Newton 

  

  Mathematical Physics I  PHY5115

Misak Sargsian

M,W 6:25-7:40pm, CP101

Office Hours M,W - 3:30-4:30pm, CP224, sargsian@fiu.edu, 305-348-3954



Lectures 1-4:Series

(1)  Infinite Series
(2) Series of Functions
(3) Taylor Expansion
(4) Power Series
(5) Uniqueness Theorem
(6) Some Important Series


Lectures 8-16: Vectors & Vector Analysis
(1) Vectors
(2) Scalar and Vector products, Levi Civita symbols
(3) Scalar and Vector triple products
(4) Orthogonal Transformations and Rotations
(5) Differential Vector Operations, Gradient, Divergence and Curl
(6) Laplacian
(7) Vector Integrations
(8) Gauss' and Stoke's Theorems
(9) Scalar and Vector Potentials, Gauge fixing
(10)Maxwell Equations through scalar and vector potentials
(11)Gauss Law
(12)Poisson's Equation
(13)Helmholtz's Theorem


Lectures 17: Curvilinear Coordinates

 
(1) Orthogonal Coordinates in R3
  (2) Integrals in Curvilinear Coordinates
  (3) Differential Operators in Curvilinear Coordinates
  (4) Circular Cylindrical Coordinates
  (5) Spherical Polar Coordinates 



 

Lectures 18-19 Matrices

 (1) 
  (2) 
  (3) 
  (4) 
  (5)   

 

Lectures 20-21 Line, Surface and Volume Integrals

 (1) 
  (2) 
  (3) 
  (4)
  (5) 

 



Lectures 20-21: Complex Numbers and Function

(1) Basic Properties
(2) Functions in Complex Domain
(3) Polar Representation
(4) Complex Numbers of Unit Magnitude
(5) Circular and Hyperbolic Functions
(6) Powers and Roots
(7) Logarithms


Lectures 21-24: Complex Variable Theory

(1) Cauchy-Riemann Conditions
(2) Analytic Functions
(3) Derivatives of Analytic Functions
(4) Point at Infinity
(5) Cauchy's Integral Theorem
(6) Contour Integrals
(7) Statement of Theorem
(8) Cauchy's Theorem: Proof
(9) Multiply Connected Regions
(10) Cauchy's Integral Formula
(11)Derivatives
(12)Morera's Theorem
(13)Further Applications


 
Lectures 25-: Complex Variable Theory (continuation)
(1) Laurent Expansion
(2) Taylor Expansion
(3) Laurent Series
(4) Singularities
(5)Poles
(6)Branch Points
(7)Analytic Continuation
(8)Calculus of Residues
(9) Residue Theorem
(10)Computing Residues
(11)Cauchy Principal Value
(12)Pole Expansion of Meromorphic Functions
(13) Counting Poles and Zeroes
(14)Product Expansion of Entire Functions
(15)Evolution of Definite Integrals




 Lectures 25-: Mathematics of Quantum Computing




 Lectures 26-: Mathematics of Artificial Inteligence


 ?   Information.

 

Mathematica Methods for Physicists

Suggested Textbook

1."Mathematical Methods for Physicists"
  Seventh Edition
By George B Arfken, Hans J Weber,
      Frank E Harris
2. "Mathematical Methods for Physics and
   Engineers",
By. K.F.Riley, M.P. Robertson, S.J. Bence

 

The  pieces of the Final Grade:

Homeworks with deadlines (not graded)
(evaluated by the fraction of problems solved) 20%
Take Home Midterm Exam  (25%) (Oct 7th)
Project (25%) Due
Final Cumulative In Class Exam (30%) 1

Homework Assignments:
(10% less for each day of the late homework)

HW1  Due  Sep 10

HW2   Due Sep 22

HW3   Due  Oct 4

HW4   Due  Oct 17
 
HW5   
Due  Oct 24

HW6    Due  Oct 31

Exam1
Due  Nov  7

HW7   Due  Nov 7

HW8   Due   Nov 14

HW9    Due  Nov 21

HW10  Due  Nov 28

HW11  Due  Dec

HW12  Due  Dec

HW13  Due  Dec

Final Exam  5-7pm 


PossibleExamQuestions
 
CurrentGrades


1. Euclid, Riemann
, Lobachevsky and understanding the shape of the universe - 
2. Pythagoras and Harmonies in the Physics -  
                              Asmita Pudasainee
3. Lagrange and Euler and rise of Theoretical Physics -                   Joshi Bhaskar
4. Henri Poincare - from Three-body problem to Gravitational Waves -
5. Cantor and the Infinities -   

6. Ramanujan - from Numbers to Black Hole 

7. Emmy Noether and Symmetries of the Nature -  
                         Alexander Lohr
8. Hilbert's program and Physics -  
9. Goedel's Theorem of Incompleteness

10. Decartes, Newton, Leibniz and the Riese of Modern Physics -   
Huma Sadiq
 11. Mathematics of Chaos and Nonlinear Phenomena in Physics -  Benjamin Gross
12. Hermann Minkowski and Theory of Relativity as a Rotation   Ritwik Acharyya
13. John van Neumann and Cellular Automata in Physics and -       Baral Sandip

Some Rules:

 

Class Policies:
No Unjustified absences, more than 50%
attendance is required to get a final grade in the class, no carbon copied homeworks please


And finally some Nos:
No cheating, no chatting and no napping, and no saying "I hate math" at least publicly:-)




©2021 Mathematical Physics; • Misak Sargsian ABCDE