Kawahara, A. Y., Sondhi, Y. and Theobald, J. (2024). High-Speed Video of a Flying Ghost Moth, Phassus n-signatus (Hepialidae) Reveals Slight Forewing-Hindwing Out-Of-Phase Flapping. J. Lepid. Soc.78, 266–268. https://doi.org/10.18473/lepi.78i4.a6
Sondhi, Y., Messcher, R. L., Bellantuono, A. J., Storer, C. G., Cinel, S. D., Godfrey, R. K., Mongue, A. J., Weng, Y.-M., Glass, D., St Laurent, R. A., Earl,C., Brislawn, C. J., Kitching, I. J., Bybee, S. M., Theobald, J. C., and Kawahara, A. Y. (2024). Day–night gene expression reveals circadian gene disco as a candidate for diel-niche evolution in moths. Proc. R. Soc. Lond. B.291, 20240591. https://doi.org/10.1098/rspb.2024.0591
Rodriguez-Pinto, I. I., Rieucau, G., Handegard, N. O., Boswell, K., and Theobald, J. C. (2024). Environmental impacts on visual perception modulates behavioral responses of schooling fish to looming predators. J. Exp. Biol.227, 6. https://doi.org/10.1242/jeb.246665
Buffry, A. D., Currea, J. P., Franke-Gerth, F. A., Palavalli-Nettimi, R., Bodey, A. J., Rau, C., Samadi, N., Gstöhl, S. J., Schlepütz, C. M., McGregor, A. P., Sumner-Rooney, L., Theobald, J., Kittelmann, M. (2024). Evolution of compound eye morphology underlies differences in vision between closely related Drosophila species. BMC Biol.22, 67. https://doi.org/10.1186/s12915-024-01864-7
Fabian, S. T., Sondhi, Y., Allen, P. E., Theobald, J. C. and Lin, H.-T. (2024). Why flying insects gather at artificial light. Nat. Commun. 15, 1–15.https://doi.org/10.1038/s41467-024-44785-3
Fabian, S., Theobald, J. and Sondhi, Y. (2024). The surprising reason why insects circle lights at night: They lose track of the sky. The Conversation. English, Spanish, Portuguese
Barredo, E. and Theobald, J. (2023). Insect neurobiology: What to do with conflicting evidence? Curr. Biol. 33, R1188–R1190. https://doi.org/10.1016/j.cub.2023.09.060
Currea, J. P., Sondhi, Y., Kawahara, A. Y. and Theobald, J. (2023). Measuring compound eye optics with microscope and microCT images. Commun. Biol. 6, 1–12. https://doi.org/10.1038/s42003-023-04575-x
Barredo, E., Raji, J. I., Ramon, M., DeGennaro, M. and Theobald, J. (2022). Carbon dioxide and blood-feeding shift visual cue tracking during navigation in Aedes aegypti mosquitoes. Biol. Lett. 18. https://doi.org/10.1098/rsbl.2022.0270
Theobald, J. and Palavalli-Nettimi, R. (2022) Flies evade your swatting thanks to sophisticated vision and neural shortcuts, The Conversation. English
Sondhi, Y., Jo, N. J., Alpizar, B., Markee, A., Dansby, H. E., Currea, J. P., Fabian, S. T., Ruiz, C., Barredo, E., Allen, P., DeGennaro, M., Kawahara, A.Y., Theobald, J.C., (2022). Portable locomotion activity monitor (pLAM): A cost-effective setup for robust activity tracking in small animals. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13809
Currea, J. P., Frazer, R., Wasserman, S. M. and Theobald, J. (2022). Acuity and summation strategies differ in vinegar and desert fruit flies. iScience 25. https://doi.org/10.1016/j.isci.2021.103637
Palavalli-Nettimi, R. and Theobald, J. (2021). Do flies really throw up on your food when they land on it? The Conversation. English, Indonesian
Ruiz C. and Theobald J. C. (2021). Stabilizing responses to sideslip disturbances in Drosophila melanogaster are modulated by the density of moving elements on the ground. Biol. Lett., 20200748. https://doi.org/10.1098/rsbl.2020.0748
Sondhi, Y., Ellis, E. A., Bybee, S. M., Theobald, J. C. and Kawahara, A. Y. (2021). Light environment drives evolution of color vision genes in butterflies and moths. Commun. Biol. 4, 1–11. https://doi.org/10.1038/s42003-021-01688-z
Palavalli-Nettimi, R. and Theobald, J. (2020). Insect neurobiology: how a small spot stops a fly. Curr. Biol. 30, R761–R763. https://doi.org/10.1016/j.cub.2020.05.005
Ruiz, C. and Theobald, J. C. (2020). Ventral motion parallax enhances fruit fly steering to visual sideslip. Biol. Lett. 16, 20200046. https://doi.org/10.1098/rsbl.2020.0046
Palavalli-Nettimi, R. and Theobald, J. C. (2020). Small eyes in dim light: Implications to spatio-temporal visual abilities in Drosophila melanogaster. Vision Res. 169, 33–40. https://doi.org/10.1016/j.visres.2020.02.007
Palermo, N., and Theobald, J. (2019). Fruit flies increase attention to their frontal visual field during fast forward optic flow. Biol. Lett. 15, 20180767. https://doi.org/10.1098/rsbl.2018.0767
Currea, J. P., Smith, J. L., and Theobald, J. C. (2018). Small fruit flies sacrifice temporal acuity to maintain contrast sensitivity. Vision Res. 149, 1–8. https://doi.org/10.1016/j.visres.2018.05.007
Ruiz, C., and Theobald, J. (2018). Insect vision: judging distance with binocular motion disparities. Curr. Biol. 28, R148–R150. https://doi.org/10.1016/j.cub.2018.01.039
Smith, J. L., Palermo, N. A., Theobald, J. C., and Wells, J. D. (2016). The forensically important blow fly, Chrysomya megacephala (Diptera: Calliphoridae), is more likely to walk than fly to carrion at low light levels. Forensic Sci. Int. 266, 245–249. https://doi.org/10.1016/j.forsciint.2016.06.004
Caballero, J., Mazo, C., Rodriguez-Pinto, I., and Theobald, J. C. (2015). A visual horizon affects steering responses during flight in fruit flies. J. Exp. Biol. 218, 2942–2950. https://doi.org/10.1242/jeb.119313
Smith, J. L., Palermo, N. A., Theobald, J. C., and Wells, J. D. (2015). Body size, rather than male eye allometry, explains Chrysomya megacephala (Diptera: Calliphoridae) activity in low light. J. Insect Sci. 15, 133. https://doi.org/10.1093/jisesa/iev114
Mazo, C., and Theobald, J. C. (2014). To keep on track during flight, fruit flies discount the skyward view. Biol. Lett. 10, 20131103. https://doi.org/10.1098/rsbl.2013.1103
Cabrera, S., and Theobald, J. C. (2013). Flying fruit flies correct for visual sideslip depending on relative speed of forward optic flow. Front. Behav. Neurosci. 7, 76. https://doi.org/10.3389/fnbeh.2013.00076
Chow, D. M., Theobald, J. C., and Frye, M. A. (2011). An olfactory circuit increases the fidelity of visual behavior. J. Neurosci. 31, 15035–15047. https://doi.org/10.1523/JNEUROSCI.1736-11.2011
Theobald, J. C., Ringach, D. L., and Frye, M. A. (2010). Dynamics of optomotor responses in Drosophila to perturbations in optic flow. J. Exp. Biol. 213, 1366–1375. https://doi.org/10.1242/jeb.037945
Theobald, J. C., Ringach, D. L., and Frye, M. A. (2010). Visual stabilization dynamics are enhanced by standing flight velocity. Biol. Lett. 6, 410–413. https://doi.org/10.1098/rsbl.2009.0845
Theobald, J. C., Shoemaker, P. A., Ringach, D. L., and Frye, M. A. (2010). Theta motion processing in fruit flies. Front. Behav. Neurosci. 4. https://doi.org/10.3389/fnbeh.2010.00035
Theobald, J. C., Warrant, E. J., and O’Carroll, D. C. (2010). Wide-field motion tuning in nocturnal hawkmoths. Proc. R. Soc. London B 277, 853–860. https://doi.org/10.1098/rspb.2009.1677
Theobald, J. C., Duistermars, B. J., Ringach, D. L., and Frye, M. A. (2008). Flies see second-order motion. Curr. Biol. 18, R464–R165. https://doi.org/10.1016/j.cub.2008.03.050
Theobald, J. C., Coates, M. M., Wcislo, W. T., and Warrant, E. J. (2007). Flight performance in night-flying sweat bees suffers at low light levels. J. Exp. Biol. 210, 4034–42. https://doi.org/10.1242/jeb.003756
Theobald, J. C., Greiner, B., Wcislo, W. T., and Warrant, E. J. (2006). Visual summation in night-flying sweat bees: A theoretical study. Vision Res. 46, 2298–2309. https://doi.org/10.1016/j.visres.2006.01.002
Kelber, A., Warrant, E. J., Pfaff, M., Wallen, R., Theobald, J. C., Wcislo, W. T., et al. (2006). Light intensity limits foraging activity in nocturnal and crepuscular bees. Behav. Ecol. 17, 63–72. https://doi.org/10.1093/beheco/arj001
Coates, M. M., Garm, A., Theobald, J. C., Thompson, S. H., and Nilsson, D.-E. (2006). The spectral sensitivity of the lens eyes of a box jellyfish, Tripedalia cystophora (Conant). J. Exp. Biol. 209, 3758–3765. https://doi.org/10.1242/jeb.02431
Hanein, Y., Lang, U., Theobald, J., Wyeth, R., Daniel, T., Willows, A. O. D., , Denton, D. D., and Böhringer, K. F. (2001). Intracellular neuronal recording with high aspect ration MEMS probes. Transducers 01: Eurosensors XV, Digest of Technical Papers, Vols 1 and 2, 386–389. https://doi.org/10.1007/978-3-642-59497-7_92