Xiao Y., Dane K.Y., Uzawa T., Csordas A., Qian J.R., Soh H.T., Daugherty P.S., Lagally E., Heeger A.J. & Plaxco K.W. “Detection of telomerase activity in high concentration of cell lysates using primer-modified gold nanoparticles” J. Am. Chem. Soc.132, 15299-15307, 2010
Pavlov V., Xiao Y. & Willner I. “Inhibition of the acetycholine esterase-stimulated growth of Au nanoparticles: Nanotechnology-based sensing of nerve gases.” Nano Lett., 5, 649-653, 2005.
Xiao Y., Pavlov V., Levine S., Niazov T., Markovitch G. & Willner I. “Catalytic growth of Au nanoparticles by NAD(P)H cofactors: Optical sensors for NAD(P)(+)-dependent biocatalyzed transformations.” Angew. Chem., Int. Ed., 43, 4519-4522, 2004.
Pavlov V., Xiao Y., Shlyahovsky B. & Willner I. “Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin.” J. Am. Chem. Soc., 126, 11768-11769, 2004
Xiao Y., Patolsky F., Katz E., Hainfeld J.F. & Willner I. “”Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticles.” Science, 299, 1877-1881, 2003.
Hsieh K.W., White R.J., Ferguson B.S., Xiao Y.* & Soh H.T. “SNP-Switch: An Electrochemical, Polarity-Switching DNA Sensor towards Definitive Detection of Single-Base Mismatches.” Angew. Chem., Int. Ed. 50, 11176-11180, 2011.
Zuo X.L., Xia F., Xiao Y.* & Plaxco K.W. “A sensitive and selective, amplified fluorescence DNA detection based on exonuclease III aided target recycling” J. Am. Chem. Soc. 132, 1816-1818, 2010.
Xiao Y.*, Lou X.H., Uzawa T., Plakos K.J.I., Plaxco K.W. & Soh H.T. “An Electrochemical Sensor for Single Nucleotide Polymorphism Detection in Serum Based on a Triple-Stem DNA probe.” J. Am. Chem. Soc. 131, 15311-15316, 2009.
Xiao Y., Plakos K.J.I., Lou X.H., White R.J., Plaxco K.W. & Soh H.T.“Fluorescence Detection of Single Nucleotide Polymorphism via a Single Self-Complementary, Triple-Stem DNA Probe.” Angew. Chem., Int. Ed. 48, 4354-4358, 2009.Xiao Y., Lubin A.A., Heeger A.J. & Plaxco K.W. “Label-free electronic detection of thrombin in blood serum by using an aptamers-based sensor.” Angew. Chem., Int. Ed., 44, 5456-5459, 2005.
Ahmad K.M. Xiao Y. & Soh H.T. “Selection is More Intelligent Than Design: Improving the Affinity of a Bivalent Aptamer Through Directed Evolution.” Accepted in Nucleic Acids Research.
Oh S.S., Ahmad K.M., Cho M., Kim S., Xiao Y.* & Soh H.T. “Improving Aptamer Selection Efficiency through Volume Dilution, Magnetic Concentration, and Continuous Washing in Microfluidic Channels.”Anal. Chem. 83,6883-6889, 2011.
Cho M., Xiao Y., Nie J., Stewart R., Csordas A., Oh S.S., Thomson J.A. & Soh H.T. “Quantitative selection of DNA aptamers through microfluidic selection and high throughput sequencing.” Proc. Natl. Acad. Sci. U.S.A. 107, 15373-15378, 2010.
Oh S.S., Plakos K.J.I., Lou X.H., Xiao Y.* & Soh H.T. “In vitro selection of structure switching, self-reporting aptamers.” Proc. Natl. Acad. Sci. U.S.A. 107, 14053-14058, 2010.
Lou X.H., Qian J.R., Xiao Y., Viel L., Gerdon, A.E., Lagally E.T., Atzberger P., Heeger A.J. & Soh H.T. “Micromagnetic selection of aptamers in microfluidic channels.” Proc. Natl. Acad. Sci. U.S.A.106, 2989-2994, 2009.