Simulate effects of cell ion concentrations, permeability, and temperature, on voltage, with the Nernst and Goldman equations
Nernst and Goldman
$$E_r = \frac{RT}{zF} \ln \left(\frac{[\text{Ion}]_\text{out}}{[\text{Ion}]_\text{in}}\right) {\ \ \ \ \ \ \ \ \ \ } E_m = \frac{RT}{F} \ln \left( \frac{P_{\text{K}^+}[\text{K}^+]_\text{out} + P_{\text{Na}^+}[\text{Na}^+]_\text{out} + P_{\text{Cl}^-}[\text{Cl}^-]_\text{in}}{P_{\text{K}^+}[\text{K}^+]_\text{in} + P_{\text{Na}^+}[\text{Na}^+]_\text{in} + P_{\text{Cl}^-}[\text{Cl}^-]_\text{out}} \right)$$
[Na+]out | ||||||
---|---|---|---|---|---|---|
[K+]out | ||||||
[Cl-]out | T (Kelvin) |
[Na+]in | PNa | |||||
---|---|---|---|---|---|---|
[K+]in | PK | |||||
[Cl-]in | PCl |