x0 be
a solution to Xd ≡ a mod n. From xd0 ≡ a ≡ 0 mod s we get that s |xd0. Let s1 be the smallest
positive integer such that

s | sd1 and s1 |x0.

Such an integer exists, because it has to be no bigger than x0. Also, the prime divisors of s1 are
the same as the prime divisors of s: otherwise, disregarding the ones not dividing s, we can find a
smaller than s1 number having the needed properties. Although s1 is defined using a solution x0,
by the exercise below, it actually depends only on s.
Denoting x0 = s1 · x1, and sd1 = s · s2, we can rewrite the relation xd0 ≡ a mod n as follows

(s1 · x1)d ≡ s · a1 mod s · n1,

and after simplifications as
s2 · xd1 ≡ a1 mod n1.

Observe now that gcd(s2, n1) | a1 which together with gcd(s2, n1) |n1 gives us that

gcd(s2, n1) | gcd(a1, n1) = 1.

Therefore, x1 is a solution to
Xd ≡ a1 · (s2)−1 mod n1

with gcd(a1 · (s2)−1, n1) = 1.

Exercise 9.1 Let in the notations above s = pα1
1 · · · p

αk

k . Prove that s1 = pβ1

1 · · · p
βk

k where for every
i the number βi satisfies αi ≤ d · βi, and are the least numbers with this property.
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So, the solutions to the original equation Xd ≡ a mod n are obtained solving Xd ≡ a1 · (s2)−1

mod n1, and then multiplying them with s1.

From this point on, we are considering gcd(a, n) = 1. To keep up with the professional (alge-
braic) interpretation of what we are doing, denote the set of all d-the power residues mod n by

(Z/nZ)×d
. That is,

(Z/nZ)×d
= {[a] ∈ (Z/nZ)× | (∃[b] ∈ (Z/nZ)×) ([a] = [b]d) }.

It is easy to verify (do that as an exercise) that a product of two d-th power residues is a d-th
power residue, and that the inverse of every such residue is a d-th power residue as well. This means
that, as it was in the case d = 1, the set (Z/nZ)×d

is a subgroup of (Z/nZ)×. Following the analogy
with d = 2, consider the map

ψd : (Z/nZ)× → (Z/nZ)×d
[a] 7→ ψd([a]) = [a]d.

This map is obviously a surjection, and is easy to check (an exercise!) that it is a group homo-
morphism. So, ψd is an epimorphism. Our goal can be formulated as ”understanding” the map ψd:
describing the structure of its co-domain (Z/nZ)×d

, and of its kernel ker(ψd) = {[b] |ψd([b]) = [1] }.

To motivate the way we go about reaching our goal, let’s make some observations.

(1) Observe that, since gcd(a, n) = 1, any solution, x0, to X
d − a ≡ 0 mod n is relatively prime

with n, and is therefore invertible mod n. So, the class mod n of any such solution is naturally
an element of (Z/nZ)×.
(2) Therefore, if x1 and x2 are two solutions, then they both are invertible mod n, and y = x1(x2)

−1

mod n is a solution to
Y d − 1 ≡ 0 mod n

that is, y is a dth root of unity mod n.
(3) Vice-versa, given a solution x1, any other such has the form x2 = x1y mod n for a d-th root of
unity mod n.

From (1), (2), and (3) it follows that
(i) to find if a is a d-th power residue mod n, we have to see if there is an element of (Z/nZ)×

whose d-th power is a, and
(ii) to find all elements like in (i) is equivalent to finding all d-th roots of identity mod n,

These two conclusions lead to considering orders of elements mod n, and, ultimately, to finding
the structure of the group (Z/nZ)×. This is what we are doing in this chapter.

9.1 Orders Modulo n

Consider the group (Z/nZ)×. We know, by Euler’s theorem, that

(∀[a] ∈ (Z/nZ)×)
(
[a]φ(n) = [1]

)
.

So, we can speak of the least positive integer d such that [a]s = [1].

Definition 9.1.1 For any [a] ∈ (Z/nZ)× define the order of [a] to be the least natural number s
such that [a]s = [1]. The order of [a] is denoted by |[a]| = ord([a]) = ordn(a) . The number is also
called the order of a modulo n.

It is straightforward that the order modulo n exists. Here is the important theorem summarizing
the properties of orders modulo n.
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Theorem 9.1.1 Let [a], [b] ∈ (Z/nZ)×, and let m ∈ Z. We have the following.
(1) [a]m = [1] if, and only if, |[a]| |m;
(2)|[a]−1| = |[a]|;
(3) |[a]m| = |[a]|/ gcd(|[a]|,m);
(4) gcd(|[a]|, |[b]|) = 1 ⇒ |[a][b]| = |[a]| · |[b]|.

Proof. Denote by s the order of [a], and by t - the order of [b].
(1): The ”if” part is obvious: m = s · m′ implies that [a]m = [a]s·m

′
= ([a]s)m

′
= ([1])m

′
= [1].

For the ”only if” part, assume [a]m = [1]. We want to show that s |m. Dividing m by s, we get
m = s · q + r where 0 ≤ r < s. We have that [1] = [a]m = [a]s·q · [a]r = [a]r, and so, if r ̸= 0 we
would have s ≤ r < s which is an absurd. Therefore, r = 0, and m s · q as needed.
(2): It is enough to show that ([a]m = [1]) ⇔ ([a−1]m = [1]. But, by the cancellation property
mod n, [a]m = [1] is equivalent to [b] · [a]m = [b] for any [b] ∈ (Z/nZ)×. Choosing [b] = [a]−1 we get
what we wanted to prove.
(3): Let s′ = |[a]m|, and d = gcd(s,m). We need to show that s′ = s/d. By definition, s′ is the least
among the positive integers l such that ([a]m)l = [1]. The integers l have the property [a]m·l = [1],
or equivalently (by (1)), s |m · l. But we have that m = d ·m1, s = d · s1 and gcd(s1,m1) = 1. So,
l has the property that d · s1 | d ·m1 · l which is equivalent to s1 |m1 · l. By gcd(s1,m1) = 1 we get
that l is distinguished by s1 | l. The least such l is obviously l = s1. Therefore, s

′ = s1 = s/d which
is what we wanted to prove.
(4): Denote by s′ = |[a]|, and by s′′ = |[b]|. We have that gcd(s′, s′′) = 1. By definition, the
number |[a][b]| is the least among the positive numbers l such that ([a][b])l = [1]. Equivalently,
l satisfies [a]l = ([b]−1)l. But this means that |[a]l| = |([b]−1)l| which, by (3), translates into
d = s′/(s′, l) = s′′/(s′′, l). Notice that d | s′ and that d | s′′. So, d | gcd(s′, s′′) = 1. Therefore, d = 1.
The latter can happen only if (s′, l) = s′ and (s′′, l) = s′′, that is, only when s′ | l and s′′ | l. The
relative primeness of s′ and s′′ gives that s′ · s′′ | l. The least positive such l is, of course s′ · s′′. This
proves that |[a][b]| = |[a]| · |[b]|.
The theorem is proved. 2

As an immediate consequence, using Euler’s theorem, we get that

Corollary 9.1.2 For every element [a] ∈ (Z/nZ)× we have |[a]| |φ(n).

The following is a key fact about the group (Z/nZ)× It is true also for every finite Abelian group!.

Proposition 9.1.3 Let [a0] ∈ (Z/nZ)× be an element of maximum order: ∀[a](|[a]| ≤ |[a0]|.
Then,

∀[a] (|[a]| | |[a0]|.

Proof. Let [a0] be the element of the group (Z/nZ)× of largest order s0, and let [b] be any other
element of that group. Denoting by t the order of [b], we have to show that t | s0. Assume by
RAA, that t ∤ s0. This, in particular, means that 1 < t, s0. Our assumption implies that there is a
prime number p whose exponent in the presentation of t is bigger than the one in s0. If we denote
these exponents by β and α respectively, we get that pα | s0, pα+1 ∤ s0, that pβ | t, pβ+1 ∤ t, and
that 0 ≤ α < β. By item (3) of the previous theorem we have that |[a0]p

α | = s0/p
α, and that

|[b]t/pβ | = pβ . Denoting [a′] = [a0]
pα

and [b′] = [b]t/p
β

, we get, by item (4) of the previous theorem,
|[a′][b′]| = (s0/p

α) · pβ = s0 · pβ − α ≥ s0 · p > s0 which is impossible due to the extremal property
of s0. The Proposition is proved. 2

Definition 9.1.2 The element [g] ∈ (Z/nZ)× is called a generator of (Z/nZ)× if |[g]| = φ(n).
We also say in such a case that the number g is a primitive root modulo n.
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9.2 Primitive Roots Modulo n

Obviously,when g is a primitive root modulo n, the group (Z/nZ)× consists of all powers of [g]

(Z/nZ)× = {[g]0, [g]1, . . . , [g]φ(n)−1}.

It is very easy in such a case to find all d-th power residues mod n, that is, all [a] such that the
equation

Xd − [a] = [0]

has solutions. Indeed, when [g] is a generator of (Z/nZ)×, the element [a] is a d-th power in (Z/nZ)×

exactly when it has the form [a] = [g]ds for some integer s. We will return to this again soon. So, it
is interesting to know if (Z/nZ)× has a generator. The bad news is that the answer to that question
is negative in general. The reason for this is very simple, and is easily seen by using the group
isomorphism induced by the CRT. Namely, recall that we have

Gn : (Z/nZ)× → (Z/pα1
1 Z)× × (Z/pα2

2 Z)× × · · · × (Z/pαk

k Z)×

where n = pα1
1 pα2

2 · · · p
αk

k . As we have discussed this already, the two sides of this isomorphism are
groups which can be identified. In particular, the LHS has an element of order φ(n) if, and only
if, the RHS has one. Suppose n is divisible by at least two odd primes. Then, in such a case the
following is true

Exercise 9.2 Suppose n = 2αpα1
1 · · · p

αk

k , k ≥ 2, α ≥ 0. Then for every [a] ∈ (Z/nZ)× we have
that |[a]| |φ(n)/2.

[Hint: Show that any element of the co-domain of Gn raised to the power φ(n)/2 is equal to
([1]2α , [1]pα1

1
, . . . , [1]pαk

k
). You may have to use also the multiplicativity of the totient function,

and may have to apply Euler’s theorem as many times as needed.]

So, (Z/nZ)× could have a generator only when n = 2αpβ where α,+β ≥ 1. Applying an argument
similar to the one in the hint above, one can (and should) prove that

Exercise 9.3 If n = 2αpβ where α ≥ 2 and β ≥ 1, then the orders of the elements of (Z/nZ)×

divide φ(n)/2.

So, the only cases of n having two prime divisors are n = 2pβ . Of course, there are also the cases
when n is divisible by one prime only: n = 2α, α ≥ 1 or n = pβ , β ≥ 1. The rest of this section is
devoted to these three cases.

Remark 9.2.1 Recall from Subsection 7.6.2 the polynomials en(X) = Xφ(n) − 1 and fn(X) =∏
a∈R(n)(X − a). One may think that existence of primitive roots mod n is related, at least in

some weak sense, to [en(X)]n and [fn(X)]n being equal as elements of Z/nZ [X]. As we pointed
out in Remark 7.6.1, the coincidence of these polynomials is extremely rare: apart from the case
of n = p being a prime number, this happens only when n = 2Fk where Fk is a Fermat prime.
Our main approach to this question in the next subsection, is based on Proposition 9.1.3 and on
Hensel’s Lifting Lemma. Other approaches, which can be found in the literature, are discussed in
the exercises to the same subsection.

9.2.1 Primitive Roots modulo n = pβ for Odd p

Theorem 9.2.1 Let p be an odd prime number, and n = pβ for β ≥ 1. Then the group (Z/pβZ)×
has a generator [g]. The number of distinct generators of the group is φ(φ(pβ)).
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Proof We have to show first that φ(pβ) is the order of an element in the group
(
Z/pβZ

)×
. According

to Proposition 9.1.3, there is an element g of
(
Z/pβZ

)×
of order d such that the order of every element

of that group divides d. This implies that the elements of
(
Z/pβZ

)×
satisfy the equation

f(X) = Xd − 1 ≡ 0 mod pβ .

We are proving below that since this equation has φ(pβ)distinct solutions, φ(pβ) | d. Since |g| =
d |φ(pβ) as well, we get that d = φ(pβ), and therefore, g is a generator of the group

(
Z/pβZ

)×
.

After we establish that, we complete the proof of the theorem by noticing that an element x = gs is
a generator if, and only if, gcd(s, φ(pβ)) = 1.

(1) Proving that p − 1 | d. Since d |φ(pβ), it has the form d = d′ · pα with d′ | p − 1, and
α ≤ β−1. According to the general theory, the solutions to f(X) = Xd−1 ≡ 0 mod pβ are all lifts
of solutions to the same equation mod p: solutions mod p which is liftable β − 1 times comprise
the solutions mod pβ . Hensel’s lifting lemma tells us that a liftable from mod pk to mod pk+1

solution produces either one or p solutions. So, to have eventually φ(pβ) solutions, we need to have
p − 1 distinct solutions mod p, each of which is liftable, at every step, to p solutions until we get
to the required number of ditinct solutions mod pβ .
Observe now that

[f(X)]p = Xd − [1]p = (Xd′
)p

α

− [1]p = (Xd′
− [1]p)

pβ

in Z/pZ [X]

and so, by Lagrange’s theorem 7.5.1, has no more than d′ distinct solutions in Z/pZ. This implies
that d′ = p − 1. (The students who do all exercises diligently should have noticed that the last
argument could have been replaced by Exercise 7.15 (3).)

(2) Proving that pβ−1 | d. It is enough to consider β ≥ 2 here. Since every solution to f(X) ≡ 0
mod p has to be liftable to pβ−1 solutions to f(X) ≡ 0 mod pβ . This implies that the derivative
[f ′(X)]p = [d]pX

d−1 has to be identically 0 in Z/pZ [X] (equivalently, d = d′ · pα ≡ 0 mod p forcing
α ≥ 1).
On the other hand, since the solutions to f(X) ≡ 0 mod pβ are φ(pβ) many, if an integer a is
relatively prime with p, we have f(a) ≡ 0 mod p. In particular, f(1 + p) ≡ 0 mod p.
An easy calculation, by induction on k, shows that (exercise!)

(1 + p)p
k

= 1 + pk+1 ·Ak gcd(p,Ak) = 1.

Therefore f(1+ p) = pα+1 ·Aα with p ∤ Aα, and since by assumption f(1+ p) ≡ 0 mod pβ , we have
that β ≤ α+1. This combined with α ≤ β−1 implies that α = β−1 and that pβ−1 | d as claimed. 2

The proof of this theorem can be made much shorter using the following steps.

Exercise 9.4 According to Proposition 9.1.3 the maximal order d of an element of
(
Z/pβZ

)×
is

divisible by the orders of all elements of that group. So, to show that φ(pβ) | d it is enough to show
that p − 1 | d and that pβ−1 | d. The former can be proved using Exercise 7.15 (iii) (or using the
argument in item (1) of the proof of the previous theorem). The latter is equivalent to having an

element of
(
Z/pβZ

)×
of order pβ−1. To finish the proof of the theorem is enough therefore to show

that the order of [1 + p]pβ is pβ−1. Do that!

The next step after proving that primitive roots mod pβ exist would be to find a way to construct
such roots. This is not an easy task in general. There is a good news and a bad news here! The
good news is that finding a primitive root mod pβ with β ≥ 1 reduces to the case of β = 1. The
following exercises shows one way to show that.

Exercise 9.5 Let g0 be a primitive root mod p. Then g = (1+p)gp
β−1

0 is a primitive root mod pβ.

[Hint: Show that the order of [g]pβ is φ(pβ) using the fact that [1 + p]pβ has order pβ−1, and

showing that the order of gp
β−1

0 is p− 1.]
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Being equiped with the result of the previous Exercise, we have to acknowledge that finding prim-
itive roots mod p is not an easy task (when the prime number is big, of course!). In some of the
exercises below, you will see cases in which a primitive root can be easily determined. In general,
there are conjectures about what the primitive roots are, and how they behave. For instance, Gauss
conjectured that the number 10 is a primitive root modulo infinitely many prime numbers. A very
famous conjecture, formulated by E. Artin (1898-1962) in 1927, is that every integer which is not a
square, and is not −1 is a primitive root for infinitely many prime moduli. A significant progress in
direction of proving Artin’s conjecture is the result that all but two prime numbers are primi-
tive roots of infinitely many prime moduli. It has to be mentioned here that nobody knows
the two exceptions!

Exercise 9.6 The following exercises suggest a way of proving the existence of primitive roots
mod pβ which can be found in most of the books on Number Theory. Here, p > 2 is a prime number.
(1) Prove that there is a primitive root mod p using either

(i) Proposition 9.1.3, and Exercise 7.15 (3)
or

(ii) (Gauss) denoting, for every divisor d of p−1, by ψ(d) the number of elements of (Z/pZ)× of
order d, and showing that for every such d we have ψ(d) = φ(d). In particular, ψ(p−1) = φ(p−1) ̸=
0.
(2) Let g be a primitive root mod p. Prove that there is s0 ∈ {1, 2, . . . , p−1} such that the order of
g+s0p modulo p2 is bigger than p−1. (Equivalently (why?), g+s0p is not a solution to Xp−1−1 ≡ 0
mod p2.) Conclude that (g + s0p)

p−1 = 1 + p ·A with p ∤ A.
(3) Prove that,for every k ≥ 0,

(g + s0p)
(p−1)pk

= 1 + pk+1Ak p ∤ Ak.

Conclude that, for every β ≥ 2, the integer g + s0p is a primitive root modulo pβ.

9.2.2 Primitive Roots Modulo n = 2pβ

Theorem 9.2.2 Let g be a primitive root modulo pβ. If g is odd, then it is a primitive root modulo
2pβ. If g is even, then g + pβ is a primitive root modulo 2pβ.

Proof. A very easy Exercise. 2

9.2.3 Primitive Roots Modulo n = 2α

Theorem 9.2.3 (1) The group (Z/2Z)× has only one element, so it has a generator;
(2) The group (Z/4Z)× has a generator: the element [3]4;
(3) For α ≥ 3, the maximum order of the elements of (Z/2αZ)× is 2α−2, so the group has no
generators.

Proof. Items(1) and (2) being obvious are left as an (easy) exercise. Let’s prove (3).
We know that there is an element h of [a] ∈ (Z/2αZ)× which has a maximal order d. Since
d | 2α−1 = φ(2α), we have that d = 2γ for γ < α. To find this maximal order d, we notice that for
every odd integer h = 1 + 2a we have that h2 = 1 + 8b1. Using induction, it is straightforward to
show that for any positive natural number k

h2
k

= 1 + 2k+2bk,

and that if b1 is odd, then bk is odd for every k ≥ 1. This implies that h2
α−2 ≡ 1 mod 2α, and that

γ ≤ α− 2. Moreover, since

32 = 1 + 8 · 1,

113



Chapter 9. Binomial Equations mod n, the Structure of (Z/nZ)× 9.2. Primitive Roots Modulo n

the class of 3 in (Z/2αZ)× is the maximal possible

|[3]2α | = 2α−2.

(Notice that the order of 3 modulo 4 is also the maximal one, |[3]4| = 2.) 2

Exercise 9.7 Prove that if α ≥ 2, then for no n ∈ Z is the congruence 3n ≡ −1 mod 2α true.

We can reveal now the structure of (Z/2αZ)×.

Proposition 9.2.4 Let Z/2Z×Z/2α−2Z be the group with operation addition coordinate-wise. Con-
sider the map

ψα : Z/2Z× Z/2α−2Z→ (Z/2αZ)×

defined by ([a]2, [b]2α−2) 7→ [(−1)a3b]2α . Then, ψα is a group isomorphism, that is, it is a bijection
such that

(∀x, y)(ψα(x+ y) = ψα(x)ψα(y)).

Proof. We need to show first that the map ψα is well defined: no choices of a and b affect where
the elements are sent via ψα. But that’s straightforward. Next, we show that

(Z/2αZ)× = {[±3k]2α | 0 ≤ k ≤ 2α−2 }
which is also straightforward (due to the pervious Exercise). This implies that ψα is onto. Since
the domain and the co-domain of ψα are finite of the same cardinality, it is a bijection. Finally
ψα respects the operations of the domain and co-domain again in an obvious way. The map is an
isomorphism as claimed. 2

9.2.4 Main Theorem

We summarize the results in this section in the following theorem.

Theorem 9.2.5 Let n be a positive integer. Then the group (Z/nZ)× has a generator, in other
words - there is a primitive root modulo n, if, and only if, n = 2, 4, pβ and 2pβ where β ≥ 1.

Exercise 9.8 (1) Let p be an odd prime number, and let k be a natural number. Compute mod p
the sum

1k + 2k + · · · (p− 1)k

(2) Compute the order of 2 modulo n for n = 11, 13, . . . , 19. Do the same for the order of 3 modulo
n where n = 10, 11, 13, 14, 16, 17, 19.
(3) Let p be an odd prime number. Prove that a primitive root mod pα is also a primitive root
mod p.
(4) Suppose p is an odd prime, and that g is a primitive root mod p. Prove that if gp−1 − 1 ≡ 0
mod p2, then g is not a primitive root mod pα for α ≥ 2.
(5) Suppose p is an odd prime, and that g is an integer. Prove that if p is 1 mod 4, then g is a
primitive root mod p if, and only if, −g is, and that if p is 3 mod 4, then g is a primitive root
mod p if, and only if, the order mod p of −g is (p− 1)/2.
(6) Suppose that p and q = (p− 1)/2 are both prime numbers. Prove that if q is 1 mod 4, then 2 is
a primitive root mod p, and if q is 3 mod 4, then −2 is a primitive root mod p. Prove also that
if q > 3, then −3 is a primitive root mod p.
(7) (Chebychev) (i) Show that 3 is a primitive root mod p for any prime p = 2n + 1 > 3. (ii) Let
p = 4q + 1 and q > 2 be primes. Prove that 3 is a primitive root modulo p.
(8) Let p > 3 be a prime number, and let PRp = {[a]p | ordp([a]) = p − 1} be the set of primitive
roots mod p. Prove that ∏

[a]∈PRp

[a] = [1].

(9) Let p be an odd prime number, and let g be a primitive root mod p. Is it true that

[g] ∈ (Z/pZ)×2
?

114



9.3. The Structure of (Z/nZ)× Chapter 9. Binomial Equations mod n, the Structure of (Z/nZ)×

9.3 The Structure of (Z/nZ)×

In this section, we are designing an isomorphism between the group (Z/nZ)× and a product of
finitely many cyclic groups, depending only on n, revealing this way the structure of that group
(Z/nZ)×. This isomorphism will allow us to reduce solving binomial equations like

Xd − a ≡ 0 mod n for gcd(a, n) = 1

to solving a system of linear equations of type

dY − b ≡ 0 mod n′.

In other words, this isomorphism replaces exponentiation with addition: the same way the log-
arithmic function in Calculus does. The isomorphism is not canonical: it depends on choices of
integers. These integers form a system of indices modulo n , and play the role of bases for the
logarithmic functions in Calculus. So, informally and intuitively, the isomorphism provides, for the
fixed n, a system of discrete logarithmic functions which help us solve the higher degree equation.

Recall the isomorphism

Gn : (Z/nZ)× → (Z/2αZ)× × (Z/pα1
1 Z)× × · · · × (Z/pαk

k Z)× .

We have already thoroughly studied the group factors on the RHS of this isomorphism. In particular,
we know that for all pi the group (Z/pαi

i Z)× has a generator (in the other terminology - there is

a primitive root modulo pαi
i ). We also know how the group (Z/2αZ)× looks like depending on α.

Using this knowledge of ours, we are expressing below the group (Z/nZ)× as a product of groups of
type Z/sZ for appropriate natural numbers s.

Example 9.3.1 (Running Example) Consider the equationX6 ≡ a (mod 980) where gcd(a, 980) =
1. Since 980 = 22 · 5 · 72 the CRT tells us that solving the equation is equivalent to solving the
following three

X6
1 ≡ a (mod 4) X6

2 ≡ a (mod 5) X6
3 ≡ a (mod 49).

(Obviously, these equstions are easily solvable at once. Do not mind this - we are explaining the
idea of what follows on this example!) The map

G980 : (Z/980Z)× → (Z/4Z)× × (Z/5Z)× × (Z/49Z)×

from above allows us to write the system in a vector form

(X6
1 , X

6
2 , X

6
3 ) = ([a]4, [a]5, [a]49)

where the solutions for X1, X2 and X3 are considered in Z/4Z,Z/5Z and Z/49Z respectively. We
will see in ts Section that solving these is equivalent to solving a system of linear congruences:

(6Y1, 6Y2, 6Y3) = ([b1]2, [b2]4, [b3]42)

where the solutions for Y1, Y2 and Y3 are concidered in Z/2Z,Z/4Z and Z/42Z respectively. Notice
that 2 = φ(4), 4 = φ(5) and 42 = φ(49).

9.3.1 Indices Modulo pβ, p > 2

Let g be a primitive root modulo pβ . As we know, since the order of g modulo pβ is φ(pβ),

gA ≡ gB mod pβ if, and only if, A ≡ B mod φ(pβ).

Since [g] ∈
(
Z/pβZ

)×
generates the group,

(Z/pβZ)× = {[g]0, [g]1, . . . , [g]φ(pβ)−1},
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every element [a] ∈
(
Z/pβZ

)×
is a power of [g]: [a] = [g]s. By the above, the number s is unique

modulo φ(pβ).

Using this we define the index map modulo pβ to the base g as follows. We use in the definition
below two different moduli, pβ and φ(pβ), so we are careful with the notations! (Nevertheless, as
usual, we will be simplifying the notations whenever this will not easily lead to misunderstanding!)

Definition 9.3.1 Let g be a primitive root modulo pβ. The map

I(p
β)

g :
(
Z/pβZ

)× → Z/φ(pβ)Z [a]pβ 7→ I(p
β)

g ([a]pβ ) := [i]φ(pβ)

where gi ≡ a mod pβ, is called the index map modulo pβ to the base g. Any integer s ∈ Ig([a])
is called the index of a modulo pβ to the base g.

By the above discussion, we see that the map is well defined: the class [i]φ(pβ) is uniquely determined.

Remark 9.3.1 Obviously, s is an index of a modulo pβ to the base g, if, and only if,

gs ≡ a mod pβ .

In particular, if β = 1, we have the map

I(p)g : (Z/pZ)× → Z/(p− 1)Z.

The map I
(pβ)
g is a bijection, and, by the very definition of the map, its inverse map is the exponen-

tiation, called the exponential function modulo pβ to the base g

exp(p
β)

g : Z/φ(pβ)Z→
(
Z/pβZ

)×
[i]φ(pβ) 7→ exp(p

β)
g ([i]φ(pβ)) = [g]ipβ .

Exercise 9.9 (1) Verify that the definition of expg is correct, that is expg([i]) does not depend on
the choice of s ∈ [i]φ(pβ).
(2) Prove moreover that the exponentiation can be extended to a map

exp(p
β) :

(
Z/pβZ

)× × Z/φ(pβ)Z→
(
Z/pβZ

)×
([a]pβ , [b]φ(pβ)) 7→ exp

(pβ)
[a]

pβ
([b]φ(pβ)) = ([a]pβ )b.

Verify that this map has the familiar properties of exponentiation:

([a]pβ )[b]φ(pβ)
+[c]

φ(pβ) = ([a]pβ )[b]φ(pβ) · ([a]pβ )[c]φ(pβ) and

(([a]pβ )[b]φ(pβ))[c]φ(pβ) = ([a]pβ )[b]φ(pβ)
·[c]

φ(pβ) .

Very importantly, the map I
(pβ)
g respects the operations in the groups it relates: the product in the

domain is transformed to the sum in the co-domain.

Proposition 9.3.1 For every two elements [a], [b] ∈ (Z/pβZ)× we have

I(β)g ([a][b]) = I(β)g ([a]) + I(β)g ([b]) in Z/φ(pβ)Z.

In particular, for every k
I(β)g ([a]k) = kI(β)g ([a]) in Z/φ(pβ)Z.

Proof. An easy Exercise. We have used simplified notations here: no moduli are mentioned! 2

Using a professional language, the index map is an isomorphism between the groups it relates.
This means that we can (and will) identify the two groups via this map. Keep in mind that this
identification is possible only after choosing a primitive root! So there are as many as
φ(φ(pβ)) such identifications. It is good to know how identifications corresponding to incongruent
primitive roots are related.
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Proposition 9.3.2 Let g and g1 be primitive roots modulo pβ. Then the corresponding index maps

I
(β)
g and I

(β)
g1 are related by

I(β)g1 ([a]) = I(β)g ([a]) · I(β)g1 ([g]) in Z/φ(pβ)Z.

Proof The claim follows from the previous proposition, and from the obvious relations

[g1]
I(β)
g1

([a]) = [a] = [g]I
(β)
g ([a]) = ([g1]

I(β)
g1

([g]))I
(β)
g ([a]) = [g1]

I(β)
g1

([g])·I(β)
g ([a]). 2

Remark 9.3.2 Obviously, the index map modulo pβ associated with a primitive root g has the
properties of the familiar logarithmic function from Calculus.

Example 9.3.2 (Running Example) Observe that 2 is a primitive root mod 5, and that 5 is a
primitive root mod 49. Indeed, the first claim is straightforward. To check out the second one
recall that, for any odd prime p, if g is a primitive root mod p, then (1 + p)gp

α−1

is a primitive
root mod pα. Now, −2 is a primitive root mod 7. Therefore, (1 + 7)(−2)7 = −210 is a primitive
root mod 49. It is easy to check that −210 ≡ 5 mod 49. We have the following index maps

I
(5)
2 : (Z/5Z)× → Z/4Z I

(49)
5 : (Z/49Z)× → Z/42Z.

9.3.2 Indices Modulo 2α

When n = 2α for α ≥ 1, we have to consider two cases: (i) α ≤ 2, and (ii) α ≥ 3.

In case (i), we have that (Z/2αZ)× is either a trivial group, that is with only one element in it,
or has two elements one of which is a generator (3 is the only primitive root modulo 4). We have in
this case unique isomorphisms (no choices used!), the index map

I(2
α) : (Z/2αZ)× → Z/φ(2α)Z.

In case (ii), we established an isomorphism

ψα : Z/2Z× Z/2α−2Z→ (Z/2αZ)×

the inverse of which we call the index map

I(2
α) : (Z/2αZ)× → Z/2Z× Z/2α−2Z.

Due to the fact that the maps I(2
α) are group homomorphisms, they send products to sums, and

therefore have the properties of a discrete logarithmic function.

Definition 9.3.2 The map I(2
α) described above is called the index map modulo 2α. A number

s, when α ≤ 2, or a pair if numbers (s, t), when α ≥ 3, in the class I(2
α)([a]) is called the index of

a modulo 2α when α ≤ 2, and the system of indices of a modulo 2α when α ≥ 3.

Example 9.3.3 (Running Example) Continuing with our example, we need also the index map

I(4) : (Z/4Z)× → Z/2Z.

9.3.3 System of Indices Modulo n

Let
n = 2αpβ1

1 p
β2

2 · · · p
βk

k for 2 < p1 < · · · < pk, α ≥ 0, k ≥ 0.

Using the index maps I(2
α) and I

(p
βi
i )

gi we construct a map

Hn : (Z/2αZ)× ×
(
Z/pβ1

1 Z
)×
× · · · ×

(
Z/pβk

k Z
)×
→ A× Z/φ(pβ1

1 )Z× · · · × Z/φ(pβk

k )Z,
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where A = Z/1Z ∼= (0) when α ≤ 1, A = Z/2Z when α = 2, and A = Z/2Z×Z/2α−2Z when α ≥ 3,
which sends

([a0], [a1], [a2], . . . , [ak]) to (I(2
α)([a0]), I

(p
β1
1 )

g1 ([a1]), I
(p

β2
2 )

g2 ([a2]), . . . , I
(p

βk
k )

gk ([ak])).

This map is a bijection, because it is so component-wise. Note that the domain and the co-domain
of Hn are groups. The domain - with component-wise multiplication, and the co-domain with
component-wise addition.

Exercise 9.10 Prove that Hn is a group homomorphism, that is, for any x, y ∈ Dom(Hn), we
have

Hn(x · y) = Hn(x) +Hn(y).

The composition of

Hn : (Z/2αZ)× ×
(
Z/pβ1

1 Z
)×
× · · · ×

(
Z/pβk

k Z
)×
→ A× Z/φ(pβ1

1 )Z× · · · × Z/φ(pβk

k )Z,

with

Gn : (Z/nZ)× → (Z/2αZ)× ×
(
Z/pβ1

1 Z
)×
× · · · ×

(
Z/pβk

k Z
)×

defines a map
In = Hn ◦Gn : (Z/nZ)× → A× Z/φ(pβ1

1 )Z× · · · × Z/φ(pβk

k )Z

sending [a] ∈ (Z/nZ)× to

In([a]) = (I(2
α)([a]), I

(p
β1
1 )

g1 ([a]), I
(p

β2
2 )

g2 ([a]), . . . , I
(p

βk
k )

gk ([a])).

Since In is a composition of two bijections, then it is a bijection as well. On the other hand, In is a
group homomorphism, (the Exercise below), so In is an isomorphism. Keep in mind that the map

In depends on choices if k ≥ 1: the primitive roots modulo pβi

i . We have suppressed this dependence
in our notations!

Exercise 9.11 Verify that indeed In is a homomorphism. That is, prove that for every [a], [b] ∈
(Z/nZ)× we have

In([a][b]) = In([a]) + In([b]).

Definition 9.3.3 The map In constructed above is called an index map modulo n. The compo-
nents of the k- or k + 1-tuple In([a]) are called a system of indices of [a] modulo n.

Example 9.3.4 (Running Example) Going back to our equation X6 ≡ a (mod 980), we can reveal
now who [b1]2, [b2]4 and [b3]42 are: these are the system of indices of a mod 980. We have

([b1]2, [b2]4, [b3]42) = (I(4)([a]4), I
(5)
2 ([a]5), I

(49)
5 ([a]49)).

In particular, if a = 429 = 3 · 11 · 13, then [a]4 = [1]4, [a]5 = [−1]5 and [a]49 = [37]49. We easily find
that

([b1]2, [b2]4, [b3]42) = ([0]2, [2]4, [4]42).

Remark 9.3.3 It is even better to consider solving X6 + 251 ≡ 0 (mod 980)!

9.4 Solving Xd ≡ a mod n

We are answering in this section the questions on when solutions to the equation in the title, and
how many they are when exist. This can be done using the general theory of solving polynomial
equations mod n. In our current case, where the equation is a simple binary one, we will go about
it using the theory of indices developed in this chapter.
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9.4.1 General Results

The index map associated with n = 2αpβ1

1 · · · p
βk

k , and a choice of primitive roots modulo pβi

i for
i = 1, . . . , k,

In : (Z/nZ)× → A× Z/φ(pβ1

1 )Z× · · · × Z/φ(pβk

k )Z
where A = Z/20Z, Z/2Z or Z/2Z×Z/2α−2Z depending on whether α is ≤ 1, = 2 or ≥ 3 respectively,
is a group isomorphism. That is, In sends a product of elements into the sum of their images,
In(xy) = In(x) + In(y). From this it immediately follows that for every natural number d, and for
every integer a such that gcd(a, n) = 1,

In(a
d) = dIn(a).

Suppose now that x is an integer. Then

x is a solution to Xd − a ≡ 0 mod n

⇔ xd ≡ a mod n

⇔ dIn(x) = In([a]n)

the first equivalence being true by definition of solution to an equation, and the second - due to the
property of In of sending products to sums. The last is actually an equality of two vectors

d(I(2
α)(x), I(p

β)
g1 (x), . . . , I(p

β)
gk

(x)) = (I(2
α)([a]2α), I

(pβ)
g1 ([a]

p
β1
a
), . . . , I(p

β)
gk

([a]
p
βk
k

)).

In other words, if we introduce the unknown vector
−→
X = (X0, X1, . . . , Xk), the original degree d

equation is equivalent to the linear one

d
−→
X = (I(2

α)([a]2α), I
(p

β1
1 )

g1 ([a]
p
β1
1
), . . . , I

(p
βk
k )

gk ([a]
p
βk
k

)).

Let −→x = (x0, x1, . . . , xk) be a solution to the linear equation (keep in mind that x0 ∈ A and

xi ∈ Z/φ(pβi

i )Z for 1 ≤ i ≤ k). Then the corresponding solution to the original equation is given by

I−1
n (−→x ) = (Hn ◦Gn)

−1(−→x ) = G−1
n (H−1

n (−→x ))

= G−1
n ((ψα(x0), [g1]

x1 , . . . , [gk]
xk)) ∈ (Z/nZ)× .

Notice that

(ψα(x0), [g1]
x1 , . . . , [gk]

xk) ∈ (Z/2αZ)× ×
(
Z/pβ1

1 Z
)×
× · · · ×

(
Z/pβk

k Z
)×

.

Now, since d
−→
X = (dx0, dx1, . . . , dxk) we see that solving d

−→
X = In([a]n) is equivalent to solving

k, k + 1 or k + 2 equations depending on whether α ≤ 1,= 2 or ≥ 3:

dX0 = I(2
α)([a]), dX1 = I

(p
β1
1 )

g1 ([a]), · · · , dXk = I
(p

βk
k )

gk ([a]),

that is, to a system of linear congruences which we know how to deal with.

Put all this another way, we want to solve

Xd − a ≡ 0 mod n, gcd(a, n) = 1, n = 2αpβ1

1 · · · p
βk

k .

As we know, the (degree d) equation is equivalent to the system of (degree d) equations

Xd − a ≡ 0 mod 2α, Xd − a ≡ 0 mod pβ1

1 , · · · , Xd − a ≡ 0 mod pβk

k .

Using the theory of indices, we solve an equivalent system of linear equations instead

dY0 = I(2
α)([a]), dY1 = I

(p
β1
1 )

g1 ([a]), · · · , dYk = I
(p

βk
k )

gk ([a]).

Then using the inverse of In map we get the solution we wanted.

119



Chapter 9. Binomial Equations mod n, the Structure of (Z/nZ)× 9.4. Solving Xd ≡ a mod n

Example 9.4.1 (Running Example) We are ready to show how to solve our equation

X6 ≡ 429 (mod 980)

with the help of the theory of indices. Using the index map I980 we reduce the problem to solving
the system

(6Y1, 6Y2, 6Y3) = ([0]2, [2]4, [4]42).

Solving the linear congruences.
The congruence 6Y1 ≡ 0 (mod 2) has two solutions y1 ≡ 0 (mod 2), and y1 ≡ 1 (mod 2).
The congruence 6Y2 ≡ 2 (mod 4) has two solutions as well: y2 ≡ ±1 (mod 4).
The congruence 6Y3 ≡ 4 (mod 42) has no solutions.
Therefore the original equation has no solutions.

Exercise 9.12 Solve the equation X6 + 251 ≡ 0 (mod 980).

As an immediate corollary of this discussion, and of the developed theory we get the following.

Theorem 9.4.1 Let n = 2αpβ1

1 p
β2

2 · · · p
βk

k be an odd number,and let g1, g2, . . . , gk be primitive roots

modulo pβ1

1 , p
β2

2 , . . . , p
βk

k respectively. Let d be a natural number, and a - an integer relatively prime

with n. Denote by di = gcd(d, φ(pβi

i )). Consider the equation

xd − a ≡ 0 mod n.

The following holds true.
(i) If α ≤ 1 that is, if n = pβ1

1 p
β2

2 · · · p
βk

k or if n = 2pβ1

1 p
β2

2 · · · p
βk

k , then solutions exist if, and only
if,

∀i ∈ {1, 2, . . . , k} (di | I
(p

βi
i )

gi ([a]
p
βi
i

)

in which case the number of incongruent modulo n solutions is d1d2 · · · dk.
(ii) If α = 2, that is, if n = 4pβ1

1 p
β2

2 · · · p
βk

k , letting d0 = gcd(d, 2), solutions exist if, and only if,

d0 | I(4)([a]4) ∧ ∀i ∈ {1, 2, . . . , k} (di | I
(p

βi
i )

gi ([a]
p
βi
i

)

in which case the number of incongruent solutions is equal to d0d1 · · · dk.
(iii) If α ≥ 3, let d′0 = gcd(d, 2), d′′0 = gcd(d, 2α−2), and I(2

α)([a]2α) = ([s]2, [t]2α−2) ∈ A. Then,
solutions exist if, and only if

d′0 | s ∧ d′′0 | t ∧ (∀i ∈ {1, 2, . . . , k}) (di | I
(p

βi
i )

gi ([a]
p
βi
i

))

in which case the number of incongruent solutions is equal to d′0d
′′
0d1 · · · dk. 2

This theorem is a powerful theoretical tool. Let’s use it to draw some interesting conclusions re-
garding the group (Z/nZ)×.

Observe first that the equation
Xd − 1 ≡ 0 mod n

has always solutions. So, we get the following result.

Corollary 9.4.2 Denote by u(n, d) the number if d-th roots of unity in (Z/nZ)×, that is,

u(n, d) = | {[a]n | ad − 1 ≡ 0 mod n } |.

In the notations of the theorem above we have
(i) If α ≤ 1, then u(n, d) = d1d2 · · · dk.
(ii) If α = 2, then u(n, d) = d0d1 · · · dk.
(iii) If α ≥ 3, then u(n, d) = d′0d

′′
0d1 · · · dk. 2
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Following the reasoning in Theorem 8.5.2, we can conclude now information about the size of the
group (Z/nZ)×d

, of d-th power residues mod n. (Or, equivalently, about the index of this group
in (Z/nZ)×.) We have the following

Corollary 9.4.3 In the notations above we have | (Z/nZ)×d | = φ(n)/u(n, d). Or, in professional
notations,

[(Z/nZ)× : (Z/nZ)×d
] = u(n, d). 2

Exercise 9.13 (∗) Derive the result from Theorem 8.5.2 using the last two corollaries.
[Hint: You need to prove two things here. First - that if solutions exist in the case when d = 2
and n ≥ 3, then all d′0, d

′′
0 , d0, d1, . . . , dk need to be equal to 2. And second - that, for i ≥ 1,

we have di ̸= 0 if, and only if,
(

a
pi

)
= 1.]

The situation is particularly simple when d′0 = d′′0 = d0 = di = 1 for every i = 1, 2, . . . , k. We have
then that, for any a with gcd(a, n) = 1, the solution to Xd − a ≡ 0 mod n exists and is unique.

Exercise 9.14 Prove that d′0 = d′′0 = d0 = di = 1 if, and only if, gcd(d, φ(n)) = 1.

In the professional terminology, we have

Corollary 9.4.4 Suppose the positive integer d is relatively prime with φ(n). We have

(Z/nZ)× = (Z/nZ)×d
.

We are formulating here, just for the record, the results above when n = p is an odd prime number.

Theorem 9.4.5 Consider the equation Xd ≡ a mod p. If a ≡ 0 mod p, then the only solution
(of multiplicity d) is X ≡ 0 mod p. If [a]p ̸= [0]p, then a solution exists if, and only if, the linear
equation

d · Y ≡ I(p)g ([a]p) mod (p− 1)

has a solution (that is if, and only if, gcd(d, p−1) | I(p)g ([a]p)), in which case the solutions to Xd ≡ a
mod p are given by [g]

[y0]p−1
p where [y0]p−1 is a solution to the linear equation. In particular, when

solvable, the equation Xd ≡ a mod p has gcd(d, p− 1) incongruent solutions modulo p. 2

Example 9.4.2 As we saw in our running example, the equation X6 ≡ 429 (mod 5) has exactly
gcd(6, 4) = 2 solutions. They are given by x ≡ 21 (mod 5) and x ≡ 23 ≡ 3(≡ 2−1) (mod 5).

9.4.2 Solving Xd − a ≡ 0 mod n When gcd(d, φ(n)) = 1

The situation in the title of this subsection is particularly easy to handle (and needs no theory of
indices!). As we know (from the theory of indices(!)),there is a unique solution in this case (this

manifests itself in the relation (Z/nZ)× = (Z/nZ)×d
we established in the previous subsection).

Inthis subsection, we are finding this solution directly without the theory of indices or the Hensel’s
theory.

Proposition 9.4.6 Let gcd(d, φ(n)) = 1, and gcd(a, n) = 1. Then the (unique) solution to the
equation Xd − a ≡ 0 mod n is given by

x0 ≡ au mod n where d · u ≡ 1 mod φ(n).

Exercise 9.15 Prove the claim in this Proposition.
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We will see soon, in chapter 12, how to use the fact just proved for purposes of encoding information.
But before that we have to address the important issue of computing powers modulo n. We need this
for reasons not only of finding the solution to our equation in the simplest case of this subsection,
but also for computing orders modulo n, finding primitive roots whenever they exist, and computing
indices.

Exercise 9.16 Suppose d, n and m are positive integers such that d is the largest relatively prime
with φ(n) divisor of m. Let d·u ≡ 1 mod φ(n). Prove that, for every a ∈ Z, the equation Xm−a ≡ 0
mod n is equivalent to (i.e., has the same solutions as) the equation Xm/d − au ≡ 0 mod n.

9.4.3 Powers Modulo n, Successive Squaring

Computing dth roots modulo n is equivalent to finding the solutions to a congruence of the type

xd − a ≡ 0 mod n.

The theory of indices modulo n teaches us in principle how to solve such in the case gcd(a, n) = 1.
The index map, In,which helps us linearise the congruence above depends on the primitive roots
chosen, and on knowing the system of indices for every [a]n ∈ (Z/nZ)×. This in turn is related to
raising the primitive roots to all powers from 0 to φ(pβ) modulo pβ , for odd p, and all the powers 5s

for 0 ≤ s ≤ 2α−2 modulo 2α, for α ≥ 3. We need, obviously, an effective way to compute any power
of any number modulo n. One such way is using successful squaring.

The idea of the method is simple. If k is the exponent we want to raise a modulo n, then we
express

k = i0 + i1 · 2 + i2 · 22 + · · ·+ im · 2m

in base-two system, that is, all the coefficients in that expression are 0 or 1. Then,

ak = ai0+i1·2+i2·22+···+im·2m = ai0 · (a2)i1 · · · (a2
m

)im .

Notice that all the terms in the last product which correspond to coefficients ij = 0 are equal to 1,
and hence the expression often may not be as big as it seems to be at a first glance. So that

ak =
∏
ij=1

a2
j

,

and if we know a2
s ≡ bs mod n, then

ak ≡
∏
ij=1

bj mod n.

It is for finding bj , j = 1, . . .m where we use the successful squaring: notice that, for j ≥ 1,

bj+1 ≡ b2j mod n where b1 ≡ a mod n.

This recurrence process, together with |a|, |bj | ≤ n/2 which we can assume W.L.O.G., allows a quick
computation of the numbers bj .

Example 9.4.3 Let’s solve the congruence

X39 ≡ 5 (mod 73 · 11).

We have that 13 is the largest divisor of 39 relatively prime to φ(73 · 11) = 60 · 49. So, consideras an
intermediate step the equation Y 13 ≡ 5 (mod 73 · 11). It has a unique solution given by y ≡ 51357

(mod 73 · 11). The original equation is equivalent therefore to X3 ≡ y (mod 73 · 11). Solving this is
equivalent to solving

X3
1 ≡ y ≡ 5181 (mod 73) and X3

2 ≡ y ≡ 4 (mod 11).
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Using the theory of indices, this is equivalent to solving

3Y1 ≡ I(7
3)

−117(5
181) ≡ 181I

(73)
−117(5) (mod 6 · 72) and 3Y2 ≡ I(11)2 (4) ≡ 2 (mod 10).

This gives y2 ≡ 4 (mod 10). It can be seen that I
(73)
−117(5) is relatively prime with 3. Therefore the

first linear congruence has no solutions. We conclude that the original equation has no solutions.
Alternatively, one can see this result using the Hensel Lifting Lemma’s approach.The original
equation is equivalent to solving

X39
1 ≡ 5 (mod 73) and X39

2 ≡ 5 (mod 11).

The second one is equivalent to 5X2 ≡ 1 (mod 11) and has therefore one solution: x2 ≡ −2
(mod 11).
Solving X39

1 − 5 ≡ 0 (mod 73). The derivative of the polynomial is 39X38
2 . The first step of the

algorithm, solvingX39
1 ≡ 5 (mod 7), leads to no solutions. So, the original equation has no solutions.

Exercise 9.17 Using both methods, the Hensel Lifting Lemma’s and through indices, solve the equa-
tion X39 ≡ 6 (mod 73 · 11).
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Chapter 10

Sums of Two Squares

This chapter is devoted to answering the question about which natural numbers are representable
as sums of two squares. A motivation to study this question comes in particular from what we
know about Pythagorean triplets. Recall that these are triplets (a, b, c) of natural numbers such
that a2 + b2 = c2. In the beginning of this course we proved that all such can be produced by
using primitive Pythagorean triplets. For these the integers a, b and c are pairwise relatively prime
natural numbers. For such a triplet (a, b, c), as we know, there are two odd, relatively prime natural
numbers u > v such that

c =
u2 + v2

2
.

One interesting question that arises here is: which natural numbers can play the role of c in a
Pythagorean triplet? Obviously, this question reduces to the case of primitive Pythagorean triplets,
which in turn is equivalent to asking which (even) numbers are sums of the squares of two relatively
prime integers?
Another interesting question is how many Pythagorean triplets have third component equal to a
fixed c?
These questions can be restated as

(1) For what n does the Diophantine equation

X2 + Y 2 = n

have solutions?
(2) When solutions exist, how many are they?

These are the questions we answer in this Chapter.

10.1 Primes Representable as a Sum of Two Squares

The prime number 2 is obviously a sum of the squares of two natural numbers. The interesting case
is when the prime number is odd. We are proving here the fundamental theorem due to Pierre de
Fermat that every prime number type 1 mod 4 is a sum of squares of two natural numbers. By
necessity, these two numbers are relatively prime, and are unique up to reordering.
The theorem is proved by using the method of descent invented by Fermat to study Diophantine
equations. The realization of this method in our proof below can be summarized as follows. We
show first that a positive multiple mp of a prime p of type 1 mod 4 is a sum of the squares of two
natural numbers: mp = a2 + b2. Then we prove that if m > 1, there is a positive natural number
m′ < m such that m′p is also a sum of the squares of two natural numbers. If m′ > 1, we can repeat
the process finding a descending sequence of positive natural numbers m > m′ > · · · . This chain
cannot descend ad infinitum, and the only way for it to be finite is that some of the natural numbers
m′ we get in the process is 1. Therefore p itself is a sum of the squares of two natural numbers.
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Theorem 10.1.1 (Fermat’s theorem on primes presentable as sums of two squares) An odd prime
number p is a sum of the squares of two natural numbers if, and only if, p ≡ 1 mod 4. The
presentation is unique, up to reordering of the summands.

Proof If p = a2 + b2, then a2 + b2 ≡ 0 mod p, and therefore a2 ≡ −b2 mod p. Both a and b are
relatively prime with p, so we can write the relation of Legendre symbols(

a2

p

)
=

(
−b2

p

)
which immediately implies that

1 =

(
−1
p

)
.

We know that last relation holds true only if p ≡ 1 mod 4. So

p = a2 + b2 ⇒ p ≡ 1 mod 4.

Assume now that p ≡ 1 mod 4. We want to show that p = a2 + b2 for some natural numbers a
and b. We will prove this is true by using induction (in the form of the least element property for
non-empty subsets of N). To this end, consider the set

Σ := {m ∈ N | (∃A,B ∈ N)(mp = A2 +B2) } ⊆ N.

Claim 1 The set Σ is non- empty.

Indeed, the congruence x2 ≡ −1 mod p has a solution x0. So that x20 + 1 = m0p, and hence
m0 ∈ Σ. Notice that x0 can be taken to be small: |x0| < p/2. That’s true, because we need a
solution modulo p.

The claim ensures that Σ has a least element, s0 ≥ 1. Notice that s0 ≤ x0, so gcd(s0, p) = 1.
We want to show that

Claim 2 s0 = 1.

The proof of this claim is the heart of the argument due to Fermat to prove the theorem. It is
known as the method of infinite descent. Here is how it goes. Assuming that s0 > 1, we, fol-
lowing Fermat, will construct an s′ ∈ Σ such that s′ < s0. Then the double inequality s0 ≤ s′ < s0
provides the contradiction needed to finish the proof.
We have

s0p = A2
0 +B2

0 .

Let A1 and B1 be such that

A1 ≡ A0 mod s0, B1 ≡ B0 mod s0, |A1|, |B1| ≤
s0
2
.

We have that A2
1 +B2

1 ≤ (s0)
2/4, and that

A0A1 +B0B1 ≡ 0 mod s0, A0B1 −A1B0 ≡ 0 mod s0.

Therefore

s0p(A
2
1 +B2

1) = (A2
0 +B2

0)(A
2
1 +B2

1) = (A0A1 +B0B1)
2 + (A0B1 −A1B0)

2.

The rightmost sum is divisible by s20, because each summand is. So, we have that

s0p(A
2
1 +B2

1)

s20
=

(
A0A1 +B0B1

s0

)2

+

(
A0B1 −A1B0

s0

)2

.
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So, s0 | p(A2
1 +B2

1), and, since gcd(s0, p) = 1, we have that s′ = (A2
1 +B2

1)/s0 is an integer. But we
also have that (A2

1 +B2
1)/s0 ≤ s0/4 < s0, and that

s′p =

(
A0A1 +B0B1

s0

)2

+

(
A0B1 −A1B0

s0

)2

.

The natural number s′ is the promised one that leads to a contradiction. Our assumption, s0 > 1,
was wrong, so there are natural numbers a, b such that p = a2 + b2. 2

As a matter of fact, Fermat applied his method of descent to prove his theorem differently. As
he wrote to his friend Carcavi in 1650, he uses the method to show that if a prime number of type
1 mod 4 is not a sum of two squares, then there is a smaller prime number of the same type which
is not a sum of two squares either. Obviously, this process can be repeated infinitely many times,
which, on the other hand, is impossible, because there is no infinite strictly descending sequence of
natural numbers. This contradiction proves that there shouldn’t be a prime 1 mod 4 which is not a
sum of two squares. The following exercises lead to proving Theorem 10.1.1 in the spirit of Fermat.

Exercise 10.1 (1) Let a, b, u, v ∈ Z, and q be a [prime number. Suppose gcd(a, b) = gcd(u, v) = 1,
and q | a2+b2 and q |u2+v2. Prove that either q |ua+bv and q | va−ub or q |ua = vb and q | va+ub.

[Hint: Notice that a2 + b2 ≡ 0 mod q and u2 + v2 ≡ 0 mod q imply that

(a/b)2 ≡ −1 ≡ (u/v)2 mod q.

Therefore, either a/b ≡ u/vmodq or a/b ≡ −u/v mod q. That is, either va − ub ≡ 0 mod q
or va+ub ≡ 0 mod q. On the other hand, we have (a2+b2)(u2+v2) ≡ 0 mod q as well, which,
combined with (a2 + b2)(u2 + v2) = (ua+ vb)2 + (va− ub)2 = (ua− vb)2 + (va+ ub)2, gives
the result.]

(2) Suppose m = a2 + b2 where gcd(a, b) = 1, the prime q divides m, and q = u2 + v2. Show that
m/q is a sum of two squares as well.

[Hint: Use the identities

m

q
=
a2 + b2

q
=
q(a2 + b2)

q2
=

(u2 + v2)(a2 + b2)

q2

=
(ua+ bv)2 + (va− ub)2

q2
=

(ua− vb)2 + (va+ ub)2

q2

and so
m

q
=

(
ua+ vb

q

)2

+

(
va− ub

q

)2

=

(
ua− vb

q

)2

+

(
va+ ub

q

)2

.

Then, use the previous exercise to get the result.]
(3) Suppose p is a prime number of type 1 mod 4 which is not a sum of squares of two numbers.
Prove that there is an integer m such that 4 ∤ m and mp = a2 + b2 with gcd(a, b) = 1.

[Hint: Use ideas from the proof of Theorem 10.1.1.]
(4) Prove that if 2n = a2 + b2 where gcd(a, b) = 1, then n = c2 + d2 for gcd(c, d) = 1.

[Hint: Since a and b have the same parity (why?), there are both odd and distinct. Observe
then that 4n = (1 + 1)(a2 + b2) = (a+ b)2 + (a− b)2 and both a+ b and a− b are even. Finish
the proof showing that gcd((a+ b)/2, (a− b)/2) = 1.]

(5) Suppose p ≡ 1 mod 4 is a prime number which is not a sum of squares of two integers. Prove
that there is a prime number q ≡ 1 mod 4 which is not a sum of squares of two integers, and such
that q < p. Conclude that every prime p ≡ 1 mod 4 is a sum of squares of two integers.

[Hint: Use (3) and (4) to show that there is an odd integer m > 1 such that mp = a2 + b2 with
gcd(a, b) = 1. W.L.O.G. we may assume that m is the least such integer. Show that m < p. Let
q be a prime divisor of m. Show that q < p, and that, by (1), q is not a sum of squares of two
integers.]
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10.2 Natural Numbers Which are Sums of Two Squares

Let m = A2 + B2 for non-zero integers A and B. If d = gcd(A,B), then A = dA1, B = dB1,
gcd(A1, B1) = 1 and

m = d2(A2
1 +B2

1).

This means that m = d2m1 such that m1 = A2
! + B2

! is a sum of the squares of two relatively
prime natural numbers.

Claim If m1 is even, then m1 is not divisible by 4. Every odd divisor p of m1 satisfies p ≡ 1 mod 4.

Proof Do that as an exercise. 2

We get from the claim that if m = A2 + B2 for natural numbers A,B, then the exponents of
the primes of type ”3-mod-4” in the canonical decomposition of m as a product of powers of primes,
are all even. In particular

Corollary 10.2.1 If m = A2 + B2 where A,B ∈ N, and gcd(A,B) = 1, then either m = 2, or

m = pβ1

1 p
β2

2 · · · p
βk

k , or m = 2pβ1

1 p
β2

2 · · · p
βk

k , where p1 < p2 < · · · < pk and pi ≡ 1 mod 4 for every
i = 1, 2, . . . , k.

The converse to the statement in the corollary is also true.

Theorem 10.2.2 If m = 2, or m = pβ1

1 p
β2

2 · · · p
βk

k , or m = 2pβ1

1 p
β2

2 · · · p
βk

k where p1 < p2 < · · · < pk
and pi ≡ 1 mod 4 for every i = 1, 2, . . . , k, then m = A2 + B2 for natural numbers A,B such that
gcd(A,B) = 1.

Proof The proof is done in two steps: (1) p ≡ 1 mod 4 and k ∈ N, then pk = a2k + b2k with
gcd(ak, bk) = 1; (2) M = a2 + b2, N = c2 + d2 with gcd(a, b) = gcd(c, d) = gcd(M,N) = 1, then
MN = u2 + v2 with gcd(u, v) = 1. From these two steps the theorem follows in an obvious way.

Claim 1 Let p ≡ 1 mod 4 and k ∈ N. Then pk = a2k + b2k for some ak, bk ∈ N with gcd(ak, bk) = 1.

Proof Induction on k ≥ 1. Base case: k = 1. We have p = a21 + b21, because of the funda-
mental theorem of Fermat. If d = gcd(a1, b1), then d

2 | p so that d = 1. The base case is verified.
Assume now that for some k ∈ N

pk = a2k + b2k, gcd(ak, bk) = 1.

We have the following obvious identities

pk+1 = pkp = (a2k + b2k)(a
2
1 + b21)

= (aka1 + bkb1)
2 + (akb1 − a1bk)2

= (aka1 − bkb1)2 + (akb1 + a1bk)
2.

We are proving next that at least the pair of one of the last two lines consists of relatively prime
numbers. That is

d1 = gcd(aka1 + bkb1, akb1 − a1bk) = 1 ∨ d2 = gcd(aka1 − bkb1, akb1 + a1bk) = 1.

Assume, by way of contradiction, that d1 > 1 and d2 > 1. Since d2i | pk+1, each of the summands is
divisible by p. In particular

aka1 + bkb1 ≡ 0 mod p and aka1 − bkb1 ≡ 0 mod p.

But then, 2aka1 ≡ 0 mod p which, for p is odd implies p |aka1. Since a1 < p, we must have p | ak.
By the identity pk = a2k+ b

2
k, we get that p | bk as well, so that gcd(ak, bk) > 1 - a contradiction! 2
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Claim 2 Let M = a2 + b2, N = c2 + d2 with gcd(a, b) = gcd(c, d) = gcd(M,N) = 1. Then,
MN = u2 + v2 with gcd(u, v) = 1.

Proof We again use the identities

MN = (a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2 = (ac− bd)2 + (ad+ bc)2.

Denote d1 = gcd(ac + bd, ad − bc) and d2 = gcd(ac − bd, ad + bc). We are showing next that
d1 = d2 = 1. Arguing by contradiction and W.L.O.G., assume that there is a prime number p | d1.
Since d21 |MN , then p |MN and therefore p divides either M or N . Suppose p |M . Recall that
gcd(M,N) = 1. Therefore p doesn’t divide N .
We have

ac+ bd ≡ 0 mod p ad− bc ≡ 0 mod p

so that
c(ac+ bd) + d(ad− bc) ≡ 0 ≡ d(ac+ bd)− c(ad− bc) mod p

and therefore
a(c2 + d2) ≡ 0 ≡ b(d2 + c2) mod p.

Canceling out the factor c2 + d2, we get

a ≡ 0 ≡ b mod p

which implies that gcd(a, b) > 1 - a contradiction!
The case when p |N instead is dealt with the same way. Claim 2 is proved. 2

Corollary 10.2.3 The odd natural number c can be the third component of a primitive Pythagorean
triplet if, and only if, all prime divisors of c are of type ”1-mod-4”.

We are in a position now to describe all natural numbers which are sums of the squares of two
natural numbers.

Theorem 10.2.4 We have (∃A,B ∈ N)(n = A2 +B2) if, and only if, n = d2 ·m where m is either
2, or has prime divisors of type 1-mod-4 only, or is twice such a number. The numbers A,B are
relatively prime if, and only if, the number d can be taken to be 1.

10.3 Number of Presentations as a Sum of Two Squares

We are addressing in this section the question on how many solutions the equation

X2 + Y 2 = n

has.

10.3.1 Presentations as Sums of Squares of Relatively Prime Integers

We are finding the number of presentations of a natural number n as a sum of squares of two
relatively prime integers

n = x2 + y2, gcd(x, y) = 1.

The answer for n = 0, 1,and 2 is easy: 0 is nit representable as such a sum (gcd(0, 0) = 0),
and n = 1 = 12 + 02 = 02 + 12, and n = 2 = 12 + 12. Observe that when n = m2 we have
n = m2 + 02 = 02 +m2. We will consider these two presentations identical. With this agreement
in mind, both 1 and 2 have only one presentation as a sum of the squares of two relatively prime
natural numbers. In what follows, we are considering n ≥ 3. Notice that in this case xy ̸= 0, and
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x ̸= y.

Consider the set

Σn = {(x, y) ∈ N× N | gcd(x, y) = 1 ∧ x2 + y2 = n}.

Denote N(n) = |Σn|.
Notice that, for every (x, y) ∈ Σn, since gcd(x, y) = 1, we have x ̸= y . Therefore, if (x, y) ∈ Σn,
then the set of four distinct elements

{(x, y), (x,−y), (−x, y), (−x,−y)}

consists of solutions to the equation above. So the number of all solutions is 4N(n).

Suppose now (x, y) ∈ Σn. Since x
2 + y2 = n, we have that

x2 + y2 ≡ 0 mod n,

and , since gcd(y, n) = 1, we have x/y mod n is a solution to the equation

Z2 + 1 ≡ 0 mod n.

Recall that x/y mod n stands for the class [x]n[y]
−1
n ∈ Z/nZ.

Theorem 10.3.1 We have that N(n) is the number of solution to Z2 + 1 ≡ 0 mod n.

Proof Denote by Λn the solutions to Z2 + 1 ≡ 0 mod n. We have a map

h : Σn → Λn (x, y) 7→ h((x, y)) = x/y mod n.

We will show that h is a bijection.
h is an injection. Let (x, y) and (x′, y′) be elements of Σn such that h((x, y)) = h((x′, y′)).

This means that x/y ≡ x′/y′ mod n which in turn means that

xy′ − x′y ≡ 0 mod n.

o, |xy′ − x′y| = nk for some k ∈ N. We have

n2 = (x2 + y2)((x′)2 + (y′)2) = (xy′ − x′y)2 + (xx′ + yy′)2

= k2n2 + (xx′ + yy′)2 > k2n2

since xx′ + yy′ > 0 being a sum of positive integers. Therefore, k = 0 and xy′ = x′y. Using that
gcd(x, y) = gcd(x′, y′) = 1, we immediately get that

x |x′ y | y′ x′ |x y′ | y

and so (x, y) = (x′, y′).
h is a surjection. Let [a]n ∈ Λn. We want to prove that there is (x, y) ∈ Σn such that

x/y ≡ a mod n.

Let n = 2αpα1
1 · · · p

αk

k be the canonical presentation of n with α ∈ N and αi ∈ N>0. The relation
a2 + 1 ≡ 0 mod n implies that α ≤ 1 and that pi ≡ 1 mod 4 for all i = 1, . . . , k. We know from
the previous section that the numbers 2 and pl, for p > 2, are sums of squares of relatively prime
numbers: 2 = 12 + 12, and pl = s2 + t2. From Chapters 7 and 8 we know that the equation

Z2 + 1 ≡ 0 mod pl,
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when p ≡ 1 mod 4, has only two solutions, and that they are reciprocal to each other modulo pl

(verify that as an exercise!). So, if a2 + 1 ≡ 0 mod pl and s2 + t2 = pl, then either a ≡ s/t mod pl

or a ≡ t/s mod pl. As a result we get that for every i = 1, . . . , k there are (si, ti) such that

s2i + t2i = pαi
i , (si, ti) = 1, si/ti ≡ a mod pαi

i .

The following exercise implies, using simple induction, that we have also

n = pα1
1 · · · p

αk

k = (s21 + t21) · · · (s2k + t2k) = s2 + t2

and
n = 2pα1

1 · · · p
αk

k = (12 + 12)(s21 + t21) · · · (s2k + t2k) = (s′)2 + (t′)2

with
gcd(s, t) = 1 s/t ≡ a mod n = pα1

1 · · · p
αk

k

and
gcd(s′, t′) = 1 s′/t′ ≡ a mod n = 2pα1

1 · · · p
αk

k .

So, h((s, t)) = [a]n when n is odd, and h((s′, t′)) = [a]n when n is even. The theorem is proved. 2

Exercise 10.2 Let n1 and n2 be relatively prime positive integers, and suppose the pairs of integers
(s1, t1) and (s2, t2) are such that

gcd(si, ti) = 1, s2i + t2i = ni, si/ti ≡ a mod ni, i = 1, 2.

Then
n1n2 = (s21 + t21)(s

2
2 + t22) = s2 + t2, gcd(s, t) = 1, s/t ≡ a mod n1n2.

Corollary 10.3.2 The natural number n > 2 is representable as a sum of the squares of two rela-
tively prime numbers if, and only if, either n or n/2 is an odd number and all odd prime divisors of
n are 1 mod 4. In such a case, if k is the number of the distinct odd prime divisors of n, then n
has 4 ·N(n) = 2k+2 distinct presentations as a sum of the squares of two relatively prime integers.
In addition to this, the total number of presentations as a sum of the squares of two relatively prime
integers for 1 and 2 is 2N(1) = 2 and 4N(2) = 4.

Proof This follows directly from the fact about the number of solutions to Z2+1 ≡ 0 mod n. 2

Exercise 10.3 (1) Let c can be the third component of a primitive Pythagorean triplet. How many
are the primitive Pythagorean triplets the third component of which is c?
(2) We know, from Chapter 2, that the equations x2 + y2 = z2 and x2 + y2 = 2z2 do have solutions
in positive integers. We also know that x2 + y2 = 3z2 has no such solutions. Make a conjecture
describing the positive integers n for which the equation x2 + y2 = nz2 has solutions in positive
integers. Prove your conjecture. Find all solutions to such an equation.

10.3.2 Presentations as Sums of Squares of Two Integers

Suppose that n > 1 is representable as a sum of two non-zero squares

n = x2 + y2

and let d = gcd(x, y) > 1. Then x = d · x1, y = d · y1 with gcd(x1, y1) = 1, and

n = d2(x21 + y21).

If n = (x′)2 + (y′)2 is another presentation with d′ = gcd(x′, y′), and x′ = d′ · x′1, y′ = d′ · y′1, then

either d ̸= d′ or (x1, y1) ̸= (x′1, y
′
1).
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This implies that the number of presentations of n as a sum of the squares of two integers is equal
to the sum

Ñ(n) =
∑

d2 |n, d2<n

N(n/d2).

Let
n = 2αpα1

1 · · · p
αk

k qβ1

1 · · · q
βl

l

be the canonical presentation of n > 1 with α, αi, βj ≥ 0, the primes pi ≡ 1 mod 4, and the primes
qj ≡ 3 mod 4. Then

Ñ(n) ̸= 0 ⇔ β1, . . . , βl ∈ 2N

and
Ñ(n) = Ñ(2αpα1

1 · · · p
αk

k ) = Ñ(pα1
1 · · · p

αk

k ),

where, to include the case when α = α1 = · · · = αk = 0, we set Ñ(1) = 1. (Verify the last line as
an exercise!)

Exercise 10.4 (1) Prove that Ñ(pα1
1 ) = (α1 + 1).

(2) Prove that Ñ(pα1
1 pα2

2 ) = (α1 + 1)(α2 + 1).
(3) Make a conjecture about a formula computing Ñ(pα1

1 · · · p
αk

k ), and prove it.
(4) Prove that if we consider presentations x2 + y2 = n and y2 + x2 = n as the same, then the
number of presentations of n as a sum of two squares is equal to ⌊(Ñ(n) + 1)/2⌋.
(5) With the identification of the previous exercise, find the smallest integer which has 2 different
presentations as a sum of squares of two positive numbers. Do the same for 3 and 4 instead of 2 as
well.

10.4 An Application of the Method of Descent

We are closing this chapter by illustrating the power of the Method of Descent on treating some
Diophantine equations of higher degree. We used the method to prove existence results. But the
method can be quite effective in proving non-existence results as well.

10.4.1 The Equation X4 + Y 4 = Z4

The first recorded proof of the following result belongs to Frenicle, one of the correspondents of
Fermat. The proof uses the Method of Descent, and it is believed that the idea for it originates with
Fermat.

Theorem 10.4.1 The equation X4 + Y 4 = Z2 has no solutions in non-zero integers.

Proof We proceed by contradiction. Since the signs of the components of a solution do not matter,
let’s assume that (a, b, c) is a solution with a, b, and c being positive integers. Of all such solutions,
there is one with smallest c. We will show, using the descent method, that there is another such
solution with even smaller third component which will be the needed contradiction.

(1) Let’s observe first that the numbers a, b, and c are pairwise relatively prime. Indeed, if a
prime p divides a and b, then p2 divides c, and (a/p, b/p, c/p2) is a solution to the equation. This
is impossible though, because, by the choice of (a, b, c), the inequality c ≤ c/p2 should be satisfied,
which it is not. If we assume that p divides a and c, say, than p should divide b as well, and as we
know this leads to an absurd. So, (a, b, c) is a primitive triplet of positive numbers.

(2) Observe now that (a2, b2, c) is a primitive Pythagorean triplet. Assuming a2 is even, then
there are odd positive integers u > v with gcd(u, v) = 1 such that

a2 =
u2 − v2

2
, b2 = uv, c =

u2 + v2

2
.

Since gcd(u, v) = 1, we get that u = s2 and v = t2, and so u ≡ v ≡ 1 mod 8. Also, st = b.
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(3) The second observation we make is that gcd(u − v, u + v) = 2, and that (u + v)/2 is odd.
The last fact implies that gcd(u − v, (u + v)/2) = 1. But then, by the first equality above, we get
that both u− v and (u+ v)/2 are squares. Since u+ v is even, we conclude that

u− v = (2a1)
2, (u+ v)/2 = a22, (2a1)

2 · a22 = a2.

In particular, u = 2a21 + a22, and v = −2a21 + a22. Therefore

b2 = uv = −(2a21)2 + (a22)
2

and (2a21, b, a
2
2) is another primitive Pythagorean triplet. So, there are odd positive integers g > h

with gcd(g, h) = 1 such that

2a21 = (g2 − h2)/2, b = gh, a22 = (g2 + h2)/2.

(4) Since gcd(g, h) = 1 and both g and h are odd, we have that gcd(g − h, g + h) = 2, and so
gcd((g − h)/2, (g + h)/2) = 1. Since (g − h)/2 · (g + h)/2 = a21 we get that

g − h = 2P 2, g + h = 2Q2

for positive integers P,Q with gcd(P,Q) = 1. Computing from here that

g = P 2 +Q2, h = P 2 −Q2

and therefore
a22 = (g2 + h2)/2 = P 4 +Q4.

So, finally, we got a new solution (P,Q, a2) to the original equation. By our assumption about (a, b, c)
we need to have c ≤ a2. On the other hand, a2 < a <

√
c < c. Therefore, we have a2 < c ≤ a2

which is impossible. 2

Corollary 10.4.2 The equation X4 + Y 4 = Z4 has no solutions in integers with XY Z ̸= 0.

The last equation is interesting, because it is a particular case of the Fermat’s Last Theorem(FLT)
claiming that for n ≥ 3 the equation

Xn + Y n = Zn

has no solutions in non-zero integers. The result proved above, for n = 4, settles the FLT for all n
divisible by 4. For the rest of cases for n, that is n > 2 and 4 ∤ n, there is an odd prime p which
divides n. Obviously, to prove FLT in general, one can restrict themselves to considering n = p an
odd prime number. An (incomplete) proof of this claim for n = 3 was given, for the first time, by
Euler in 1770. It was based on the Method of Descent. The case n = 5 was dealt with by Dirichlet
and Legendre in 1825, and the case n = 7 in 1839 by Lamé. All proofs were done using the Method
of Descent. An attempt to prove FLT in general lead Ernst Kummer to develop the theory of ideal
numbers (later on evolving into the theory of ideals in Dedekind’s work). Using his theory, and the
Method of Descent, Kummer managed to prove FLT for (almost) all primes less than 100. This
was the greatest achievement in this direction in the Nineteenth Century. The history of attempts
to prove FLT is long and rich (encompassing 350 years!). Many prominent mathematicians tried
to do find a proof, and arguably it was the proof of FLT which was often the driving force behind
the development of modern Algebra. For the statement of FLT is purely algebraic, people expected
that algebraic methods solely would be enough to handle it. Ironically, the only known proof today
is based on highly non-trivial geometric ideas. This proof was achieved in 1993-1994 by A. Wiles
with the help of R. Taylor. The proof is more than 200 pages long, and uses methods of Algebraic
Geometry.

Using the Method of Descent we are proving next the following.

Proposition 10.4.3 The equation X4 + Y 2 = Z4 has no solution in non-zero integers.
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Proof Using contradiction, assume that (a, b, c) is a solution with positive components and with
smallest possible c. It is straightforward that the triplet should be primitive, and that c should be
odd. Consider two cases: b even, and b odd.

(1) Assume b is even. Then a and c are odd, and relatively prime. It is immediate to see that
c2+a2, c+a and c−a pairwise share only 2 as a divisor. Since c4−a4 = (c2+a2)(c+a)(c−a) = b2,
we have

c2 + a2 = 2u2, c+ a = 2v2, c− a = 2w2

for pairwise relatively prime u, v, and w. We easily compute from the last two equalities that
c = v2+w2 and a = v2−w2, and , after substituting in the first equality we get v4+w4 = u2 which,
by the theorem above is impossible!

(2) Assume b is odd. Obviously (a2, b, c2) is a primitive Pythagorean triplet, with odd b. There
are therefore odd positive integers u > v with gcd(u, v) = 1 and such that

a2 = (u2 − v2)/2, b = uv, c2 = (u2 + v2)/2.

Since gcd((u− v)/2, (u+ v)/2) = 1 we have that either

(u− v)/2 = 2a21, (u+ v)/2 = a22

or
(u− v)/2 = a21, (u+ v)/2 = 2a22.

In the first case c2 = 4a41 + a42, while in the second c2 = a41 + 4a42. Both cases are treated the same
way, so we’ll consider the first one only. There are positive odd integers s > t with gcd(s, t) = 1
such that

2a21 = (s2 − t2)/2, a22 = st, c = (s2 + t2)/2.

From this we get that s = P 2 and t = Q2 with gcd(P,Q) = 1 and PQ = a2, and that

Q4 + (2a1)
2 = P 4.

So, the triplet (Q, 2a1, P ) is a solution to the original equation, and P 2 ≤ a22 < a2 < c2. This is
impossible, because by our assumption on (a, b, c), we should have c ≤ P . This completes the proof.
2

10.4.2 Some Amusing Related Results

There is a series of exercises which are based on the claims in the previous subsection which are
quite amusing. Here are some of them.

Exercise 10.5 (1) Call a right triangle Pythagorean if it has integer side lengths. Prove that at
most one side of a Pythagorean triangle can be a perfect square.
(2) Prove that no side of a Pythagorean triangle can be the hypotenuse of a Pythagorean triangle.
(3) Prove that, over the integers, it is impossible to ”square” a right triangle: there is no square of
integer side-lengths whose area is equal to the area of a Pythagorean triangle. Prove also that the
area of a Pythagorean triangle can not be twice the area of such a square either.

10.4.3 Some More Diophantine Equations

Using the Method of Descent, or the proven facts above, one can study some related Diophantine
equations. Here are some popular examples.

Exercise 10.6 (1) Prove that the equation X4 − 4Y 4 = Z2 has no non-zero integer solutions.
[Hint: Show that if there is a non-zero solution, (a, b, c), then there is a primitive one, with
pairwise relatively prime components, and with a and c odd. Use then that a2− c = 2b41 and that
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a2+c = 2b42 with b = b1 ·b2. A second proof is the following. Squaring both sides of a4−4b4 = c2,
and rearranging terms, one gets that (2ab)4 + t4 = (a4 + 4b4)2...]

(2) Prove the same for X4 − 2Y 2 = 1 and for X2 − 2Y 4 = 1
[Hint: X4 − 2Y 2 = 1 is equivalent to X4 + Y 4 = (Y + 1)2. For the second equation, use that
2 is not a difference of two fourth powers of integers.]

(3) Prove that the only non-zero integer solutions to X4 − 2Y 2 = −1 are given by |X| = |Y | = 1.
What can you say about the solutions to X2 − 2Y 4 = −1?
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Arithmetic Functions; Applications

11.1 Arithmetic Functions

The notion of arithmetic function is very general: any function with domain N and co-domain
C is called arithmetic. Among all such functions there are some which are very useful in Number
Theory. Important examples are given below.

Definition 11.1.1 An arithmetic function f : N → C is called multiplicative, if f ̸= 0, and for
every two natural numbers m,n ∈ N

gcd(m,n) = 1 ⇒ f(mn) = f(m)f(n).

Exercise 11.1 Prove that for any multiplicative arithmetic function f we have f(1) = 1.

Most of the functions we will be working with in this course are multiplicative. For instance, the
Euler’s phi-function is a multiplicative arithmetic function, but some of them are additive.

Definition 11.1.2 An arithmetic function f : N → C is called additive if for every two natural
numbers m,n ∈ N

gcd(m,n) = 1 ⇒ f(mn) = f(m) + f(n).

Since the co-domain of arithmetic functions is a ring, actually - a field, the operations addition
and multiplication of such functions is well defined. But for the theory of numbers an operation
introduced by P.-G. L. Dirichlet among the arithmetic functions is very important and useful.

Definition 11.1.3 The Dirichlet product, f ∗ g, of two arithmetic functions, f and g is defined
by

(f ∗ g)(n) :=
∑
d |n

f(d)g(n/d).

Exercise 11.2 (1) Prove that, for every two multiplicative functions f and g, their Dirichlet
product f ∗ g is also a multiplicative function.
(2) Prove that the Dirichlet product is commutative and associative, that is

f ∗ g = g ∗ f, (f ∗ g) ∗ h = f ∗ (g ∗ h).

(3) Let f be a multiplicative function. Define the arithmetic function F by

F (n) =
∑
d |n

f(d).

135



Chapter 11. Arithmetic Functions; Applications 11.2. Important Arithmetic Functions

Prove that F is a multiplicative arithmetic function as well.
(4) Suppose f is a multiplicative arithmetic function. Define F by F (n) = f(n)/n for every n ∈ N.
Prove that F is a multiplicative function as well.
(5) Suppose f is an additive real valued arithmetic function, and let a > 0 be a real number. Define
F by F (n) = af(n) for all n ∈ N. Prove that F is a multiplicative arithmetic function. Why do we
need a to be a positive real number?
(5’) Suppose that f is an additive function with range a subset of N, and let a ̸= 0 be any complex
number. Define f by f(n) = af(n) for all n ∈ N. Prove that F is a multiplicative arithmetic function.

11.2 Important Arithmetic Functions

Here is a list of arithmetic functions that are widely used in Math.

(1) The Euler’s phi-function φ(n) = |(Z/nZ)×|

(2) The Euler’s sigma-function σ(n) =
∑

d |n d, that is the sum of all positive divisors of n

(2’) A generalization of the sigma-function: σr(n) :=
∑

d |n d
r where r ∈ N.

(3) τ(n): the number of positive divisors of n. Formally, τ(n) = σ0(n).

(4) The total number of the distinct prime divisors of n ≥ 2 : ω(n) =
∑

p |n 1, and ω(1) = 0.

(5) The total number of the positive divisors of n ≥ 2 which are powers of a prime: Ω(n) =∑
pk |n 1, and Ω(1) = 0.

(6) The kernel of n, n ≥ 2, γ(n) =
∏

p |n p, and γ(1) = 1.

(7) The Liouville function λ(n) = (−1)Ω(n).

(8) The Möbius function µ(n) = (−1)ω(n) if n = γ(n), and µ(n) = 0 if n ̸= γ(n).

Exercise 11.3 (1) The functions ω and Ω are additive arithmetic functions. All the rest of the
listed functions are multiplicative arithmetic functions. Verify that.
(2) Show that n = γ(n) if, and only if, µ2(n) = 1.

(3) If n = pβ1

1 p
β2

2 · · · p
βk

k , then

τ(n) =

k∏
i=1

(βi + 1) σ(n) =

k∏
i+1

pβi+1
i − 1

pi − 1
.

(4) Prove that, for every natural n, ∑
d |n

φ(d) = n.

(5) Prove that, for every natural n,

∑
d |n

µ(d)

d
=
∏
p |n

(
1− 1

p

)
,

and conclude that

φ(n) = n
∑
d |n

µ(d)

d
.
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The last two exercises are notable in the following sense. Denote by I the identity arithmetic
function, and by 1 -the constant function taking on values 1

I : N→ N I(n) = n, 1 : N→ N 1(n) = 1.

According to Exercise (4)(verify that!),
I = 1 ∗ φ,

and according to Exercise (5) (verify that as well!),

φ = µ ∗ I.

In other words, we can ”solve” for φ, expressing it via I, by using the Möbius function. This example
is a particular case of a more general fact.

Theorem 11.2.1 (Möbius Inversion Formula) Let F and f be two arithmetic functions. Then

F (n) =
∑
d |n

f(d) ⇔ f(n) =
∑
d |n

µ(d)F (n/d).

In other words,
F = 1 ∗ f ⇔ f = µ ∗ F.

Proof The theorem follows from the associativity of the Dirichlet product, the fact that

e = 1 ∗ µ

is a function for which e(1) = 1 and e(n) = 0 for n > 1, and that for every arithmetic function f

f ∗ e = f 2

Exercise 11.4 (1) Show that

1 ∗ 1 = τ, I ∗ I = I · τ, 1 ∗ I = σ.

(2) Prove that
µ ∗ τ = 1, µ ∗ σ = I.

11.2.1 Groups of Arithmetic Functions

We are demonstrating here the importance of the Dirichlet product for the set of arithmetic functions.
Denote by AF1 the set of all arithmetic functions f such that f(1) ̸= 0. Notice that all multiplicative
arithmetic functions form a subset of AF1!

Theorem 11.2.2 The pair (AF1, ∗) is a commutative group with identity element the function e
defined above. Moreover, the set MAF of multiplicative arithmetic functions, with the Dirichlet
product, forms a subgroup of (AF1, ∗).

Proof The only axioms that remains to be checked in order to prove the first part of the theorem
is that

(∀f ∈ AF1)(∃g ∈ AF1)(f ∗ g = e).

This latter is done by induction. Namely since f(1) ̸= 0, we can define g(1) = 1/f(1). Assume that
we have defined already g(1), g(2), . . . , g(n). Lets define g(n+ 1). We want to have (f ∗ g)(n+ 1) =
e(n+ 1) = 0, so we have ∑

d |n+1

f(d)g((n+ 1)/d) = 0

which we solve for g(n+ 1).
The proof of the second part of the Theorem is straightforward noticing that MAF is closed under
the Dirichlet product ∗, the function e is multiplicative, and that the reciprocal of a multiplicative
arithmetic function is multiplicative as well. 2
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11.2.2 The Algebra of Arithmetic Functions

What we actually proved in the previous sub-sections is that the triplet (AF,+, ∗) is a commutative
C-algebra with group of unit elements AF× = AF1. Moreover, this algebra is local: it has only
one maximal ideal: the set of non-invertible (w.r.t. ∗) functions. More about these things - in Topics
in Algebraic Structures.

11.3 Applications

11.3.1 Some Special Numbers

Since ancient times, the people have been attracted to natural numbers with certain specific prop-
erties. May be the most attractive among these, with many questions answered and unanswered
about them, are the prime numbers. A twin prime is a prime number p such that either p − 2
or p + 2 is prime as well. Other numbers which we have already mentioned are, for instance, the
triangular numbers, that is, numbers

n = 1 + 2 + · · ·+m

for some natural m. As we know, the triangular numbers are geometric in nature. Other examples of
special numbers are the perfect numbers. These are numbers n which are the sum of their proper,
that is, strictly smaller than n, divisors. Recalling the definition of the arithmetic function σ, we
see that n is perfect if, and only if, n = σ(n) − n. A generalization of perfect numbers is the
aliquot numbers for which the sum of their (proper) divisors are integer multiples of the numbers,
that is σ(n)−n = kn for some k ∈ N. The number n is called k-perfect if σ(n) = kn. A related to
the concept of perfect numbers is the concept of amicable numbers. Two natural numbers m,n ∈ N
are called amicable if

σ(m)−m = n ∧ σ(n)− n = m.

Further, a number n of the form n = Fk = 22
k

+ 1 is called a Fermat number, and a number n
of the form n = Mp = 2p − 1 where p is a prime number, is called a Mersenne number. When
Fk and Mp are prime, they are called a Fermat prime and a Mersenne prime respectively.
Considerations of Fermat and Mersenne numbers are motivated by arithmetic questions.

Exercise 11.5 (1) Consider numbers of the type n = 2m + 1. Prove that such an n is prime only
if n = Fk for some k ∈ N.
(2) Consider numbers of the type n = am − 1 where a > 1 is a natural number. Prove that such an
n is prime only if n =Mp for some p.

As a matter of fact though, Fermat primes have a beautiful geometry hidden behind them! This
feature of the Fermat primes was revealed by the teenage Gauss, showing that a regular 17-gon can
be constructed by using a straight edge and compass.

Many are the (unanswered yet) questions about the mentioned above special numbers. For instance,
are there infinitely many twin primes, are there infinitely many Fermat and Mersenne primes, are
there odd perfect numbers etc.

In the next subsection, using the properties of the function σ, and following Euclid and Euler,
we are showing that the even perfect numbers are as many as are the Mersenne primes.

11.3.2 Even Perfect Numbers

Theorem 11.3.1 (Euclid -Euler’s theorem) An even natural number n is perfect if, and only if,
n = 2p−1 ·Mp where Mp is a Mersenne prime number.
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Proof The divisors of 2p−1 ·Mp are

1, 2, . . . , 2p−1,Mp, 2 ·Mp, . . . , 2
p−1 ·Mp.

So that

σ(2p−1 ·Mp) = (Mp + 1) · (1 + 2 + · · ·+ 2p−1) = 2p · (2p − 1) = 2 · (2p−1 ·Mp).

Let now n be a perfect even natural number. So, n = 2s · m where s ≥ 1 and m is odd, and
σ(n) = 2n. Obviously, m ̸= 1. We know that σ is a multiplicative arithmetic function. So, we have
further that

2s+1 ·m = σ(2s) · σ(m) = (2s+1 − 1) · σ(m).

Since gcd(2s+1, 2s+1 − 1) = 1, it follows that σ(m) = 2s+1 · u, and therefore

m = (2s+1 − 1) · u.

If we assume that m ̸= 2s+1 − 1, then

2s+1 · u = σ(m) ≥ 1 + u+m = 1 + u+ (2s+1 − 1) · u = 1 + 2s+1 · u

so that 2s+1 · u ≥ 1+ 2s+1 · u which is absurd! So, m = 2s+1− 1, u = 1, and σ(m) = 2s+1. But that
means that m has only two divisors: 2s+1 = 1 + (2s+1 − 1), and therefore, it is a (Mersenne) prime
number, m = Ms+1. But s + 1 has to be then a prime number: s + 1 = p, and we get the result:
n = 2p−1 ·Mp, where Mp is prime. 2

The fact that the numbers of type 2p−1 · (2p − 1) with 2p − 1 prime are perfect was known to
Euclid! The fact that those are all even perfect numbers was proved by Euler. It is not known if
the even perfect numbers are infinitely many. No odd perfect number is known so far!

11.3.3 On Presenting Natural Numbers as Sums of Two Squares

In this subsection, we are showing how using the Legendre and Jacobi symbols one can construct
arithmetic functions which have applications in the theory of presenting numbers as sums of squares
of two numbers.

A Warm Up: the Function Lp

Recall that the Legendre symbol
(

a
p

)
is defined for an odd prime number p and an integer a relatively

prime with p. We can extend the definition of the symbol to all integers by setting that(
a

p

)
= 0 if p | a.

This extended function
(

•
p

)
: N→ C, with Ran(

(
•
p

)
) = {0, 1,−1}, is completely multiplicative,

that is

∀a, b ∈ Z
(
ab

p

)
=

(
a

p

)(
b

p

)
.

By what we know from Section 1 of this chapter the function

Lp(n) =
∑
d |n

(
d

p

)
is a multiplicative function as well. So, Lp(1) = 1, and if n = pα1

1 · · · p
αk

k is the canonical decompo-
sition of n, then

Lp(n) = Lp(p
α1
1 ) · · ·Lp(p

αk

k ).
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Exercise 11.6 Prove that Lp(p
α) = 1. Suppose q is a prime number different from p. Then

Lp(q
α) = (1− (−1)α+1)/2 if

(
q

p

)
= −1,

and

Lp(q
α) = α+ 1 if

(
q

p

)
= 1.

So, Lp(n) ̸= 0 if, and only if, the non-residues mod p among the prime divisors of n enter in odd
degree in the canonical decomposition of n.

The Interesting Case: the Function JP

We want to do a similar thing as in the previous sub-subsection, but with a varying ”denominator”
of the Legendre symbol. So, we have to use the Jacobi symbol instead.

Recall the the Jacobi symbol
(

P
Q

)
, is defined for (P,Q) = 1 and Q - an odd number. We nat-

urally extend the definition to relax the first condition:(
P

Q

)
= 0 if gcd(P,Q) ̸= 1.

So, for every fixed non-zero integer P we define(
P

•

)
: N \ {0} → C n 7→

(
P

•

)
(n) =

(
P

n1

)
where n = 2βn1 for n1 an odd natural number. We call n1 the odd content of n. By definition(

P

1

)
= 1.

Obviously the function is completely multiplicative, and has Ran(
(
P
•
)
) = {0,−1, 1} (verify this as

an exercise!). Define the function

JP : N \ {0} → C n 7→ JP (n) =
∑
d |n1

(
P

•

)
(d) =

∑
d |n, d odd

(
P

d

)
.

It is almost straightforward that it is multiplicative (verify that!). If n = 2αpα1
1 · · · p

αk

k is the
canonical decomposition of n, then

JP (n) = JP (p
α1
1 ) · · · JP (pαk

k ).

Now, the expected exercise!

Exercise 11.7 Let q be an odd prime number, and let β ≥ 0. If q |P , then JP (qβ) = 1. If q ∤ P ,
then

JP (q
β) = (1− (−1)β+1)/2 if

(
P

q

)
= −1,

and

JP (q
β) = β + 1 if

(
P

q

)
= 1.

Example 11.3.1 (1) J1(n) = (α1 + 1) · · · (αk + 1) equals the number of odd divisors of n.

(2) We know that
(

−1
q

)
= (−1)(q−1)/2. So, if n = pα1

1 · · · p
αk

k qβ1

1 · · · q
βl

l is the canonical decomposition

of n with pi ≡ 1 mod 4, and qj ≡ 3 mod 4, then J−1(n) = 0 if, and only if, there is an odd βj .
Equivalently, J−1(n) ̸= 0 if, and only if, β1, . . . , βl are all even. If this is the case, we have

J−1(n) = (α1 + 1) · · · (αk + 1). 2
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Exercise 11.8 Recalling that, for any odd Q,
(

−1
Q

)
= (−1)(Q−1)/2, prove that

∀n ∈ N \ {0} J−1(n) = D1 −D3

where Di, i = 1, 3, is the number of i mod 4 divisors of n.

Exercise-Proposition 11.3.4 Prove that the function Ñ assigning to any n > 0 the number of
distinct presentations of n as a sum of the squares of two non-negative numbers (see Chapter 10),
and the function J−1 are identical. Conclude that

the number of presentations of n as a sum of the squares of two non-negative num-
bers is equal to the difference of the number of 1 mod 4 divisors of n and the number
of the 3 mod 4 divisors of n.

[Hint: Do the exercises in the end of sect. 10.3.]

Exercise 11.9 Describe the functions J2 and J−2.
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Chapter 12

Applications to Designing
Cryptosystems

In this Chapter, we are describing some applications of the methods developed in the Lecture Notes.
To illustrate these applications on realistic examples, doing all the calculations involved, we would
need the help of especially designed software, such as SAGE. Since our course is not computations
oriented, we will give here descriptions of the applications in principle referring the interested readers
to more specialized literature.

12.1 General Remarks

Transmitting information securely has been an important issue since very ancient times. It has
always been absolutely paramount to be able to send messages to friends and/or allies in a way
enemy doesn’t know the content even when they detect the transmission of message. To achieve
this, people often use cryptosystems. These are methods designed to transform a plain-text (such
as usual human text) into a cipher-text (encryiption/enciphering process), and then, after transmit-
ting the latter as it is, transform it back to a plain-text (decryption/deciphering process). To make
these transformations, one needs a cipher. Ideally, the cipher has to be designed in such a way that
encryption/decryption processes are easy to perform, but ”breaking” the cipher by adversaries, and
therefore recovering the plain-text by unauthorized parties, is hard.
Very often properties of integers have been used to design ciphers. Therefore, the theory of numbers
naturally has played an important role in designing cryptosystems.
In securely transmitting the encrypted information, it is important to prevent it from being inter-
cepted to start with. This has always been causing complications in the process of communication.
In the late 1970s, techniques from Number Theory, some of which - very simple, made possible
transmission of secret messages under the assumption that (almost) all the communication is inter-
cepted and read by the unfriendly party: the public key cryptosystems were developed. We are
discussing in what follow some of these systems.

12.2 Exponential Ciphers

Exponential Ciphers were developed in 1976 by M. Hellman. The idea is very simple. The encipher-
ing goes in three steps :

(1) replace the symbols of the alphabet we are using (the English alphabet with or without ad-
ditional symbols, for instance) with strings of digits of the same length;
(2) after replacing the symbols of the alphabet used in the plain-text to be transmitted with the
strings of digits from (1), and in the order they appear in the plain-text, consider the plain-text as
a string of digits itself, and cut it in a sequence of numbers {a1, a2, . . . , an}, consisting of the same
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amount of digits;
(3) choose a prime number p bigger than all the numbers a1, a2, . . . , an, and an enciphering key,
i.e., a natural number e < p with gcd(e, p − 1) = 1, and produce a sequence obtained by replacing
every number of the one in (2) with

b1 ≡ ae1 mod p, b2 ≡ ae2 mod p, · · · , bn ≡ aen mod p

where for simplicity bi may be chosen to be the smallest possible.

The transmitted message is the sequence {b1, b2, . . . , bn}.

The deciphering process, that is, recovering the string of numbers {a1, a2, . . . , an} step (1), and
eventually the original plain-text, goes as follows.

(i) Find an integer f , the deciphering key, such that e · f ≡ 1 mod p− 1

(ii) Recover ai as the residue of bfi mod p which belongs to [0, p), for i = 1, 2, . . . , n.

All the exponentiation can be done the way we discussed in Subsection 9.4.3. To make the process
secure enough, we have to keep our choices of p and e secret.

A modification of this method which makes it more flexible is the following. Here is how it works in
a realistic scenario.
Suppose there are two people, H1 and H2, trying to exchange messages. H1 and H2 can not meet
privately, so everything they communicate to each other should be done by transmitting information
through secure channels.
H1 and H2 first chose a prime number p, and a positive integer s < p with gcd(s, p− 1) = 1 which
they communicate to each other.
Choosing an enciphering key (the same for both of them) can be done as follows. Each of H1 and H2

chooses a positive integer less than p, say h1 and h2, and keep it secret (do not transmit it). Then
H1 sends to H2 the residue mod p of sh1 , and H2 sends to H1 the residue mod p of sh2 . The
enciphering key is e ≡ (sh1)h2 ≡ (sh2)h1 mod p, which both compute. Notice that gcd(e, p−1) = 1.
To apply the method in steps (1), (2), and (3), the participants have to choose the lengths of num-
bers on step (2) to be such that the numbers ai are all less than p.
Notice also that the enciphering key can change from instance to instance of transmitting messages
between the participants, which makes the method more secure.

This method was developed by Diffie and Hellman in 1976. The cipher just explained is much
more secure than the one before it, because it is quite safe even if s, p, sh1 , and sh2 , the numbers
originally transmitted, become known to the unauthorized parties who want to decipher the message!
Indeed, the deciphering process depends on the key f . To obtain it, one should know e mod p, so
ultimately, one needs to know h1 and/or h2. If these are kept really secret, then, assuming s, p, sh1 ,
and sh2 have been intercepted, one has to try to find them using the values of sh1 mod p and/or
sh2

mod p. When p is small, this can be done using regular computers. But if p is large, which is
standardly the case, the computations are so long and heavy, that it would be impossible to crack
the enciphered message and react to it in time, the mission will be accomplished before the enemy
understands what it is about!

12.3 The RSA Encryption System

The RSA criptosystem is a more flexible alternative of Diffie-Hellman key exchange criptosystem,
and is named after its developers Rivest, Shamir, and Adleman in 1978. This system has not one,
but many enciphering kays, one for each of the participants in the exchange of (encripted) infor-
mation. Every participant publishes their key in the public register of such keys. This is how it goes.
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Let H be a person who wants to be receiving messages using the RSA cryptosystem. The person H
chooses two distinct prime numbers p and q, and a positive integer s such that gcd(s, φ(pq)) = 1.
The enciphering key of H is the ordered pair (r, s) where r = p · q. H publishes (r, s) in the public
registry of such keys.
If a person H ′, not necessarily having an enciphering key, wants to send securely a message to H,
they do the following. First they produce the sequence of integers {a1, a2, . . . , an} going through
steps (1) and (2) from the Diffie-Hellman cryptosystem replacing the symbols of the alphabet with
numbers by using an encoding known to H. The sequence to be transmitted as an open text from
H ′ to H is {b1, b2, . . . , bn} where bi ≡ ari mod r.
Deciphering the information is done by H by first choosing a deciphering key, that is, a positive
number f such that s · f ≡ 1 mod φ(r) (which can be done solely by H), and following steps (i)
and (ii) from the Diffile-Hellman cryptosystem.
If H wants to send a message to H ′ safely, then he has to use the enciphering key of H ′ for that.

To crack this cipher, one needs to figure out a deciphering key. To get such, knowing s, one needs
to know φ(r). This last is easily computed once one knows the primes p and q. But if they are
kept secret, it takes a long time to figure them out: factoring integers having large prime factors is
virtually impossible in a reasonable time.

The RSA encryption system has proven to be so useful and secure that if one makes a money
transfer on line, chances are that the encription system used to make the transaction secure is very
close to the RSA or the Diffie-Hellman systems described here.

Remark 12.3.1 As we saw above, the RSA criyptosystem is very easy to implement. This is due
partially to the fact that the theory of numbers used for that is quite elementary. What makes the
system really good to use, and also widespread, is that cracking it is hard. Naturally, in order to crack
the RSA cryptosystem, one needs effective factorization methods. Many such (for instance, Pollard’s
ρ-method, Pollard’s p− 1-method, the quadratic sieve factorization method, Lenstra’s elliptic curve
factorization method, and the number field sieve), based on beautiful and much deeper theory than
the one presented in these Notes, have been developed. Discussing these is, unfortunately, far beyond
the scope of these Notes, and are not discussed here.
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Chapter 13

A Bit More on Primes

We are discussing in this chapter properties of the prime numbers which are proved by using methods
fromMath Analysis rather than from Algebra. We will be as gentle as possible in using such methods:
our arguments will be as ”elementary”, that is, not using hard analysis, as possible. At the same
time, we will prove important and non-trivial results. Some of these results can be proved very
quickly, using really ingenious tricks (chapter one of the book Problems from the BOOK by M.
Aigner and G. Ziegler contains wonderful examples of such proofs). We will not use such proofs.
Instead, we will try to explain the nature of methods and the results in this area of Number Theory.

13.1 Infinitude of Primes Revisited

We already know that the prime numbers are infinitely many: we have proved earlier in the course
even that prime numbers of certain types, such as 1 mod 4, 3 mod 4, 1 mod 6, and 5 mod 6, are
infinitely many. The natural question now would be how many are the primes with respect to
other types of integers? We will address this question by studying the function counting the prime
numbers less than a given (real) number.

Definition 13.1.1 Denote by P the set of all prime numbers. Define, for every x ∈ R

π(x) = |{p | p ∈ P ∧ p ≤ x}|.

The function π(s) is determined by its values at the natural numbers, and could therefore be consid-
ered as an arithmetic function. We prefer to have it defined for all real numbers, because we study
its properties by using methods of Math Analysis. Obviously, π(x) = 0 for all numbers x < 2. So,
in our discussion of π(x), we will focus on arguments in the interval x ≥ 2.

Notice that the infinitude of prime numbers is equivalent to saying that limx→∞ π(x) = ∞. Obvi-
ously, π(x) < x. One natural question is whether π(x) < x2 for example. This question actually
asks if the prime numbers in the interval (0, x] are less than the squares in that interval (do you see
why?). Similarly, we can try to compare π(x) to any real-valued function f : R≥2 → R. Naturally,
the interesting functions we do the comparison with need to have f(x)→x→∞ ∞. Examples of such
functions are f(x) = x, f(x) = x2, and f(x) = lnx.
Suppose, f(x) is a function we want to compare π(x) to. It is often natural to study the behaviour
of the quotient π(x)/f(x). When f(x) = x, the quotient π(x)/x is the density function of the
prime numbers in the positive real numbers. If we restrict x to be an integer, that is x = n, then
π(n)/n can also be interpreted as the probability of randomly chosen natural number in the interval
[0, n] to be prime.
More generally, the quantity (π(x+ a)− π(x))/a measures the density of the prime numbers in an
interval of length a > 0 and left end-point x. When a = n and x are integers (not less than 2), the
above quantity measures the probability of having a prime number in the interval (x, x+ n].

145



Chapter 13. A Bit More on Primes 13.1. Infinitude of Primes Revisited

13.1.1 Some Notations from the Theory of Functions

A piece of terminology and notations is in order, so that we can state the results in this section in
a more or less professional way.

Definition 13.1.2 Let f, g : (x0,∞) → R be two functions. We say that the function f is big
oh of the function g as x → ∞, and write f = O(g), if there are constants x′ ≥ x0 and c such
that |f(x)| < c|g(x)| for all x > x′.
We say that f and g have the same order of magnitude as x → ∞, and write f ≍ g, if
f = O(g) and g = O(f)

It follows from the definition that f = O(1) means |f(x)| < c for some c as x → ∞. Notice that
the same order of magnitude of two functions f and g doesn’t mean they are close to each other
(as x → ∞): the difference |f(x) − g(x)| may tend to infinity with x. Consider f(x) = x2 + x and
g(x) = x2 for example. What is true though is that.

Exercise 13.1 Show that f ≍ g is equivalent to ln |f(x)| − ln |g(x)| = O(1). In other words, two
functions have the same order of magnitude, as x → ∞, iff the difference | ln |f(x)| − ln |g(x)|| is
bounded, as x→∞.

Remark 13.1.1 In Number Theory, the big oh notation is often replaced by the notation introduced
by the Russian number theorist I.M. Vinogradov. We write f ≪ g if f = O(g). In these notations,
f ≍ g whenever f ≪ g and g ≪ f . 2

There is a refinement of the notion of same order of magnitude.

Definition 13.1.3 Let f, g : (x0,∞) → R be two functions such that g is nowhere vanishing
in that interval. We say that f and g are asymptotically equivalent, and write f ∼ g, if
limx→∞ f(x)/g(x) = 1.

Exercise 13.2 Show that f ∼ g implies that for every 0 < c1 < 1 < c2 there is an x′ ≥ x0 such
that

c1|g(x)| ≤ |f(x)| ≤ c2|g(x)|

for x ≥ x′. In particular, we have f ≍ g.

13.1.2 The Prime Number Theorem

The function π(x)/x was studied (empirically) by Legendre and Gauss. Gauss went on to study the
density of the primes in intervals of fixed length. He considered in particular the function

∆(x) =
π(x)− π(x− 1000)

1000
,

and noticed that it behaves as if

∆(x) ≍ 1

lnx
.

Observe that the function ∆(x) is a slope of a secant line of the graph of π(x). So, π(x) should be
close to the integral of 1/ lnx. Naturally, Gauss introduced the Logarithmic integral function

Li(x) =

∫ x

2

1

ln t
dt,

and, after some empirical evidence, conjectured that

Theorem 13.1.1 (Prime Number Theorem (PNT))

π(x) ∼ Li(x) as x→∞.
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Gauss made his conjecture in 1792-1793, being barely 16 year old. The first public record of the
conjecture was made by Legendre in 1798 in his Essai sur la Théorie des Nombres.

The first significant progress toward proving the PNT is due to the Russian mathematician Pafnuty
Chebyshev, in 1850 (the year of Gauss’ passing away), who proved that

• π(x) ≍ x/ lnx for x→∞. More precisely, for x > 2,

7

8
· x

lnx
≤ π(x) ≤ 9

8
· x

lnx
.

• If limx→∞ π(x)/(x/ lnx) exists, then π(x) ∼ x/ lnx.

Since Li(x) ∼ x/ lnx as x → ∞ (check this out using L’Hôpital’s rule as an easy exercise!), and
since the asymptotic equivalence is an equivalence relation, we see that the results of Chebyshev are
closely related to the PNT. Very often, the Prime Number Theorem is stated, in an equivalent way,
as

lim
x→∞

π(x)

x/ lnx
= 1.

The most important ingredient toward proving the PNT was the suggestion by the German mathe-
matician, and a student of Gauss’, Bernhard Riemann , in 1859, who showed that the zeta function
ζ(s), to be introduced below, can be used to attack the PNT. It was in 1896 when the French
mathematician Jacque Hadamard and the Belgian mathematician Charles de la Vallée Poussin in-
dependently realized the idea of Riemann, and proved the PNT (showing that ζ(s) has no zeros on
the line Re(s) = 1).

The Prime Number Theorem is considered central in the theory of numbers. There are several
proofs of it known. Some of them are short, but use deeper knowledge of complex analysis, other
are ”elementary” in the sense that they do not use heavy analytical machinery, but are long. Either
way, the proof of PNT goes far beyond the scope of these lectures, and we are not proving it here.
Instead, in the following subsections, we are proving an easier version of Chebyshev’s results, and
are discussing, on quite elementary level, the relationship between ζ(s), and π(x). This, we hope,
will give a good idea of the methods used in this part of Number Theory (called Analytic Number
Theory).

The Function ζ(s)

It was Euler who first recognized the importance of the series

1

1s
+

1

2s
+ · · ·+ 1

ns
+ · · ·

where s ∈ N \ {0}, for the theory of prime numbers. One of his observations was that, for s ≥ 2, we
have ∑

n≥1

1

ns
=
∏
p∈P

∑
k≥0

1

(ps)k

 =
∏
p∈P

1

1− 1
ps

.

The equality of the two extreme terms above is known as Euler’s product, and the factors on the
right-hand side are called Euler’s factors.
Euler also knew that the harmonic series, corresponding to s = 1, is divergent. That allowed him
to give a new proof of the infinitude of the prime numbers. Here is how it goes. Assume, by RAA,
that the prime numbers are finitely many: P = {p1, . . . .pm}. Then obviously

∏
p∈P

∑
k≥0

1

pk

 =
1

1− 1
p1

× · · · × 1

1− 1
pm

∈ Q
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which, as can be shown, forces the harmonic series to converge∑
n≥1

1

n
=

1

1− 1
p1

× · · · × 1

1− 1
pm

.

This proof was apparently the first in which Calculus methods were used in a significant way to
establish a number theoretical result.
One of the greatest triumphs of Euler as a mathematician is him proving (among the enormous
amount of other important and deep results) that

1

12
+

1

22
+ · · ·+ 1

n2
+ · · · = π2

6
.

This formula gives us one more way of proving that the primes are infinitely many. This proof
wouldn’t be in the reach of Euler, though! As it was proven by F. Lindemann in 1882 (99 years after
Euler passed away), the number π is transcendental, that is, it is not a root of any polynomial with
integer coefficients and of positive degree. From this it follows that π2/6 is not a rational number
(do you see why?). Now, if we assume that the prime numbers are finitely many, in the notations
introduced above, we would have

π2

6
=
∑
n≥1

1

n2
=
∏
p∈P

∑
k≥0

1

(p2)k

 =
1

1− 1
(p1)2

× · · · × 1

1− 1
(pm)2

∈ Q

which is not possible.

The two examples of usage of the sum of the sth powers of the reciprocals of the positive natu-
ral numbers motivates the introduction of the function called Riemann’s zeta function

ζ(s) =
∑
n≥1

1

ns

where s is a complex number with real part Re(s) > 1. It is not hard to prove, but goes beyond the
scope of these Lecture Notes, that the function is well defined (the right-hand side is a convergent
series for such s). The function ζ(s) was introduced by Euler. Georg Friedrich Bernhard Riemann
(1826-1866) studied ζ(s) thoroughly and proved (in 1859) that it can be extended to the whole
complex plane C as a meromorphic function having a simple pole, with residue 1, at s = 1. In other
words, ζ(s) is defined for all s ̸= 1, and the difference

ζ(s)− 1

s− 1

is an analytic function around 0. In studying meromorphic functions, it is very important to know
the zeros and the poles (with their orders) of these functions. Riemann proved that z(s) has simple
zeros at s = −2,−4, . . . (often called trivial zeros of ζ(s)), and that it has infinitely many zeros
in the region 0 ≤ Re(s) ≤ 1, called the critical strip). Riemann conjectures that the zeros in the
critical strip, called non-trivial zeros of ζ(s), have Re(s) = 1/2. This conjecture, which is widely
believed to be true, is known as the Riemann hypothesis, and is still open. Proving the Riemann
hypothesis is an important goal, because a long list of important theorems can be proved knowing
that the hypothesis is true. In regard to the function π(x) for example, Riemann sketched a proof of
an explicit formula for it, proven rigorously by Mangoldt in 1895, which depends on the non-trivial
zeros of ζ(s), and which, if the hypothesis is true, simplifies to

π(x) = Li(x) +O(x1/2+ϵ)

where ϵ > 0 is an arbitrary constant. This immediately would imply the PNT.
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A Sketch of a Proof of the Prime Number Theorem

In this subsection, we are giving a very short account, avoiding the hardest and most technical
details, of a proof of the PNT borrowed from Helmut Koch’s wonderful book Number Theory Al-
gebraic Numbers and Functions, and which belongs to Don Zagier (in Newman’s Short Proof of the
Prime Number Theorem). The arguments, and the computations, are accessible to students with
background in courses such as Advanced Calculus and Complex Variables.

We have about the logarithmic derivative ζ ′(s)/ζ(s), of ζ(s), and for Re(s) > 1/2,

ζ ′(s)

ζ(s)
=

d

ds
log(ζ(s)) =

d

ds
log

∏
p∈P

(
1− 1

ps

)−1
 = −

∑
p∈P

d

ds
log
(
1− p−s

)

= −
∑
p∈P

p−s log p

1− p−s
= −

∑
p∈P

log p

ps − 1
= −

ϕ(s) +∑
p∈P

log p

ps(ps − 1)


where

ϕ(s) =
∑
p∈P

log p

ps
.

Since ζ(s) is a meromorphic function, its logarithmic derivative has simple poles at the points of the
zeros, and the pole of ζ(s). The residues at these poles are equal to the orders of the zeros or with
minus the order of the pole. The function∑

p∈P

log p

ps(ps − 1)

is holomorphic, so ϕ(s) is a meromorphis function whose poles are simple, and are at the zeros and
at the pole of ζ(s). It is the function ϕ(s) which allows us to establish the crucial for the proof of
the PNT fact about ζ(s): it doesn’t have zeros on the line Re(s) = 1. This fact was proven
by de la Valée Poussin in 1896. Assume, by RAA, that for some t ∈ R the number s1 = 1 + it is a
zero of ζ(s) of order k ≥ 1. Since ζ(s) has a pole at s = 1, we get that t ̸= 0. Obviously the number
s2 = 1 + i2t is a zero of ζ(s) of order l ≥ 0. The very important functional equation (proved by
Riemann in 1859) states that

ζ(1− s) = (2π)−s2 cos
(π
2

)
Γ(s)ζ(s)

where Γ(s) is the Gauss’s gamma function. From this it follows that s3 = 1 − it, respectively
s4 = 1− i2t, is also a zero of ζ(s), and of order equal to the order of s1, respectively s2. Therefore,
due to the minus sign in the formula relating the logarithmic derivative of ζ(s) and ϕ(s), the latter
function has poles at s1 and s3 of residue −k, and at s2 and s4 of residue −l. A fact known from
Complex Variable course about the residues at simple poles is the following

lim
ϵ→0

ϵϕ(1 + ϵ± it) = −k, lim
ϵ→0

ϵϕ(1 + ϵ± i2t) = −l, lim
ϵ→0

ϵϕ(1 + ϵ) = 1.

Now - a trick which explains the need for the zeros s2 and s4 (of order ≥ 0). We have

2∑
m=−2

(
4

2 +m

)
ϵ · ϕ(1 + ϵ+ imt) = ϵ

∑
p∈P

1

p1+ϵ

(
pit/2 + p−it/2

)4
≥ 0

if we choose ϵ > 0. Letting ϵ→ 0 with positive values we get

−2l − 4k + 6 ≥ 0

149



Chapter 13. A Bit More on Primes 13.1. Infinitude of Primes Revisited

which forces k = 0 - a contradiction.
As a consequence of the above, we get that ϕ(1+ z) is having a simple pole at z = 0, and of residue
1, and is holomorphic elsewhere for Re(z) ≥ 0. Therefore, the function

g(z) =
ϕ(1 + z)

1 + z
− 1

z

is holomorphic for Re(z) ≥ 0. The following theorem is the technical hearth of the proof, and is
omitted here (the reader is referred to look for it in the book by Koch cited above).

Theorem 13.1.2 Denote θ(x) =
∑

p≤x log p. We have

lim
T→∞

∫ T

1

θ(x)− x
x2

dx = g(0).

The function θ(x) was introduced by Chebyshev. It is closely related to the function π(x), because
of the following (quite elementary) estimates. First notice that

θ(x) =
∑
p≤x

log p ≤
∑
p≤x

log x = π(x) · log(x).

Second, for every 0 < ϵ < 1 we have

θ(x) ≥
∑

x1−ϵ≤p≤x

log p ≥
∑

x1−ϵ≤p≤x

log(x1−ϵ) = (1− ϵ)
∑

x1−ϵ≤p≤x

log x

= (1− ϵ)(π(x)− π(x1−ϵ)) log x ≥ (1− ϵ)(π(x)− x1−ϵ) log x,

and so, we get
θ(x)

x
≤ π(x) · log x

x
≤
(

1

1− ϵ

)
θ(x)

x
+

log x

xϵ
.

Assume, for a moment, that θ(x) ∼ x. The estimates above immediately give us that, for 0 < ϵ < 1,
for δ > 0, and for x >> 0

1− δ ≤ π(x) · log x
x
≤
(

1

1− ϵ

)
· (1 + δ)

which immediately proves that

π(x) ∼ x

log x
.

We are showing now how the theorem above helps us prove that θ(x) ∼ x. Since the limit

limT→∞
∫ T

1
(θ(x) − x)/x2 dx exists, for every ϵ > 0 there is x0 ∈ R such that for any x0 ≤ y1 < y2

we have

−ϵ ≤
∫ y2

y1

θ(x)− x
x2

dx ≤ ϵ.

The function θ(x) is an increasing step function. So, the function θ(x)/x is continuous between
every two consecutive prime numbers. As the exercise below states, we have 0 ≤ θ(x)/x ≤ 2, and
therefore lim infx→∞ θ(x)/x and lim supx→∞ θ(x)/x exist. We want to show that both these limits
are equal to 1. For this, it is enough to show that

lim inf
x→∞

θ(x)

x
≥ 1 and lim sup

x→∞

θ(x)

x
≤ 1.

Let lim infx→∞ θ(x)/x = m < 1. Let λ be such that m < λ < 1. So, we have that θ(x) ≤ λx for
x >> 0. In the notations above, for x0 ≤ λy, we have

−ϵ ≤
∫ y

λy

θ(x)− x
x2

dx ≤
∫ y

λy

λx− x
x2

dx = (1− λ) log λ.
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Since these inequality −ϵ ≤ (1 − λ) log λ holds true for every positive ϵ, we get the absurd that
0 ≤ (1 − λ) log λ < 0. Therefore, lim infx→∞ θ(x)/x ≥ 1 as claimed. In a similar way, one proves
that lim supx→∞ θ(x)/x ≤ 1. This completes the argument.

Exercise 13.3 (Chebyshev) Prove that, for every x ∈ R≥0, we have θ(x) ≤ 2x.

13.2 Bertrand, Goldbach, and Twin Primes

In this section, we address some additional classical facts and questions about the prime numbers.

13.2.1 Bertrand’s Postulate

In mid 19th century, the theory of groups (considered as subgroups of the symmetric group Sn)
was in the center of interests and studies of most of the leading mathematicians of that time. The
work of Abel and Galois on the subject was still freshly published. Joseph Bertrand, a prominent
mathematician, and a member of the Paris Academy, of that time is known for his work in many
areas of mathematics, including Algebra. When studying subgroups of small index of Sn in 1845,
he came up with the need for having a prime number between n and 2n− 2 for any natural n > 3.
He was not able to prove that this is true, but checked it out for all n ≤ 6, 000, 000. Since he didn’t
find a counterexample, he formulated the claim as a postulate. It was in 1850 when the Russian
mathematician Pafnuty Lvovich Chebyshev proved the claim, and made it thereby a theorem. The
result is now referred to as Bertrand’s Postulate or Chebyshev’s Theorem.
Chebyshev proved Bertrand’s Postulate using the function θ(x) he introduced in his work on the
PNT. In terms of this function, the Postulate states that, for every n > 6 we have

θ(n)− θ(n
2
) > 0.

Knowing that theta(x) ∼ x, it is immediate to prove the positivity of the difference above for big
enough x. So, this would ”prove” the Postulate asymptotically. To prove the Postulate as stated
by Bertrand, Chebyshev used uniform over the positive real numbers bounds of θ(x)

c1x ≤ θ(x) ≤ c2x

for appropriate positive c1 and c2, and for x ≥ 2.
An ”asymptotic” proof of the Bertrand’s Postulate can be done using the PNT as well. Indeed, the
Postulate in terms of π(x) claims that π(x)− π(x/2) > 0 for x > 6. But asymptotically we have

π(x)− π(x/2) ∼ x(log x− 2 log 2)

2 log x log(x/2)

which is obviously positive for x >> 0.
There are now several profs of the Bertrand’s Postulate. The most famous one belongs to P. Erdös
and was published in 1932, and is widely accessible in the literature (the book Proofs from the Book
is a wonderful source to read the proof from), and on the Internet. We are not reproducing it here.
At about 1854 Chebyshev proved

(∀ϵ > 1/5)(∃ξϵ)(∀n)(n > ξϵ → (∃p ∈ P)(n < p ≤ (1 + ϵ)n)).

For instance, when ϵ = 1, Bertran’s Postulate claims ξ1 = 3. Sylvester and others proved after that
that the theorem is true for all ϵ > 0. This in particular gives us that

lim
n→∞

pn+1

pn
= 1

where pk denotes the kth prime number.
Speaking of John Sylvester (who was the first prominent European mathematician to receive an
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offer to come and work in the USA, being paid in pure gold), he formulated a generalization of
the Bertrand’s Postulate: for any positive m, and n such that m > n, there is a prime
number p > n dividing the product m(m+1) · · · (m+n− 1). Bertrand’s Postulate corresponds
to m = n + 1. This is still an open conjecture, as is the question whether there is a prime number
between any two consecutive complete squares

n2 < p < (n+ 1)2.

Closing this subsection, let mention an amusing fact which easily follows from the Bertran Postulate:
For no integer n > 1 is the number n! a power of an integer. (Try to find an argument proving this
claim!)

13.2.2 Goldbach’s Conjectures

In a letter to Leonard Euler in June 1742, Christian Goldbach (1690-1764) mentioned that every
even number bigger than 3 is a sum of two primes. Edward Waring (1734-1798), known for the
Waring’s problem for representing natural numbers as sums of kth powers, also declared that every
number is either a prime or a sum of three primes. These claims are nowadays known as the binary
and the ternary Goldbach problems

(BGP): Every natural number n ≥ 4 is a sum of two prime numbers;
(TGP): Every odd natural number n ≥ 7 is a sum of three prime numbers.

The BGP is still open, and remains one of the hardest problems in (classical) Number Theory.
The TGP was solved by the Russian mathematician Ivan Matveevich Vinogradov who proved in
1937 that there is an integer N0 such that every odd n ≥ N0 is a sum of three prime numbers.

13.2.3 Twin Primes

A very old and famous question in Number Theory is if the twin primes are infinitely many. The
empirical evidence follows toward positive answer to that question, and the claim that the answer
is positive is known as the Twin Prime Conjecture. But proof is not known as of today. What
follows is a short account of what we know so far in this direction.
First off, following the line of study of the number of primes less than a given real number, we
introduce the function

π2(x) = Card({p ∈ P | p < x ∧ p+ 2 ∈ P}).

The so called quantitative form of the twin prime conjecture is the following claim

Twin Prime Conjecture(Quantitative Form) Asymptotically, as x→∞, we have

π2(x) ∼ 2C2

∫ x

2

dt

(log t)2

where

C2 =
∏

p∈P,p>2

(
1− 1

(p− 1)2

)
.

Proof of this conjecture would immediately confirm that the Twin Prime Conjecture is a theorem.

A significant progress was achieved in the recent years in tackling these conjectures. It was proven
by Y. Zhang in 2013 that for N = 7 · 107 we have

lim inf
n→∞

(pn+1 − pn) < N.

The number N was improved to 246 in the year that followed. This means that there are infinitely
many consecutive primes with pn+1 < pn + 246.
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13.3 Functions with Values Prime Numbers

In this last section, we are considering examples of ”reasonable” functions taking on values which
are prime numbers.

13.3.1 Polynomial Functions

Recall Dirichlet’s theorem about prime numbers in an arithmetic progression: if a0 and a1 are
relatively prime, non-zero integers, then the polynomial f(X) = a0 + a1X considered as a function
on Z takes on infinitely many values which are prime numbers. People asked the question if there are
polynomials of greater than 1 degree which have the same property. There are known polynomials of
second degree which take on many prime values when considered as functions on Z. For instance, for
X = 0, 1, . . . , 28, the values of the polynomial 6X2+6X+31 are all prime numbers. The polynomial
2X2 +29 takes on prime numbers for X = 0,±1, . . . ,±28. But the real champion is the polynomial
suggested by L. Euler

f(X) = X2 +X + 41.

It takes on prime values for 80 integer values of X: 0,±1,±2, . . . ,±39,−40. It was proven that there
is no natural number A > 41 such that the polynomial X2 +X + A takes on prime number values
for X = 0, 1, . . . , A− 2.
As a matter of fact, no polynomial with integer coefficients, and of degree greater than 1 is known
which, considered as a function on Z, has infinitely many prime numbers in its range. There are
famous hypotheses in this respect. For instance, Emil Artin conjectured that f(X) = X2 + 1 is one
such polynomial.
Here is an elementary fact which tells us that wanting infinitely many primes in the ranges of
polynomials is the most that one can get.

Proposition 13.3.1 There is no non-constant polynomial with integer coefficients which considered
as a function on Z has range containing only prime numbers.

Proof Let f(X) = a0 + a1X + · · · + anX
n ∈ Z [X] with n ≥ 1 and an ̸= 0. First off, notice that

there is an m ∈ Z such that f(m) ̸= ±1. Indeed otherwise one of f(X) ± 1 would have infinitely
many roots which is impossible. Let d > 1 be a divisor of f(m), and consider g(X) = f(dX +m).
It is straightforward that g(X) is a non-constant polynomial with integer coefficients which are all
divisible by d. So, for any s ∈ Z the value g(s) = f(ds+m) is not a prime number. 2

13.3.2 Functions on Z with Only Prime Number Values

When looking for ”reasonable” functions which would take prime number values, it is natural to
consider those with domains (a subset of) the integers Z. Naturally, a function defined as P (n) = pn
where pn is the nth prime number can not be considered as a reasonable function, because it ”looks”
too artificial, and is not in a ”closed form”! A way to hide the direct and rude use of prime numbers
in the definition of P (X), and finding actually a ”closed form” for that function, is the following
(borrowed from An Introduction to the Theory of Numbers by G. Hardy and E. Wright). Let

α =

∞∑
m=1

pm10−2m .

Obviously α exists (the series is convergent due to Bertrand’s Postulate). It is immediate to see that
the function

h(X) = ⌊102
X

α⌋ − 102
X−1

⌊102
X−1

α⌋
is such that for every positive integer n we have h(n) = pn. The problem with this function is that
to get pn we need to know α up to its 2nth decimal places...
One less ”obvious” example of such function is the following

f(X) = ⌊A3X ⌋.
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In 1947 W. H. Mills proved that there is a constant A such that for every s ∈ Z the value f(s) is a
prime number.
Both last examples have mainly theoretical importance: neither α, nor A are practically known.
If we relax the restriction of having all values to be prime numbers, one can find more tractable
examples. For instance, consider the functions

X2n + k, k = 1, 3, 7, 9

with domain Z. It is claimed in W. Sierpinski’s Elementary Theory of Numbers that for any positive
integer n, the range of these functions contain infinitely many prime numbers.
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Ñ(n), 131
d-th power residue mod n, 108, 109
d-th root of unity mod n, 109
dp, 97
f = O(g) as x→∞, 146
f ≍ g, 146
ker(ψ), 93
ord([a]), 109
ordn(a), 109
p-adic integers, Zp, 68
p-adic numbers, Qp, 11, 68, 70
vp, 95
(AF1, ∗), 137

Amicable numbers, 138
Archimedean norm, 96
Arithmetic function, completely

multiplicative, 139
Arithmetic functions, 135
Arithmetic functions

φ, σ, σr, τ, ω,Ω, λ, µ, I, 1, 136
Arithmetic functions, additive, 135
Arithmetic functions, multiplicative, 135
Arithmetic functions, the algebra

(AF,+, ∗) of, 138
Arithmetic functions, the groups AF1 and

MAF , 137
Arithmetyic functions, Dirichlet product,

135
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Möbius function, 136
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