Research Interests

      1. Numerical analysis and scientific computation,
      2. Applied mathematics and mathematical biology.

 

    Past and current Research Projects

      1. Electrostatics, Coulomb field, and the Poisson–Boltzmann equation
      2. The Poisson–Nernst–Planck model
      3. Particle trajectory crossing in two-phase flows
      4. Computation of semi-classical approximation of the Schrodinger equation, multi-valued solutions to the Euler-Poisson equation and high frequency wave propagation

 

    Publications

·        J. Ding, Z. Wang and S. Zhou, Energy dissipative and positivity preserving schemes for large convection ion transport with steric and solvation effects, J. Comput. Phys., 2023, 488(2):112206.

·        H. Liu, Z. Wang, P. Yin and H. Yu, Positivity-preserving third order DG schemes for Poisson--Nernst--Planck equations, J. Comput. Phys., 2022, 110777

·        S. Roudenko, Z. Wang, and K. Yang, Dynamics of solutions in the generalized Benjamin-Ono equation: A numerical study, J. Comput. Phys., 445(2021), 110570

·        J. Ding, Z. Wang and S. Zhou, Structure-preserving and efficient numerical methods for ion transport,  J. Comput. Phys., 418(2020), 109597

·        J. Ding, Z. Wang and S. Zhou, Positivity Preserving Finite Difference Methods for Poisson--Nernst--Planck Equations with Steric Interactions: Application to Slit-Shaped Nanopore Conductance,   J. Comput. Phys., 397(2019), 108864.

·        Y. Qian, Z. Wang and S. Zhou, A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker-Planck equation,  J. Comput. Phys., 386(2019), 22-36.

·        F. Siddiqua, Z. Wang and S. Zhou, A Modified Poisson--Nernst--Planck Model with Excluded Volume Effect: Theory and Numerical Implementation, Commun.  Math. Sci., 16(2018), no. 1, 251-271.

·        J. Ding, H. Sun, Z. Wang and S. Zhou, Computational study on hysteresis of ion channels: multiple solutions to steady-state Poisson--Nernst--Planck equations,  Commun. Comput. Phys., 23 (2018), 1549-1572.

·        C. Li, R. Qin, J. Ming and Z. Wang, A discontinuous Galerkin method for stochastic Cahn-Hilliard equations,  Comput.  Math. Appl., 75(2018), no. 6, 2100-2114.

·        H. Liu and Z. Wang, A free energy satisfying discontinuous Galerkin method for  one-dimensional Poisson--Nernst--Planck systems,  J. Comput. Phys., 328(2017), 413--437.

·        Z. Dong and Z. Wang, Variational inference of linear regression with nonzero prior means, Communications in Statistics - Simulation and Computation, 45 (2016), 2241-2248

·        H. Liu and Z. Wang, Entropy satisfying Discontinuous Galerkin methods for Nonlinear Fokker-Planck equations, J. Sci. Comput., 62 (2015), no. 3, 803--830

·        H. Liu and Z. Wang, A free energy satisfying finite difference method for Poisson–Nernst–Planck equations, J. Comput. Phys. 268 (2014), 363--376
Z. Wang, J. Che, L.T. Cheng,J. Dzubiella, B. Li and A. McCammon, Level-set variational implicit solvation  modeling of Biomolecules with the  Coulomb-field approximation, J. Chem. Theory Comput.8, 386 (2012)

·        Z. Wang, J. Che, L.-T. Cheng, J. Dzubiella, B. Li, and J.  McCammon, Level-set variational implicit-solvent modeling of biomolecules with the Coulomb-field approximation, J. Chem. Theory Comput., 8 (2012), 386-397.

·        S. Zhou, Z. Wang and B. Li, Mean-field description of ionic size effects with nonuniform ionic sizes: A numerical approach,  Phys. Rev. E 84, 021901 (2011)

·        H. Liu, Z. Wang and F. Rodney, A level set approach for dilute fluid-particle flows, J. Comput. Phys. 230 (2011), no. 4, 920–936

·        L.-T. Cheng, B. Li,  Z. Wang, Level-set minimization of potential controlled Hadwiger valuations for molecular solvation, J. Comput. Phys., 229 (2010), 8497--8510

·        B. Li, B. Lu, Z. Wang and A. McCammon, Solutions to a model Poisson-Nernst-Planck system and the determination of reaction rates, Physica A 389 (2010), 1329--1345

·        P. Setny, Z. Wang, L.-T. Cheng, B. Li, J.A. McCammon, J. Dzubiella, Dewetting-controlled binding of ligands to hydrophobic pockets, Physical Review Letters 103 (2009),  no.18, 187801
             Note: This article was also selected for republication in the Nov 1, 2009 issue of Virtual J. of Biological Physics Research.

·        L.-T. Cheng, Z. Wang, P. Setny, J. Dzubiella, B. Li and A. McCammon, Interfaces and hydrophobic interactions in receptor-ligand systems: A level-set variational implicit solvent approach,  J. Chem. Phys., 131 (2009), no.14, 144102
            Note: This article was also selected for republication in the Oct. 15, 2009 issue of Virtual J. of Biological Physics Research.

·        H. Liu and Z. Wang, A Bloch band based level set method for computing  the semiclassical limit in Schroedinger equations,  J. Comput. Phys.  228 (2009), no. 9, 3326--3344.

·        H. Liu and Z. Wang, Superposition of multi-valued solutions in high frequency wave dynamics, J. Sci. Comput. 35 (2008), no. 2-3, 192--218.

·        H. Liu and Z. Wang, A field space-based level set method for computing multi-valued solutions to 1D Euler-Poisson equations, Journal of Computational Physics, 2007     (225), 591--614

·        H. Liu and Z. Wang, Computing multi-valued velocity and electrical fields for 1d Euler-Poisson equations.  Applied Numerical Mathematics, 57 (2007), 821--836

 
    

    Presentations and Posters

      * A free energy satisfying finite difference method for Poisson-Nernst-Planck equations, KI-NET Summer School,  May 4, 2014, Iowa State University
      * AMS Spring central sectional meeting, April 27—28, 2013, Ames, IA
      * Workshop on kinetic PDEs: Analysis and Computation, April 25—26, 2013, Iowa State University
      * RIW Workshop on kinetic theory and molecular modeling Oct. 20-21, 2012, Iowa State University
      * Solutions to a model Poisson-Nernst-Planck system and the determination of reaction rates, Oct. 19, 2012, Mathematics, Iowa State University
      * The 9th AIMS conference on Dynamics Systems, Differential Equations and Applications, July 1—7, 2012, Orlando, FL
      * Delopments of level set method in high frequency wave propagation, FIU Department of Mathematics and Statistics, 2011
      * A Level Set Approach for Dilute Non-Collisional Fluid-Particle flows, 2011 Spring AMS Central Section Meeting, Iowa City, IA, March 18-20, 2011 
      * A Level-Set Variational Implicit-Solvent Approach to Biomolecular Solvation, International Research Workshop, Zhejiang University, Hangzhou, China, Sept. 11, 2009
      * A Bloch Band Based Level Set Method for Computing the Semiclassical Limit of Schroedinger, Kinetic FRG Young Researchers Workshop, March 5, 2009
      * A Level-Set Variational Implicit-Solvent Approach to Hydrophobic Interactions UCSD Informal Seminars on Mathematics and Biochemistry-Biophysics, Jan 27, 2009
      *  Solutions to a Model Poisson-Nernst-Planck System and the Determination of Reaction Rates, Informal Seminars on Mathematics and Biochemistry-Biophysics, Department of Mathematics, UCSD, Nov, 2008
      * A Field Space-Based Level Set Method for Computing Multi-Valued Solutions to 1D Euler-Poisson Equations, Conference on Analysis of Partial Differential Equations (PD07), Mesa, Az., December 10-12, 2007
      * Superposition of Multi-valued Solutions in High Frequency Wave Dynamics, CAM seminar, Department of Mathematics, Iowa State University, Ames, IA. October 8, 2007
      * Application of Level Set Method to 1D Euler-Poisson Equations, CAM seminar, Department of Mathematics, Iowa State University, Ames, IA. October 30, 2006
      * Level set formulation and computation of multi-valued solutions to 1D Euler-Poisson equations, Iowa Section MAA Meeting, Iowa State University, Ames, IA. April 7, 2006

      * Computation of Multi-Valued Solutions in High Frequency Wave Dynamics. Computational and Mathematical Aspects of   Materials and Fluids, Iowa State University, April 13, 2007
      * Computing Multi-valued Velocity and Electrical Fields in Euler-Poisson Equations. Workshop on Computational Methods and Applied PDEs(CMAPDE05), Mathematics Department, Iowa State University, Ames, IA, November 5, 2005